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ABSTRACT: 

LiDAR sensors are proven sensors for accurate vehicle localization. Instead of detecting and matching features in the LiDAR data, 
we want to use the entire information provided by the scanners. As dynamic objects, like cars, pedestrians or even construction sites 
could lead to wrong localization results, we use a change detection algorithm to detect these objects in the reference data. If an object 
occurs in a certain number of measurements at the same position, we mark it and every containing point as static. In the next step, we 
merge the data of the single measurement epochs to one reference dataset, whereby we only use static points. Further, we also use a 
classification algorithm to detect trees. 
For the online localization of the vehicle, we use simulated data of a vertical aligned automotive LiDAR sensor. As we only want to 
use static objects in this case as well, we use a random forest classifier to detect dynamic scan points online. Since the automotive 
data is derived from the LiDAR Mobile Mapping System, we are able to use the labelled objects from the reference data generation 
step to create the training data and further to detect dynamic objects online. The localization then can be done by a point to image 
correlation method using only static objects. We achieved a localization standard deviation of about 5 cm (position) and 0.06° 
(heading), and were able to successfully localize the vehicle in about 93 % of the cases along a trajectory of 13 km in Hannover, 
Germany. 

* Corresponding author 

1. INTRODUCTION

Accurate localization is essential for highly automated vehicles. 
Driver assistance systems or self-driving cars need to know 
their position with an accuracy of some centimeters to a few 
decimeters. Differential GNSS sensors, even combined with an 
INS solution, can’t guarantee these high accuracies. Especially 
in cities, with high buildings and trees causing multi-path 
effects and signal outages, a GNSS solution is not reliable. 
Therefore additional sensors, like cameras or LiDAR sensors, 
are needed. 
A first vehicle localization approach by using camera data has 
been published in the 1990s. (Pomerleau and Jochem, 1996) 
detect lane markers in camera images to determine the position 
of autonomous driving cars on highways and the road curvature. 
Nowadays, also LiDAR systems are used to detect lane markers 
by their reflectivity (Nothdurft et al., 2011) (Yoneda et al., 
2015). The detected markers are then matched to a digital map 
to improve the GNSS/INS position. In (Ziegler et al., 2014) the 
lane marker detection approach is combined with a 2D feature 
detection. They use an illumination robust descriptor (DIRD), 
which is presented in (Lategahn et al., 2014). Though the 
feature descriptor is not influenced by illumination effects, it 
still depends on the current vehicle view point and the object 
surfaces. In (Qu et al., 2015) a geo-referenced traffic sign based 
localization is presented. The detected traffic signs are used in a 
local bundle adjustment to decrease the localization error of an 
additional system. 
In (Brenner and Hofmann, 2012) the potential of 3D landmarks, 
namely pole-like objects, is demonstrated. Poles, extracted from 
3D point clouds gathered by LiDAR sensors, are matched to 
reference landmarks to correct the GPS-based localization. 

Disadvantages of this method are the relative low quantity of 
occurring features and false positive feature detections, 
especially if an automotive LiDAR sensor is used. Another 
difficulty is the matching step, which becomes even harder with 
many false positives. Although this problem is partially solved 
by using local feature patterns in (Schlichting and Brenner, 
2014), the number of correct matched features still is not high 
enough for a reliable localization. 
Instead of using specific landmarks, which means that only a 
small percentage of the reflected laser beams is taken into 
account, several approaches make use of the entire LiDAR data. 
(Yoneda et al., 2014) use the generated 3D point cloud for 
localization by matching it to a 3D reference cloud in real-time. 
One big disadvantage of this approach is that storing the 
reference cloud in a map requires much storage space. 

Figure 1. Image generation workflow. Dynamic objects like 
trees, pedestrians and cars are detected and removed. The 

reference images are generated using the filtered point clouds. 
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(Levinson et al., 2007) are using LiDAR sensors to extract a 2D 
orthoimage of the ground intensity values. They correlate the 
extracted images to a given map and localize the vehicle relative 
to this map using a particle filter. In (Maddern et al., 2015) also 
a 2D height representation is used. To consider the dynamics of 
a city, they chose a so called experience-based localization with 
multiple maps. 
In this paper we only want to use one map, containing 2D 
height and intensity images as a representation of 3D point 
clouds. For the creation of the reference images, we use several 
data records gathered by a highly accurate Mobile Mapping 
System to guarantee a high resolution of a few centimeters. In 
future scenarios, a cooperative mapping approach of vehicles 
equipped with automotive LiDAR sensors can record the map 
instead of using one accurate Mobile Mapping System. The 
principle of the map generation step is shown in Figure 1. 
Dynamic objects, like cars, pedestrians or construction sites, are 
filtered using a change detection algorithm. (Aijazi et al., 2013) 
detect dynamic objects using a classification approach which 
divides the objects into predefined categories. Following this, 
the remaining static cloud is examined for changes by 
comparing 3D evidence grids. (Xiao et al. 2015) use an 
occupancy grid based method on the scanning rays without any 
point voxelization. As we want to detect dynamic objects by the 
change detection algorithm, we decided to use an object based 
method. The occurring objects of the single datasets are 
segmented by a seeded region growing algorithm (Adams and 
Bischof, 1994) and compared to each other. They are only 
regarded in the scan images, if they appear in a certain number 
of measurements at the same position. If not, they are labeled as 
dynamic objects. Further, we also labeled trees as dynamic 
objects. They are detected by a random forest classification 
(Breiman, 2001), similar to methods presented in (Pu et al., 
2011) and (Wu et al., 2013). 
At this point of research, we use simulated data of a 2D LiDAR 
sensor mounted in vertical direction on the vehicle to generate 
the online measurements which perform the online localization. 
The data is matched to the reference images by a correlation 
approach. The position deviation to the true vehicle position can 
be directly derived by the best scan to reference correlation 
result. A further distinction to previous methods is, that we only 
want to use static objects in the localization process. For every 
scan point we calculate a feature vector. Then, the points are 
classified into static and dynamic points by a random forest 
classifier. The training data is generated using the labeled 
objects of the change detection and tree classification step. 
The paper is organized as follows. In section 2 the acquisition of 
the reference point clouds and the simulated online clouds is 
described. The generation of the reference images, containing 
the tree classification and the change detection algorithm, is 
presented in section 3. In section 4 the localization by the point 
to image matching is described with an evaluation in section 5. 
Finally, in section 6 conclusions are drawn. 
 

2. DATA ACQUISITION 

2.1 Reference Data 

For our experiments we used data acquired from a Riegl VMX-
250 Mobile Mapping System, containing two laser scanners, a 
camera system and a localization unit. The system is shown in 
Figure 2. 
The localization is provided by a highly accurate GNNS/INS 
system combined with an external Distance Measurement 
Instrument (DMI). The preprocessing step is made by the 
corresponding Riegl software and additional software for 
GNSS/INS processing, using reference data from the Satellite 

Positioning Service SAPOS. The resulting trajectory is within 
an accuracy of about 10 to 30 cm in height and 20 cm in 
position in urban areas. Each scanner measures 100 scan lines 
per second with an overall scanning rate of 300,000 points per 
second (Riegl, 2011). The measurement range is limited to 200 
meters, the ranging accuracy is 10 mm. Because of its high 
accuracy and point density, we use the laser scanners to create 
the reference data. 
 
2.2 Simulated 2D LiDAR sensor 

The measurement data of the automotive LiDAR sensor is 
simulated at this stage of research. The scanner is assumed to be 
aligned vertically, which means that a single scan line consists 
of point measurements orthogonal to the driving direction of the 
vehicle. We sample the data of the Mobile Mapping System in a 
way that a scan line consists of 580 point measurements with an 
opening angle of 290 degrees and a resolution of 0.5 degrees. 
The scanning rate is set to 50 scan lines per second, which 
yields a point resolution of 20 centimeters in driving direction at 
a driving speed of 10 m/s. 
 

3. REFERENCE IMAGES 

The generation of the reference map is an important part of our 
vehicle localization approach. The references are realized as 2D 
representations of highly dense point clouds, separated into a 
height and an intensity image. As we only want to use static 
objects for the purpose of localization, we have to filter 
dynamics from the original point cloud. This is done in two 
steps. First trees are removed via a classification approach. The 
remaining dynamic objects are detected by a change detection 
algorithm, comparing several data sets of the same location 
measured at different timestamps. To reduce computation time, 
we perform a downsampling of the point clouds using a voxel 
grid filter with a leaf size of 10 cm provided by the Point Cloud 
Library (PCL) (Rusu and Cousins, 2011). 
 
3.1 Alignment 

The accuracy of point measurements is directly influenced by 
the localization accuracy of the Mobile Mapping System. If 
several point clouds are measured at different dates, the clouds 
are shifted and rotated relative to each other. As we want to 
save the data of several measurement campaigns in a single 
reference set, the point clouds have to be transformed. We solve 
this issue by determining the transformation to one reference 
point cloud by using an Iterative Closest Point (ICP) 
implementation, which was first introduced by (Besl and 
McKay, 1992). To prevent false point matches, we segment the 
point clouds into three parts by calculating the point normals: 
Points with a normal vector in driving direction (x) and 

Figure 2. Riegl Mobile Mapping System. 
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perpendicular to the driving direction (y) and ground points with 
a normal vector in z direction. The translation vector consists of 
the translation values corresponding to the normal vectors of the 
three point sets. As it turned out, the influence of the rotation 
angles in this case is not relevant. 
To evaluate the alignment accuracy, we pruned three plane 
regions from the reference point cloud and from five aligned 
clouds, also in driving direction, perpendicular to driving 
direction and a ground region. After the alignment step, we 
calculated the root mean square deviation to the reference plane 
parameters. The results are shown in Table 1. 
 

direction σPlane [mm] Mean RMS [mm] 
x 4,0 11,1 
y 4,6 8,3 
z 4,7 9,3 

Table 1. Results of the alignment to a reference data set. 

It can be seen, that the point clouds can be aligned to a reference 
cloud within an accuracy of about 1 cm, although a 
downsampling with a 10 cm voxel size was performed in 
advance. 
 
3.2 Object segmentation 

The detection of dynamic objects requires a segmentation of 
point clouds in single freestanding objects. The segmentation is 
performed using a two-step seeded region growing algorithm. 
After computing the local normal vector for every point, we 
pick the seed points from which the region starts to grow. We 
sort the points by their height and choose the k lowest points 
with a normal vector that points up within a certain tolerance. A 
new point is added to the ground if it is within a radius of 20 cm 
and its local normal vector in z direction points up within a 
certain tolerance. After every seed point has been processed, we 
remove the ground from the original point cloud and perform a 
region growing algorithm on the remaining points. In contrast to 
the first step, we only use the Euclidean distance as a growing 
threshold. 
It turned out that our approach leads to errors in situations with 

various ground levels. In this case the segmentation would lead 
to large objects, connected by the ground. To solve this 
problem, we again perform the algorithm on the point sets of the 
objects resulting from the first segmentation. 
 
3.3 Tree classification 

Trees are not dynamic objects like cars or pedestrians. 
Nevertheless, trees may have a bad influence on the localization 
step, because their appearance may change due of growth, 
seasonal changes or even because of wind. However, they are 
hard to detect by a point cloud change detection algorithm, 
because their basic shape remains the same. Therefore, we 
decided to detect them by a classification algorithm.  
We use a random forest classifier with ten decision trees and a 
tree depth of ten nodes. The first feature is the tree height, 
whose calculation is straightforward. For the further features we 
divide the tree into 20 blocks with a block height of 0.5 m (see 
Figure 3). Points higher than 10 m are only considered for the 
calculation of the overall tree height. For every tree block we 
use the block width and volume as a feature. In addition, we 
perform a principal component analysis (PCA) for every point 
using the neighboring points in a radius of 1 m. We then derive 
the linear (a1), planar (a2) and scatter (a3) dimensionality 
features by the eigenvalues λ1, λ1 and λ3, like described in 
(Demantké et al., 2011) and (West et al., 2004): 
 

𝑎1 = 𝜆1−𝜆2
𝜆1

,     𝑎2 = 𝜆2−𝜆3
𝜆1

,      𝑎3 = 𝜆3
𝜆1

, (1) 

 
with  𝜆1 >  𝜆2 >  𝜆3  and   𝑎1 + 𝑎2 + 𝑎3 = 1. 
 
Figure 3 shows the tree points colored by the dominating 
dimensionality factor (a1: blue, a2: green, a3: red). It can be seen, 
that the trunk mostly consists of linear features whereas the 
crown consists of linear, planar and scatter parts. We calculate 
the mean values of the dimensionality elements for every block 
and add them to the feature vector. If a block contains no points, 
its values are set to zero. 
A cross validation with training data consisting of 338 trees and 
14793 other objects results in a precision of 96 % and a recall of 
95 %. An example of correctly detected trees can be seen in 
Figure 4. 
The two main reasons of false negative tree detections are 
occlusions and segmentation errors. Objects between the 
LiDAR sensor and a tree may lead to the effect that not the 
whole tree but only a part of it is measured by the system. The 
wrong shape of the object then yields a false classification. In 

Figure 4: Point cloud with classified trees in green, detected 
dynamic objects in red and static objects in blue. The ground is 

colored by the point intensity values. 

Figure 3. The point sets are divided into at maximum 20 blocks 
with an overall height of 10 m. For every block the average 

width, volume and the dimensionality factors are determined. 
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future work, an occlusion analysis could help to reduce 
classification errors. 
Another problem are trees connected to other objects, especially 
building facades. If the segmentation algorithm does not divide 
them into separate objects then as a result the whole segmented 
object is not classified as a tree. We plan to implement a min-
cut approach to divide the objects and improve the segmentation 
(Sedlacek and Zara, 2009) (Golovinskiy and Funkhouser, 2009).  
 
3.4 Change detection 

The goal of the change detection is to detect dynamic objects, 
like pedestrians or cars. Therefore we do not compare the whole 
point cloud but only the segmented objects (see 3.2) to five 
further comparison clouds at the same location. As they all were 
already aligned to the same reference cloud, they do not have to 
be aligned to each other. For every point of a segment we 
perform a radius search with a threshold of 15 cm in the 
comparison cloud. If for a certain percentage of segment points 
(here: 25 %) no neighboring points could be found for at least 
one segment-to-cloud comparison, the object is labeled as 
dynamic. An exemplary comparison is shown in Figure 5, 
whereby trees and (only for visualization purposes) buildings 
are already removed. The segments are all colored blue. Cars 
and pedestrians have no corresponding points in the other point 
cloud. Street signs do occur in both clouds and will be labeled 
as static. Figure 4 shows the resulting dynamic (red) and static 
(blue) objects. In this case, the algorithm works fine. In general, 
some errors occur at parking lots, occupied by the same or 
similar cars. A solution would be another, additional 
classification approach for cars, pedestrians and cyclists. Of 
course, other dynamic objects, like for example waste bins, may 
still be labeled wrongly as static. 

 
3.5 Image generation 

After filtering dynamic objects from the point clouds, we 
generate the reference images by reducing the point cloud to a 
2D representation. The cloud is divided to a 2D grid with a cell 
size of 2 cm. Exemplary images can be found in Figure 6 and 
Figure 7. In Figure 6 the grey value is given by the maximum 
height value in a grid cell, in Figure 7 the grey value is given by 
the mean intensity value over all datasets. Overall, we generated 
907 images (height and intensity in each case) using eight 
different data sets for each image on the cluster computer 
system at the Leibniz University Hannover, Germany. 
In future scenarios, instead of using one highly dense and 
accurate mapping system, the reference data can be recorded by 
every vehicle equipped with automotive LiDAR sensors. 
Afterwards, the data may be merged on a server to generate and 
update dynamic reference images. 
 

4. LOCALIZATION 

The localization is performed by matching the simulated data of 
an automotive LiDAR sensor to the height and intensity 
reference images. To improve the localization, we label every 
scan point as dynamic or static using a random forest 
classification. 
 

Figure 6. Resulting height reference image. Figure 7. Resulting intensity reference image. 

Figure 5: Segments of one point cloud (blue) are compared to 
points of another point cloud (colored by intensity values). 

Figure 8: Classified points of the automotive LiDAR data. 
Dynamic points are colored red, static points are colored by 

their intensity value. 
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4.1 Online classification 

As we only want to use static points and objects in the 
localization, we also have to detect them in the automotive data. 
Thus instead of classifying the resulting point clouds in 
postprocessing, we classify the scan points scan line by scan 
line. Since we can’t integrate neighboring points, the selection 
of spatial features is limited to one line. 
 
Our feature vector consists of 127 elements. The first values are 
the position relative to the scanner, namely the height and the 
horizontal distance. In addition, we use the intensity value und 
the intensity standard deviation involving the 20 previous and 
following measurements. Next, we calculate the deviation of the 
height, the horizontal distance and the intensity values, also in a 
20 points neighborhood along the scan line. 
The training data is generated by using the labeled dynamic 
objects, detected by the tree classification and the change 
detection algorithm (see 3.3 and 3.4). As the street geometry in 
cities varies from street to street, we decided to divide our test 
trajectory into 100 m sectors and generated training data of 
about 50.000 points per sector. 
The random forest classifier consists of ten decision trees and a 
tree depth of 25. We tested the performance of the classification 
using a cross validation, which achieved a recall of 97 % and a 
precision of 91 %. False negative detections of dynamic scan 
points could lead to a wrong localization result whereby false 
positive detections are only reducing the amount of points in the 
correlation. Therefore a high recall value, meaning a high 
completeness of dynamic points, is the major important 
evaluation criterion. 
Figure 8 shows a point cloud with points classified as dynamic 
shown in red. Scan points on dynamic objects, here cars, 
pedestrians and trees are correctly detected. Some false positive 
detections occur on the lower part of the building facade, on the 
left walkway and on the street light in the back. 
 
4.2 Point to image correlation 

We assume that the current vehicle state x, which in this 
simplified case is only given by the position (x,y) and 
orientation (θ), is known within a range of  ± 2 m and a heading 
of ± 5 degrees. To speed up computation, the transformation x 
that leads to the highest correlation to the reference images is 
calculated using a pyramid approach with an end resolution of 1 

cm and 0.05 degrees. We do not only use one scan line in the 
matching process, but measurements along a certain range, in 
this case 20 m. 
The measurements are matched to the reference images by 
determining the corresponding image coordinates for every scan 
point and comparing the measured height and intensity values to 
the pixel values of the reference images. As the pixel height 
value is always given by the highest point, we also only use the 
measurement with the largest height value that falls into a 
certain pixel while calculating the height image correlation 
coefficient. 
The overall correlation (Corr) of one transformation to the 
reference data is given by the product of the correlation to the 
height image (Corr1) and the correlation to the intensity image 
(Corr2). 
 

𝐶𝑜𝑟𝑟 = 𝐶𝑜𝑟𝑟1 ∙  𝐶𝑜𝑟𝑟2    (2) 

 
The correlation coefficient can be calculated by the following 
formula, where mj,i stands for the single measurements and pxj,i 
for the pixel values of the reference image. 
 

𝐶𝑜𝑟𝑟𝑗 =
∑ (𝑚𝑗,𝑖− 𝑚𝚥����)(𝑝𝑥𝑗,𝑖− 𝑝𝑥𝚥�����)𝑛
𝑖=1

�∑ (𝑚𝑗,𝑖− 𝑚𝚥����)2�𝑝𝑥𝑗,𝑖− 𝑝𝑥𝚥 �������2𝑛
𝑖=1

   , with 𝑗 = 1, 2. (3) 

 
An example plot of the correlation results in this range for the 
area that can be seen in Figure 4 is presented in Figure 9, 
whereby the x-axis points to driving direction. Along the 
driving direction the values are relatively high, compared to the 
y-axis. Mainly because of the building facades, the correlation 
decreases rapidly from the maximum to both sides on the y-axis. 
Note that in this figure the correlation coefficient is already 
normalized. 
On large streets, in some cases the height variance in the image 
is relatively low. As a result, the height image matching is very 
inaccurate. In these cases, we only use the intensity reference 
image. 
 

5. RESULTS 

We tested our localization approach on a trajectory of 13 km 
length in Hannover, Germany. The reference images were 
aligned to the same data set that was used to generate the 
automotive LiDAR data. Consequently, we would expect a 
perfect matching of the automotive data to be zero in x and y 
direction as well as for the heading difference. We only 
considered correlation results with a deviation 2D lower than 
0.5 m, with 
 

2𝐷𝑖 = �𝑥𝑖
2 + 𝑦𝑖

2. (4) 

 
If the deviation is higher than this threshold, we did not take the 
corresponding trajectory point into account. The completeness 
is indicated as the relation of trajectory points with a successful 
localization (2D < 0.5 m) to the overall number of trajectory 
points (907). 

Figure 9. Correlation plot in a range of 2 m x 2 m with a 
resolution of 0.10 m. 
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Figure 11 - Figure 13 show maps where the error ellipses are 
colored by their 2D deviation. If the 2D deviation is higher than 
0.5 m, the corresponding positions are represented by a red bolt. 
The standard deviations are shown in Table 2 and Table 3. It 
can be seen, that in most cases a localization with a standard 
deviation of 0.048 m and 0.064° is possible. Especially in 
residential areas with narrow streets and buildings standing 
close, the localization works fine (Figure 11). In this area the 
completeness is 97 %. The main reasons for localization errors 
are trees in the reference images that are not detected by the tree 
classification, low structured pavements and missing height 
variances as shown in Figure 10. These errors often appear at 
large streets (Figure 12) and in this case in the city center of 
Hannover, see Figure 13. Here the completeness values are 91 
% (large street) and 89 % (city center). The overall 
completeness is 93 %. Table 2 also shows the localization 
results without a classification of dynamic points. Hence the 
mean deviations are quite lower, the completeness also 
decreases by about five percent. 
 

 Classification No classification 
σx 0.043 m 0.046 m 
σy 0.021 m 0.016 m 
σ2D 0.048 m 0.049 m 
σΘ 0.064° 0.056° 

Completeness 0.93 0.88 
Table 2: Localization results with and without a classification of 

dynamic points. 

 Residential 
area Large street Center 

σx 0.050 m 0.045 m 0.019 m 
σy 0.021 m 0.022 m 0.017 m 
σ2D 0.054 m 0.050 m 0.026 m 
σΘ 0.067° 0.062° 0.065° 

Completeness 0.97 0.91 0.89 
Table 3: Localization results separated by city areas. 

The time complexity of the correlation value computation and 
the classification step depends on the number of the scan points 
and the length of the processed automotive scan segment along 
the trajectory. To speed up computation, we tested various 
sampling rates and also varied the processed segment length 
(see Figure 14 - Figure 17). The evaluation was performed on a 
Windows 7 64 bit system with a 3.4 GHz i5-3570K quad core 

Figure 12: Localization results on a large street in Hannover, 
Germany. 

Figure 13: Localization results on a large street (bottom) and in 
the city center of Hannover, Germany. 

Figure 10: Intensity image of a trajectory point, where a correct 
localization fails. 

Figure 11: Localization results in a residential area with narrow 
streets and buildings standing close in Hannover, Germany. 
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processor. It can be seen, that with a higher sampling rate and a 
smaller analyzed scan segment the accuracy decreases slightly 
and the completeness decreases strongly. In contrast to the 
completeness and accuracy, a larger sampling rate has positive 
influence on the time complexity. At a sampling rate of 5 and a 
scan segment length of 20 m the correlation analyses with 
centimeter resolution can be done in less than one second. 
 

6. CONCLUSIONS 

In this work we presented a highly accurate vehicle localization 
approach using an automotive LiDAR sensor. The automotive 
data was simulated by sampling data of a highly dense and 
accurate Mobile Mapping System, which we also used to 
generate the reference data. In the future, we will use original 
data, e.g. gathered by a SICK LMS500 laser scanner. The 
reference map contains height and intensity images with a fixed 
resolution of 2 cm. These reference images are 2D 
representations of the point clouds, whereby we only considered 
static objects. Dynamic objects, like trees, cars or pedestrians 
were filtered by a change detection and a tree classification 
algorithm. In the majority of cases both algorithms worked well. 
In the change detection algorithm false positive detections 
appeared if two objects were connected, like a bicycle standing 
at a pole light. False negatives appeared if two similar or the 
same objects occurred at the same positions. Here a 
classification approach could improve the results. The tree 
classification did not work in cases where trees are connected to 

other large objects like building facades. To solve this problem, 
we plan to implement a min-cut algorithm, which could also 
reduce the number of false positive dynamic object detections. 
The online localization was performed by matching the 
automotive LiDAR scan points to the reference images. We 
used a point to image correlation using the height and the 
intensity values. We also classified the scan points into static 
and dynamic points to improve the matching. It turned out, that 
especially in residential areas, the localization works well, with 
a completeness of about 97 % and an accuracy of 5.4 cm 
(position) and 0.067° (heading). The overall completeness along 
a 13 km trajectory is 93 % with a standard deviation of 4.8 cm 
and 0.064°. The main reasons for localization errors are low 
structured reference images and remaining trees in the reference 
images. 
We also evaluated the time complexity of the algorithm by 
varying the sampling rate of the scan points and the length of 
the analyzed segment at one trajectory point. The computation 
time for a correlation analyses with a resolution of 1 cm varies 
between some seconds to about half a second. 
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of processed scan segments. 
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Figure 15: Completeness at various sampling rates and lengths 
of processed scan segments. 
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Figure 16: Computation time of the correlation analyses at various 
sampling rates and lengths of processed scan segments at a 

resolution of 0.01 m. 

Figure 17: Computation time of the classification step at various 
sampling rates and lengths of processed scan segments. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-703-2016

 
709



REFERENCES 

Adams, R., Bischof, L., 1994. Seeded region growing. IEEE 
Transaction on Pattern Analysis and Machine Intelligence, 
16(6), pp. 641-647. 
 
Aijazi, A. K., Checchin, P., Trassoudaine, L., 2013. Detecting 
and updating changes in LiDAR point clouds for automatic 3d 
urban cartography. ISRPS Annals of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 2(5), W2. 
 
Besl, P., McKay, N. D., 1992. Method for registration of 3-d 
shapes. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 14, pp. 239-254. 
 
Breiman, L., 2001. Random forests. Machine Learning, 45(1). 
Springer, Heidelberg, pp. 5-32. 
 
Brenner, C., Hofmann, S., 2012. Evaluation of automatically 
extracted landmarks for future driver assistance systems. 
Advances in Spatial Data Handling and GIS. Springer, 
Heidelberg, pp. 169-181. 
 
Demantké, J., Mallet, C., David, N., Vallet, B., 2011. 
Dimensionality based scale selection in 3D LiDAR point 
clouds. The International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 38(5), W12. 
 
Golovinskiy, A., Funkhouser, T., 2009. Min-cut based 
segmentation of point clouds. IEEE International Conference 
on Computer Vision (ICCV Workshops), pp. 39-46. 
 
Lategahn, H., Beck, J., Stiller, C., 2014. DIRD is an 
illumination robust descriptor. Proceedings of IEEE Intelligent 
Vehicles Symposium (IV), pp. 756-761. 
 
Levinson, J., Montemerlo, M., Thrun, S., 2007. Map-based 
precision vehicle localization in urban environments. 
Proceedings of Robotics: Science and Systems. 
 
Maddern, W., Pascoe, G., Newman, P., 2015. Leveraging 
experience for large-scale LiDAR Localization in changing 
cities. Proceedings of IEEE International Conference on 
Robotics and Automation (ICRA), pp. 1684-1691. 
 
Nothdurft, T., Hecker, P., Ohl, S., Saust, F., Maurer, M., 
Reschka, A., Bohmer, J., 2011. Stadtpilot: First fully 
autonomous test drives in urban traffic. Proceedings of 14th 
International IEEE Conference on Intelligent Transportation 
Systems, pp. 919-924. 
 
Pomerleau, D., Jochem, T., 1996. Rapidly adapting machine 
vision for automated vehicle steering. IEEE Intelligent Systems, 
2, pp. 19-27. 
 
Pu, S., Rutzinger, M., Vosselman, G., Oude Elberink, S., 2011. 
Recognizing basic structures from Mobile Laser Scanning data 

for road inventory studies. Journal of Photogrammetry and 
Remote Sensing, 66(6), pp. 28-39. 
 
Qu, X., Soheilian, B., Paparoditis, N., 2015. Vehicle 
Localization using mono-camera and geo-referenced traffic 
signs. Proceedings of IEEE Intelligent Vehicles Symposium 
(IV), pp. 605-610. 
 
Riegl Laser Measurement Systems GmbH, 2011. Riegl VMX-
250, Horn, Austria. Available at: 
http://products.rieglusa.com/Asset/10_DataSheet_VMX-
250_11-11-2011.pdf. 
 
Rusu, R. B. and Cousins, S., 2011. 3D is here: Point Cloud 
Library (PCL). IEEE International Conference on Robotics and 
Automation (ICRA). 
 
Schlichting, A., Brenner, C., 2014. Localization using 
automotive laser scanners and local pattern matching. 
Proceedings of IEEE Intelligent Vehicles Symposium (IV), pp. 
414-419. 
 
Sedlacek, D., Zara, J., 2009. Graph cut based point-cloud 
segmentation for polygonal reconstruction. Advances in Visual 
Computing. Springer, Heidelberg, pp. 39-46. 
 
Wen, X., Vallet, B., Brédif, M., Paparoditis, N., 2015. Street 
environment change detection from mobile laser scanning point 
clouds. ISPRS Journal of Photogrammetry and Remote Sensing 
107, pp. 38-49. 
 
West, K. F., Webb, B. N., Lersch, J. R. Pothier, S., Triscari, J. 
M., Iverson, A. E., 2004. Context-driven automated target 
detection in 3D data. Defense and Security, International 
Society for Optics and Photonics, pp. 133-143. 
 
Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., Huang, Y., 
Wu, J., Liu, H., 2013. A voxel-based method for automated 
identification and morphological parameters estimation of 
individual street trees from Mobile Laser Scanning data. 
Journal of Phtogrammetry and Remote Sensing, 5(2), pp. 584-
611. 
 
Yoneda, K., Tehrani, H., Ogawa, T., Hukuyama, N., Mita, S., 
2014. LiDAR scan feature for localization with highly precise 
3-d map. Proceedings of IEEE Intelligent Vehicles Symposium 
(IV), pp. 1345-1350. 
 
Yoneda, K., Yang, C., Mita, S., Okuya, T., Muto, K., 2015. 
Urban road localization by using multiple layer map matching 
and line segment matching. Proceedings of IEEE Intelligent 
Vehicles Symposium (IV), pp. 525-530. 
 
Ziegler, J., Lategahn, H., Schreiber, M., Keller, C. G., Knoppel, 
C., Hipp, J., Haueis, M., Stiller, C., 2014. Video based 
localization for bertha. Proceedings of IEEE Intelligent Vehicles 
Symposium (IV), pp. 1231-1238.

 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-703-2016

 
710


	1. INTRODUCTION
	2. DATA ACQUISITION
	2.1 Reference Data
	2.2 Simulated 2D LiDAR sensor

	3. REFERENCE IMAGES
	3.1 Alignment
	3.2 Object segmentation
	3.3 Tree classification
	Change detection
	3.5 Image generation

	4. LOCALIZATION
	4.1 Online classification
	4.2 Point to image correlation

	5. RESULTS
	6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES



