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ABSTRACT:

This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial
to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our
proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to
calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point
cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in
point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods,
we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods
that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted
strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of
our method both on synthetic data and laser scanning data.

1. INTRODUCTION

Measuring the similarity between 3D geometric objects plays an
important role in many 3D applications such as 3D object re-
trieval (Biasotti et al., 2015) and inverse procedural modelling
(Talton et al., 2011). Many methods have been proposed either
for measuring the global similarity between two complete 3D ob-
jects, or for measuring the partial similarity between complete
3D object and incomplete structured 3D object (Savelonas et al.,
2015). However, there are a few methods proposed for measuring
the Similarity between 3D Model and 3D point Cloud (SimMC)
.

Measuring SimMC is becoming more and more important, as a
result of easier and easier acquisition of point clouds due to the
blooming of laser scanning techniques. A point cloud usually
contains a large number of points. Point cloud is intrinsically in-
complete and unstructured. SimMC is a special kind of partial
similarity. The problem of partial similarity assessment is chal-
lenging and not being well solved (Sipiran et al., 2014).

In the field of Partial 3D Object Retrieval (P3DOR), some ap-
proaches have been presented for assessing the partial similar-
ity in recent years. However, most of those approaches require
structured data (e.g. mesh) as input (Lavoué, 2012) (Bronstein et
al., 2011). Recently, a similarity assessment method applicable
on point clouds was proposed in (Savelonas et al., 2016). The
method calculates similarity by combining differential fast point
feature histograms with Fisher encodings.
∗Corresponding author

Although the similarity assessment methods introduced in the
field of P3DOR can achieve state-of-the-art performance in terms
of precison and recall, they may perform poorly in terms of speed.
The size of model set used in P3DOR usually is not big. For
example, the datasets used in (Savelonas et al., 2016) contain
around 400 models. As a result, the time cost in P3DOR is not
so important. However, in Inverse Procedural Modeling (IPM),
we have to perform similarity assessment over procedural space
which contains infinite models. The time cost for similarity as-
sessment hence becomes critical in IPM.

In this papar, we present a fast SimMC assessment method which
borrows the mean error idea from MESH (Aspert et al., 2002).
However, different from MESH aiming to measure global simi-
larity, in order to measure partial similarity, our method employs
distance-weighted strategy to express different importance of dif-
ferent parts in assessed objects. Our method is as fast as MESH
which is one of the fastest global similarity assessment methods.
Our method therefore is faster than exsiting partial similarity as-
sessment methods to some extent.

The rest of this paper is organized as follows. Section 2 presents
some related shape similarity assessment methods. Section 3
presents our distance-weighted partial similarity assessment method.
Section 4 presents experimental evaluation. Section 5 presents
concluding remarks.
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2. RELATED WORK

2.1 Weighted Hausdorff Distance

There are many modified Hausdorff distance measures have been
proposed for different purposes in various applications. In face
recognition, by assuming different regions have different impor-
tance, several weighted Hausdorff distance measures have been
proposed. Spatially eigen-weighted Hausdorff distance, which
was proposed in (Lin et al., 2003), defines weighting function
based on an eigenface which can effectively reflect the face struc-
ture. Edge eigenface weighted Hausdorff distance, which was
proposed in (Tan et al., 2011), defines weighted function based
on the eigenface of edge images.

2.2 Partial Similarity between 3D Objects

Partial similarity assessment between 3D objects is mostly stud-
ied in P3DOR which is essentially distinct from global 3D object
retrieval. Persist heat signatures (Dey et al., 2010) was proposed
for matching incomplete models. Bilateral map (van Kaick et
al., 2013) was proposed as a local shape descriptor for partial
matching. A pariwise 3D shape context for partial object retrieval
was proposed in (Yu et al., 2014). A partial similarity assess-
ment method based on differential fast point feature histograms
and Fisher encodings was recently proposed in (Savelonas et al.,
2016).

3. METHOD

We define the partial similarity between a 3D model and a 3D
point cloud as the ratio of weighted surface area of the model to
the weighted one-sided Hausdorff distance from the model to the
point cloud.

3.1 Symmetrical Hausdorff Distance

The Symmetrical Hausdorff Distance (SHD) ds between two point
sets A and B is defined as:

ds(A,B) = max [d(A,B), d(B,A)] (1)

where d(A,B) is One-sided Hausdorff Distance (OHD) from A
to B:

d(A,B) = max
a∈A

d(a,B) (2)

and
d(a,B) = min

b∈B
‖a− b‖ (3)

where ‖·‖ is Euclidean norm.

We can use SHD ds(A,B) to exactly assess the global similarity
between point sets A and B. A and B are identical if ds(A,B)
equals 0.

3.2 Mean Error

According to Eqs. (1) and (2), to calculate SHD , we have to
compute OHD two times, one time from A to B, another time
from B to A. (Aspert et al., 2002) proposes approximating SHD
by Mean Error (ME) which only needs to compute OHD one time
and therefore dramasttically saves time. The ME dm between
surface A and point set B is defined as:

dm(A,B) =
1

|A|

∫∫
a∈A

d(a,B)dA (4)

where |A| denotes the area of A.

Note that, to compute ME between two point sets, one of the
point sets must be in structured form (e.g. surface), so as we can
get the area of it. In practice, surface is commonly represented as
discrete meshes (e.g. triangular meshes). Suppose A consisting
of N non-overlapping sub-surfaces (meshes):

A =
N
∪
i=1

Ai (5)

Then the Discrete Mean Error (DME) ddm between A and B can
be defined as:

ddm(A,B) =

N∑
i=1

d(Ai, B) |Ai|

N∑
i=1

|Ai|
(6)

3.3 Partial Similarity

Partial similarity is different from global similarity. The global
similarity can be assessed by computing SHD or ME. However,
it is not straightforward to assess partial similarity. If an object is
a part of another object, or these two objects have common part,
then these two objects are partially similar. As shown in Fig. 1,
(a) and (b) are partially similar since (b) is a part of (a).

Figure 1: Illustration of partial similarity. (a) and (b) are two
objects. The red part in (c) shows the overlap between (a) and
(b). Actually, (b) is a part of (a).

3.4 Reciprocal Weighted Mean Error

We propose two kinds of Reciprocal Weighted ME (RWME) for
assessing the partial similarity between two 3D objects. One is
smoothly-RWME, another one is piecewise-RWME.

Given a surface A, which consists of N sub-surfaces (see Eq.
(5)), and a point set B, the RWME r between A and B is defined
as:

r(A,B) =

N∑
i=1

wi |Ai|

c+
N∑
i=1

wid(Ai, B)

(7)

where c is a positive number which is fixed to 0.1 in this paper,
and wi is the weight.

For smoothly-RWME, wi is defined as:

wi = exp(
−d(Ai, B)

h
) (8)

where h is a positive number. In this paper, we set h to 1. And
for piecewise-RWME, wi is defined as:

wi =

{
1, d(Ai, B) < t

0, otherwise
(9)

where t is a number as a threshold.
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3.5 Computation of OHD

According to Eq. (7), to compute RWME between a surface and
a point set, we have to compute OHD from the sub-surfaces of
the surface to the point set, which consists of two parts. The first
part is sampling points from the sub-surfaces, for which we adopt
a uniform random sampling strategy. The second part is search-
ing the point set for the nearest point of a query point, which is
time consuming while the point set contains a large number of
points (e.g. a laser scanning point cloud consisting of millions
of points). We employ the FLANN (Muja and Lowe, 2014) al-
gorithm to achieve the searching. The computational complexity
for computing RWME depends on the number of points sampled
from the surface and the size of the point set.

4. EXPERIMENTAL RESULTS

4.1 Synthetic Data

We test our method on a synthetic dataset consisting of 3 target
models and 3 query point clouds. Fig. 2 shows the models M1,
M2 and M3. The height, width and length of the models are all
10m, 20m and 20m respectively. M1 and M2 both have 4 faces.
M3 has 3 faces.

Figure 2: Models M1, M2 and M3, from left to right. The top
and bottom rows show the sideview and topview of the models
respectively (the same below in this paper).

Figs. 3, 4 and 5 show the 3 query point clouds C1, C2 and C3 (in
blue). The figures also show the overlapping of the point clouds
and the target models. Actually, C1, C2 and C3 are point sets
uniformly sampled from one face, two faces and three faces of
M1 respectively.

Table 1 shows the smoothly-RWMEs and DMEs (in italics) be-
tween models and point clouds. Bigger RWME indicates more
partially similar, and smaller DME indicates more globally sim-
ilar. In the computation of RWMEs and DMEs, we divide the
models into their primitive faces. In other words, N in Eqs. (7)
and (4), the number of sub-surfaces of M1, M2 and M3 are 4,
4, and 3 resp.. From the table, investigating partial similarity
RWME at first, we can see all the point clouds are dissimilar to
M2 and partially similar to M1 and M3, and can also see C3 (C2)
is more partially similar to M1 and M3 than C2 (C1). Now in-
vestigating global similarity DME together, C1 (C2 or C3) has
almost the same partial similarity but different global similarity
to M1 or M3. To sum up, the table shows the capability of our
method for partial similarity assessement.

Figure 3: Point cloud C1. The leftmost column shows C1 alone.
The remaining 3 columns show the overlapping of C1 with M1,
M2 and M3, from left to right.

Figure 4: Point cloud C2. The leftmost column shows C2 alone.
The remaining 3 columns show the overlapping of C2 with M1,
M2 and M3, from left to right.

Figure 5: Point cloud C3. The leftmost column shows C3 alone.
The remaining 3 columns show the overlapping of C3 with M1,
M2 and M3, from left to right.

4.2 Laser Scanning Point Cloud Data

We also test our method on a mobile laser scanning point cloud
C4 which is scanned from a building and contains 190,677 points,
as shown along with a 4-face cuboid model M4 in Fig. 6. The
time for computing RWMEs (in italics) between M4 with varied
sampling desities and C4 with different filtering levels is showed
in Table 2, in which #(M4) denotes the number of points sam-
pled from M4 and #(C4) denotes the number of points of C4

after voxelized grid filtering. Apparently, we can get more ac-
curate result of RWME while spending more time to take more
points into account. The table shows the flexibility and stability
of our method.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-725-2016

 
727



Model M1 M2 M3

Cloud

C1
803.407 0.0014 803.407
15.0339 22.6779 13.3784

C2
1130.93 0.0058 1130.16
10.0604 14.1425 6.7473

C3
1213.42 0.5834 1218.45
2.5953 11.6424 0.1265

Table 1: RWMEs and DMEs between models and point clouds.

Figure 6: Point cloud C4 (left), model M4 (middle), and the over-
lapping of C4 and M4 (right).

5. CONCLUDING REMARKS

We presented an effective and flexible method for measuring the
rigid partial similarity between a 3D model and a 3D point cloud.
We defined the partial similarity as RWME which is the ratio
of weighted surface area of the model to the weighted one-sided
Hausdorff distance from the model to the point cloud. Different
from other methods only available for assessing global similar-
ity, our method is capable of assessing both global and partial
similarity. Moreover, our method is able to be faster than other
partial similarity assessment methods. The experiments for syn-
thetic data and laser scanning data testified the superiority of our
method.
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