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ABSTRACT: 

 

Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a 

pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it’s also 

nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these 

difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides 

motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in 

SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly 

functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the 

vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation 

results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process 

reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion 

estimation and accurate 3D mapping in poor illumination and featureless underground environment.    
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1. INTRODUCTION 

Modern urban development and expansion has increasingly 

shifted to underground infrastructures to relieve ground traffic 

loads. Mapping underground infrastructures becomes an 

important task for general management and security. Moreover, 

as these underground infrastructures age, mapping and 

inspection is becoming more critical to avoid catastrophic 

failures. However, traditional surveying methods for mapping 

large-scale underground infrastructure is a time-consuming and 

challenging endeavour. We developed a novel robust motion 

estimation method for localization and mapping in underground 

infrastructure using a pre-calibrated rigid stereo camera rig. Our 

parallel motion estimation and mapping system is capable of 

operating in underground environment with poor illumination 

and without GPS signal. It automatically reconstructs the 3D 

model of the infrastructure in actual scale. 

The predominant practice for 3D mapping of underground 

infrastructures is the use of tripod-mounted terrestrial laser 

scanners at a sequence of static stations (Fekte et al, 2010). This 

mapping method is accurate but consuming in both labour and 

instrument. On the other hand, mobile mapping solutions, 

including those based on Simultaneous Localization and 

Mapping (SLAM), are applied in underground environment. 

(Robert et al, 2014) developed a solution capable of estimating 

the motion trajectory of mobile platforms as well as 3D point 

cloud of the environment. Their system is mainly depending on 

laser scanner as the primary sensor and has been installed in 

underground mines. In their algorithm, captured images are only 

used as texture information of the environment. While others 

(Peter Hansen et al, 2015) took the advantage of modern camera 

systems and established a visual mapping system for gas pipe 

inspection. In their work, they used fisheye imaging to produce 

3D textured surface models of inner pipe walls which is of 

accuracy and practicality. Yet their 3D maps had not absolute 

scales and were not measurable. In the present paper, we built a 

parallel structure and transformed the state-of-the-art Visual 

Odometry (VO) and stereo 3D mapping algorithm to survey 

underground infrastructures. 

The parallel structure set up two separate threads, one deals 

with motion estimation while the other one deals with 3D 

mapping. This set up avoids data-association problem in SLAM 

and is more robust in mapping underground structure. Stereo 

VO algorithms are known to be accurate and robust 

(Scaramuzza et al, 2011), and therefore elected as our motion 

estimation algorithm. Enframing feature matching, pose 

estimation and non-linear refinement, stereo VO provides 

accurate motion estimation results for 3D mapping of the 

environment, and were implemented in several successful 

above-ground applications (Fraundorfer et al, 2012). 

Nonetheless, developing a stereo VO solution for underground 

infrastructure where visual structure and appearance is very 

different from ground environment remains non-trivial. 

Specifically, major restrictions introduced by underground 

infrastructure are poor lighting conditions and featureless 

artificial structures, which create challenges for feature 

detection and matching. We developed a modified RANSAC 

(Fischler et al 1981) scheme to overcome poor matching and 

produced robust motion estimation results for underground 

environment. While the motion estimation thread is running, the 

3D mapping thread would map all valid pixels to local 

coordinates instantaneously, and projects them to global 

coordinates according to the estimated camera motion (Geiger 

et al 2011). 

In the following section (section 2), we presented our parallel 

mapping system and described methods of motion estimation 
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and mapping for underground infrastructure. Section 3 describes 

the mobile mapping platform we used for data collection and 

correspondent calibration method. We performed a set of 

experiments and demonstrated the results of our parallel system 

performing in underground infrastructure and highlight the 

advantage of our system, as elaborated in section 4. Finally, we 

concluded our work and discussed further improvements in 

section 5. 

 

2. PARALLEL MOTION ESTIMATION AND MAPPING 

2.1 Parallel Structure 

The parallel motion estimation and mapping (PMEM) structure 

was first introduced by (Klein et al, 2007). PMEM employs two 

separate threads, one for estimating the motion of camera pose 

through analysing every single frame, and another for mapping 

the environment by applying bundle adjustment to a set of 

spatially distributed keyframes. The PMEM is a valid approach 

of simultaneous localization and mapping (SLAM) in a 

previously unknown environment. However, PMEM is quite 

different from common Extended Kalman Filter (EKF) based 

SLAM approaches, and performs better in underground 

environment. To our knowledge, the EKF-SLAM is an 

incremental mapping method: localization and mapping are 

intimately linked by updating current camera pose and the 

landmark positions together upon acquisition of every single 

frame (Durrant-Whyte et al, 2006). We hereby raise our main 

argument that modeling underground infrastructure is a more 

difficult task comparing to above-ground scenario. Firstly, 

underground infrastructure often house featureless artificial 

structures like plain walls; secondly, with insufficient lighting, 

the field-of-view (FOV) of camera system is restricted. These 

restrictions rendered difficulties in reconstructing the 

surroundings in each frame and caused failure to subsequent 

mapping associated localization. This data-association problem 

can irretrievably corrupt the maps generated by incremental 

systems. PMEM however, does not abide by these restrictions. 

Since motion estimation and mapping are assigned to separate 

threads, the former is no longer slaved to the latter, and enables 

the use of state-of-the-art motion estimation method to ensure 

robustness in underground scenario. 

Currently, consumer-level computers are often packed with 

multi-core processors, allowing us to split motion estimation 

and mapping into two different threads. Freed from 

computational burden of mapping at every frame, the motion 

estimation thread can process more information in every single 

image and furtherly improves performance. Moreover, adjacent 

frames often contain redundant information, particularly when 

the mobile platform moves slowly. Since mapping is not 

associated to motion estimation, it is not necessary to use every 

frame for mapping. Ergo, we select a smaller number of 

meaningful keyframes for mapping. Detailed motion estimation 

and mapping algorithms are elaborated in the following section. 

  

2.2 Motion Estimation 

When moving through an environment, the stereo camera 

system takes images at discrete time instants  . The main task 

of motion estimation is to estimate the position and pose of each 

image in one coordinate system. To attain robustness, we 

choose the stereo VO algorithm to estimate the motion. Stereo 

VO computes the relative transformation        of two camera 

positions at adjacent time instants     and   and then to 

concatenate the transformations to recover the full trajectory 

     *       + of the cameras. The VO algorithm deals 

with transformation parameters (   )  of        of two 

adjacent frames as follows: 

1) Find corresponding features   in the adjacent stereo 

image pair                        . Bucketing is used 

to retain the feature number and uniformly spread over the 

image domain.  

2) Project the corresponding features from previous frame 

into 3d coordinates via triangulation using the calibration 

parameters of the stereo camera rig. 

3) Calculate the reprojection into the current image by  
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4) Minimize the reprojection error iteratively 
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  are the projection of a 3d point which 

generates from the corresponding feature in the 

             . The projection 3 →  is implied  

by Eq.1. 

Since the corresponding features may be wrong matched, a 

standard RANSAC scheme is used to reject outliers. However, 

in featureless underground infrastructure, the wrong matched 

feature percentage is higher than above-ground cases due to 

poor illumination and unremarkable features. Employing the 

standard RANSAC in this situation lead to a wrong 

convergence when the algorithm starts with groups of wrong 

matches. We develop a modified RANSAC scheme by 

initializing RANSAC with long-traced features. Long-traced 

features (LTF) are matched in several sequence frames. These 

LTFs have a property of being correct matched and thus retains 

the integrity after several matches. After RANSAC, all inliers 

are used for refining the parameter, yielding the final 

transformation       .  

 

2.3 Mapping 

The mapping starts with stereo matching and 3d projection in 

the first set of stereo frames. As the platform moves, new 

keyframes and map features are added to the system, to extend 

the map. The added new Keyframes should meet the following 

conditions: 

1) The motion estimation result of the keyframes must be 

correct. 

2) Time interval between two keyframes must exceed certain 

amout (in our case every five frames). 

3) Position interval between two keyframes must be greater 

than a minimum distance. 

Before mapping with the new keyframe, the motion is estimated 

by VO system and all feature correspondences are established. 

After initialization, the simplest 3D mapping method maps all 

valid pixels to local 3D coordinates and projects them to a 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-675-2016

 
676



 

common coordinate system according to the estimated camera 

motion. However, as more frames are added while the mobile 

platform moves, the storage requirements grow rapidly. Further, 

single feature in reality may relate to several points in 3D maps 

due to motion estimation error. In our 3D mapping scheme, 

when a new frame is added, only 3D points that have not been 

matched in the previous frames will be added. These 3D points 

of matched features are fused subsequently via computing their 

3D mean. This 3D matching scheme not only reduces storage 

requirements, but also improves 3D mapping accuracy by 

averaging out stereo measuring noise over several frames. To 

further improve the 3D mapping accuracy, off-line batch 

process method such as bundle-adjustment is adopted to reduce 

mapping error. 

 

3. MOBILE SYSTEM AND CALIBRATION 

3.1 Mobile 3D-Mapping System 

To collect underground data and for further analyses, we 

installed sensors, computer hardware and actuators on a 

prototype mobile platform. Demonstrating in Figure 1, our 

underground 3D mapping hardware is based on a four-wheel 

mobile platform (patent pending) which is an unmanned electric 

vehicle. 

 

 
 

Figure 1. The appearance of the mobile mapping system 

 

The vehicle has an external dimension of 1.7m*0.7m*1m, 

weights 150kg and has an additional payload of 120kg. Driven 

by an electric motor, the vehicle runs quietly and smoothly and 

cruising speed can be set at three levels. To compensate for low 

light condition, two high-intensity LEDs are mounted on the 

front providing additional illumination. As far as sensor 

equipment, the prototype has wheel encoders, sonic radar and 

stereo camera rig consisting of two Canon digital cameras 

mounted rigidly and is adjusted to parallel optical axis. Two 

cameras are trigged by the interval signal from the control unit 

and are synchronized at millisecond level. Exposure time and 

frequency are configured manually accommodating different 

scenarios. The mapping system is run by a consumer-level 

multicore computer. Powered by two sets of lead batteries, the 

whole system is capable of functioning for 4 hours or 20 

kilometres without interrupt. 

 

3.2 Calibration and Rectification 

To simplify the calculation process and produce accurate results, 

we calibrated the stereo camera rig before collecting each of the 

datasets in section 4. The main objective of calibration is to 

accurately measure the intrinsic and extrinsic parameters of the     

stereo camera system. The intrinsic parameters describe the  

projection relation of the 3D point in global coordinates and 2D 

point position in pixel coordinates, while the extrinsic 

parameters describe the mutual position and orientation between 

left and right cameras. One of the widely used toolboxes for 

camera calibration is Bouget’s Matlab Camera Calibration 

Toolbox, of which a C++ version has been implemented in the 

OpenCV library. We used the calibration function in OpenCV, 

which offers automatic corner detection, and built a fully 

automated calibration program. A set of 20 stereo images of a 

checkerboard placed at different positions were used as standard 

inputs for calibration. 

 After calibration, the relative position between the two 

cameras is measured and corresponding features can be matched 

more efficiently and accurately along the epipolar line. In our 

case when the two cameras are rigidly implemented during the 

experiment, it’s more efficient to rectify the images according to 

the calibration parameter than computing the epipolar line for 

each candidate feature. The stereo rectified image coordinates 

   and    are produced by rotating the rays about the camera 

centers, and then applying a pinhole projection using the left 

and right camera matrices    and   . 

          
          

The    and    are the normalized pinhole coordinates derived 

from the intrinsic calibration parameters. The rotation used in 

the rectification,    and    rotate the cameras principal axes 

so that they are orthogonal to the vector joining the camera 

centers, and the epipolar lines are horizontally aligned. 

  

 

4. EXPERIMENTS, RESULTS&DISCUSSION 

In this section, we collected a data set to evaluate the 

performance of our parallel system. The experiment data set is 

collected in an underground garage with limited illumination 

and featureless artificial structure, which are two main issues in 

underground modelling. Before we collect the data, the stereo 

camera rig is calibrated and all images are rectified with the 

calibration parameter. Sample images collected are shown in 

figure 2.  

 

 
 

Figure 2. Sample images of the collected dataset 

 

The performance of motion estimation algorithm is evaluated by 

calculating the loop-closure error of the motion trajectory. To 

evaluate the 3D modelling accuracy, visually salient targets are 

set on walls and measured by total station. The modelling error 

are measured by the comparing the targets position from 3D 

modelling thread with the ground truth acquired from total 

station. 
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4.1 Motion Estimation Results 

As mentioned in section 2, we kept the track of LTFs to attain 

robustness of the RANSAC based motion estimation algorithm. 

Here we defined LTFs as features traced in three consecutive 

frames. Initializing RANSAC scheme with LTFs performed 

better in outlier rejection and kept robustness of motion 

estimation algorithm. The whole trajectory of the experimental 

data is shown in figure 3.  

 
 

Figure 3. Loop-close trajectory 

 

The results showed that our algorithm performed without failure 

in estimating the motion of all image pairs in 66.34 meters. The 

final closure error is 20.4 cm, the relative error, which is 

calculated by dividing the closure error by the travelled distance, 

is 0.3%. According to our previous above-ground experiments 

with images acquired during 140-meter travelling, the relative 

error was 0.57%. The underground motion estimation algorithm 

achieves similar reliability as the above-ground method, which 

indicates that the negative factors of underground environment 

are alleviated by our algorithm. 

 

4.2 3D Mapping Results 

3D mapping accuracy is evaluated by comparing the control 

point position in 3D map with total station-measured results. 

On-line process results are compared with off-line 

bundle-adjustment (BA) and controlled BA. Since the 3D map 

and control points have different coordinate systems, some 

control points are used to calculate the coordinate 

transformation parameter and no control points are referred in 

the On-line process and BA. In controlled BA, half control 

points are used in the processing while others are used to check 

the position accuracy. 

 

 Mean Error RMS 

 mm mm 

On-line process 130.5 122.3 

BA 23.42 57.82 

Controlled BA 6.322 6.34 

 

Table1. Mean Error and RMS of different method 

 

The on-line process highly depends on the motion estimation 

results, and the accumulated error in motion estimation 

decreases the on-line process accuracy. While the off-line BA 

method minimizes reprojection error of the whole 3D points, it 

effectively reduces 3D mapping error. However, BA is a 

time-consuming process, in our case it took 3 hours to produce 

the final results. Controlled BA takes the advantage of precise 

position of the control points and therefore further improves 

mapping accuracy. From the results, On-line process is more 

suitable for smaller scenario, and large scale scenario 

necessitates offline process to ensure mapping accuracy. 

Figure 4 shows illustrated the whole 3D map after BA, the 

missing part in the middle is the result of difficult acquisition of 

that area due to parking vehicles and thus are not reconstructed 

by our mobile mapping system. 

 

 
 

Figure 4. Entire 3D map of the underground garage 

 

More details of the 3D map are shown in Figure 5, 

corresponding actual structures are shown in Figure 2. The 

featureless structures (mainly plain walls) remain a problem in 

the 3D mapping process, since the features are not detected and 

matched in that area. Aside from those structures, the ground 

and the roof of the garage are correctly reconstructed, this is 

exceptionally valuable in inspection task in underground. 

 

 
 

Figure 5. Detail 3D map of different scenario 

 

 

5. CONCLUSIONS AND FUTURE WORKS 

In this paper we presented a parallel system for underground 3D 

mapping. The system was evaluated and tested by actual 

datasets in an underground garage and successfully generated 

the 3D map. The results indicated that the parallel structure is 

suitable for localization and mapping in the underground 

scenario. In the future, we plan to improve the on-line mapping 

accuracy with loop-closure detection, and validate the algorithm 

in other underground scenarios. 
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