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ABSTRACT: 

This paper presents a novel application of the Visual Servoing Platform’s (ViSP) for pose estimation in indoor and GPS-denied 

outdoor environments. Our proposed solution integrates the trajectory solution from RGBD-SLAM into ViSP’s pose estimation 

process. Li-Chee-Ming and Armenakis (2015) explored the application of ViSP in mapping large outdoor environments, and tracking 

larger objects (i.e., building models). Their experiments revealed that tracking was often lost due to a lack of model features in the 

camera’s field of view, and also because of rapid camera motion. Further, the pose estimate was often biased due to incorrect feature 

matches. This work proposes a solution to improve ViSP’s pose estimation performance, aiming specifically to reduce the frequency 

of tracking losses and reduce the biases present in the pose estimate. This paper explores the integration of ViSP with RGB-D 

SLAM.  We discuss the performance of the combined tracker in mapping indoor environments and tracking 3D wireframe indoor 

building models, and present preliminary results from our experiments. 

 

1. INTRODUCTION 
 

The GeoICT Lab at York University is working towards the 

development of an indoor/outdoor mapping and tracking system 

based on the Arducopter quadrotor UAV. The Arducopter is 

equipped with a Pixhawk autopilot, comprised of a GPS sensor 

that provides positioning accuracies of about 3m, and an 

Attitude and Heading Reference System (AHRS) that estimates 

attitude to about 3°. The Arducopter is also equipped with a 

small forward-looking 0.3MP camera and an Occipital Structure 

sensor (Occipital, 2016), which is a 0.3MP depth camera, 

capable of measuring ranges up to 10m ± 10%.   

 

Unmanned Vehicle Systems (UVS) require precise pose 

estimation when navigating in both indoor and GPS-denied 

outdoor environments. The possibility of crashing in these 

environments is high, as spaces are confined, with many 

moving obstacles. We propose a method to estimate the UVS’s 

pose (i.e. the 3D position and orientation of the camera sensor) 

using only the on-board imaging sensors in real-time as it 

travels through a known 3D environment. The UVS’s pose 

estimate will support both path planning and flight control.  

 

Our proposed solution integrates the trajectory solution from 

RGB-D SLAM (Endres et al., 2014) into ViSP’s pose 

estimation process. The first section of this paper describes 

ViSP, along with its strengths and weaknesses. The second 

section explains and analyses RGB-D SLAM. The third section 

describes the integration of ViSP and RGB-D SLAM and its 

benefits. Finally, experiments are presented with an analysis of 

the results and conclusions. 

 

2. VISUAL SERVOING PLATFORM (ViSP) 

 

ViSP is an open source software tool that uses image sequences 

to track the relative pose (3D position and orientation) between 

a camera and a 3D wireframe model of an object within the 

camera’s field of view. ViSP has demonstrated its capabilities in 

applications such as augmented reality, visual servoing, medical 

imaging, and industrial applications (ViSP, 2013). These 

demonstrations involved terrestrial robots and robotic arms, 

equipped with cameras, to recognize and manipulate small 

objects (e.g., boxes, tools, and cups).  

 

 
Figure 1.  ViSP’s pose estimation workflow. 

 

 
Figure 2.  Example of ViSP’s initialization process. Left) 4 pre-

specified 3D points on the wireframe model.  Right) The user 

selects the 4 corresponding points on the image. ViSP uses 

these corresponding points to estimate the first camera pose. 
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Figure 3. Determining the point position in the next image using the oriented gradient algorithm: A) calculating the normal at sample 

points, B) Sampling along the normal, C)-D) 2 out of the 180 3x3 predetermined masks, C) 180o, D) 45o (Comport et al., 2003). 

 

 

ViSP’s overall workflow is shown in Figure 1. The pose 

estimation process begins by forward projecting the 3D model 

onto the current image frame using the previous frame’s camera 

pose. The Moving Edges (ME) algorithm (Boutemy, 1989) 

extracts and matches feature points between the image and 

projected 3D model. The current camera pose is then estimated 

by a non-linear optimization technique called Virtual Visual 

Servoing (VVS) (Marchand and Chaumette, 2002), it uses a 

vision-based motion control law to adjust the previous camera 

pose such that the 2D image distances between corresponding 

feature points of the projected model and the current frame are 

minimized. The resulting camera pose is fed back into the 

Moving Edges tracker for the next cycle.  To initialize ViSP, the 

camera pose of the first image frame is estimated via VVS after 

the user manually selects 4 points minimum in the first image 

frame that correspond to pre-specified points in the 3D model 

(Figure 2). The following sections explain the ME and VVS 

algorithms in more detail. 

 

2.1 The Moving Edges Tracker 

 

The Moving Edges (ME) algorithm matches image edges in the 

video image frames to the 3D model’s edges that are projected 

onto the image plane using the previous frame’s camera pose. 

The projected edges are referred to as model contours in ViSP.   

 

Firstly, model contours are sampled at a user specified distance 

interval (Figure 3A). For each sample point pt, a search is done 

for the corresponding point pt+1 in the image It+1. Specifically, a 

one dimensional search {Qj, jϵ[-J, J]} is performed along the 

normal direction (δ) of the contour for corresponding image 

edges (Figure 3B). An oriented gradient mask is used to detect 

edges (e.g., Figures 3C and 3D). That is, for each position Qj 

lying the direction δ, a mask convolution Mδ corresponding to 

the square root of a log-likelihood ratio ζj is computed as a 

similarity measure between the image and the gradient mask. 

Thus the new position pt+1 is given by: 

 

��∗ � argmax	
�∈��,��

��   (1) 

with 

�� � �������
��� ∗ �� � ���� �

� ∗ ���   (2) 

 

υ(.) is the neighbourhood of the considered pixel. ViSP’s 

default is a 7x7 pixel mask (Comport et al., 2003). 

 

One of the advantages of this method is that it only searches for 

image edges which are oriented in the same direction as the 

model contour.  An array of 180 masks is generated off-line 

which is indexed according to the contour angle.  The run-time 

is limited only by the efficiency of the convolution, which leads 

to real-time performance (Comport et al., 2003). Line segments 

are favourable features to track because the choice of the 

convolution mask is simply made using the slope of the contour 

line. There are trade-offs to be made between real-time 

performance and both mask size and search distance.  

 

2.2 Virtual Visual Servoing 

 

ViSP treats pose estimation as a 2D visual servoing problem as 

proposed in (Sunareswaran and Behringer, 1998). Once each 

model point’s search along its normal vector finds a matching 

image point via the Moving Edges tracker, the distance between 

the two corresponding points is minimized using a non-linear 

optimization technique called Virtual Visual Servoing (VVS). A 

control law adjusts a virtual camera’s pose to minimize the 

distances, which are considered as the errors, between the 

observed data sd (i.e., the positions of a set of features in the 

image) and s(r), the positions of the same features computed by 

forward-projection of the 3D features P. For instance, in 

Equation (3), oP are the 3D coordinates of the model’s points in 

the object frame, according to the current extrinsic and intrinsic 

camera parameters: 

 

∆� "#"$% & #'% � ()*+"$, ,- % & #'.         (3) 

 

where )*+"$, ,- % is the projection model according to the 

intrinsic parameters ξ and camera pose r, expressed in the 

object reference frame. It is assumed the intrinsic parameters are 

available, but VVS can estimate them along with the extrinsic 

parameters. An iteratively re-weighted least squares (IRLS) 

implementation of the M-estimator is used to minimize the error 

∆. IRLS was chosen over other M-estimators because it is 

capable of statistically rejecting outliers. 

 

Comport et al. (2003) provides the derivation of ViSP’s control 

law. If the corresponding features are well chosen, there is only 
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one camera pose that allows the minimization to be achieved. 

Conversely, convergence may not be obtained if the error is too 

large. 

 

2.3 TIN to Polygon 3D Model 

 

ViSP specifies that a 3D model of the object should be 

represented using VRML (Virtual Reality Modeling Language). 

The model needs to respect two conditions: 

1) The faces of the modelled object have to be oriented so 

that their normal goes out of the object. The tracker uses 

the normal to determine if a face is visible. 

2) The faces of the model are not systematically modelled by 

triangles. The lines that appear in the model must match 

image edges. 

 

Due to the second condition, the 3D building models used in the 

experiments were converted from TIN to 3D polygon models. 

The algorithm developed to solve this problem is as follows: 

1) Region growing that groups connected triangles with 

parallel normals. 

2) Extract the outline of each group to use as the new polygon 

faces. 

 

The region growing algorithm was implemented as a recursive 

function (Li-Chee-Ming and Armenakis, 2015). A seed triangle 

(selected arbitrarily from the TIN model) searches for its 

neighbouring triangles, that is, triangles that share a side with it, 

and have parallel normals. The neighbouring triangles are added 

to the seed’s group. Then each neighbour looks for its own 

neighbours. The function terminates if all the neighbours have 

been visited or a side does not have a neighbour. For example, 

the blue triangles in Figure 4 belong to one group.   

 

Once all of the triangles have been grouped, the outline of each 

group is determined (the black line in Figure 4).  Firstly, all of 

edges that belong to only one triangle are identified, these are 

the outlining edges.  These unshared edges are then ordered so 

the end of one edge connects to the start of another.  The first 

edge is chosen arbitrarily. 

 

 
Figure 4. An example of region growing and outline detection: 

The blue triangles belong to a group because one triangle is 

connected to at least one other triangle with a parallel normal. 

The outline of the group (black line) consists of the edges that 

belong only to one triangle. 

3. RGB-D SLAM 

 

RGB-D SLAM follows the general graph-based SLAM 

approach. The system consists of a frontend module and a 

backend module (Figure 5). The frontend processes the sensor 

data, i.e. the sequence of RGB and depth images, to compute 

the sensor’s motion relative to detected landmarks. A landmark 

is composed of a high-dimensional descriptor vector extracted 

from the RGB image, such as SIFT (Lowe, 2004) or SURF 

(Bay et al., 2008) descriptors, and its 3D location relative to the 

camera pose of the depth image. The relative motion between 

two image frames is computed via photogrammetric bundle 

adjustment using landmarks appearing in both images as 

observations. Identifying a landmark in two images is 

accomplished by matching landmark descriptors, typically 

through a nearest neighbour search in the descriptor space.  

 
Figure 5. RGB-D SLAM’s workflow for pose estimation and 

map creation. 

 

Continuously applying this pose estimation procedure on 

consecutive frames provides visual odometry information. 

However, the individual estimations are noisy, especially when 

there are few features or when most features are far away, or 

even beyond the depth sensor’s measurement range. Combining 

several motion estimates, by additionally estimating the 

transformation to frames other than the direct predecessor, 

commonly referred to as loop closures, increases accuracy and 

reduces the drift. Notably, searching for loop closures can 

become computationally expensive, as the cost grows linearly 

with the number of candidate frames.  Thus RGB-D SLAM 

employs strategies to efficiently identify potential candidates for 

frame-to-frame matching.  

 

The backend of the SLAM system constructs a graph that 

represents the camera poses (nodes) and the transformations 

between frames (edges). Optimization of this graph structure is 

used to obtain a globally optimal solution for the camera 

trajectory. RGB-D SLAM uses the g2o graph solver (Kümmerle 

et al., 2011), a general open-source framework for optimizing 

graph-based nonlinear error functions. RGB-D SLAM outputs a 

globally consistent 3D model of the perceived environment, 

represented as a coloured point cloud (Figure 6).  

 
Figure 6. Screen capture of RGB-D SLAM. The top window 

shows the map (RGB point cloud) being created.  The bottom 

right and left windows show the SIFT image feature (red dots) 

and their scales (green circles), respectively.   
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4. ViSP / RGB-D SLAM INTEGRATION 

Li-Chee-Ming and Armenakis (2015) assessed the performance 

of Visual Servoing Platform’s (ViSP) pose estimation 

algorithm. They found that ViSP crashed when tracking was 

lost, and needed to be manually re-initialized. This occurred 

when there was a lack of model features in the camera’s field of 

view, and because of rapid camera motion. The following 

experiments demonstrate that the tracking performance 

improves when RGB-D SLAM concurrently provides camera 

pose estimates to ViSP. 

Experimenting with stand-alone RGB-D SLAM revealed that 

drift was often present in g2o’s globally optimized trajectory.  

There were two reasons for this: Firstly, data was not collected 

that enabled a loop closure, i.e., not returning to a previously 

occupied vantage point. Secondly, the loop closure was not 

detected by RGB-D SLAM. That is, the user is able to configure 

various parameters that affect the probability of detecting a loop 

closure, for the reason that reducing this probability increases 

computational efficiency of the overall system. Since it is 

infeasible to compare every frame with every other frame, the 

user is able to specify the number of frame-to-frame 

comparisons to sequential frames, random frames, and graph 

neighbour frames. Alternatively, ViSP’s pose estimation 

process can be thought of as loop closing on the 3D wireframe 

model instead of RGB-D SLAM’s map. This allows the RGB-D 

SLAM’s loop closure parameters to be set very low, essentially 

turning RGB-D SLAM into a computationally efficient visual 

odometry system, without sacrificing the accuracy provided by 

large loop closures. 

 

In summary, by integrating the two systems, not only does 

RGB-D SLAM improve ViSP’s tracking performance, but ViSP 

substitutes RGB-D SLAM’s loop closing, with improved 

runtime performance. The proposed integrated solution is 

analogous to GPS/INS integration, where ViSP provides a low-

frequency and drift-free pose estimate that is registered to a 

(georeferenced) 3D model, similar to GPS. Complementarily, 

the RGB-D SLAM visual odometry solution provides a high 

frequency pose estimate that drifts over time, similar to the 

behaviour of an INS (Inertial Navigation System).  

 

Figure 7 shows the strategy for integrating ViSP and RGB-D 

SLAM.  Firstly, the user initializes ViSP by manually selecting 

at least 4 points in the first image frame that correspond to pre-

specified points in the 3D wireframe model. ViSP’s VVS 

algorithm uses these image measurements to estimate the 

camera pose in the 3D wireframe model’s coordinate system.  

RGB-D SLAM then begins mapping and tracking the camera 

pose, and continues until ViSP’s ME algorithm detects 

corresponding image and model feature points. ViSP’s VVS 

algorithm then corrects the camera pose and RGB-D SLAM is 

reset at ViSP’s provided pose. Upon resetting, RGB-D SLAM 

saves each depth frame, with its corresponding camera pose, 

that was collected since the last reset.  

 

5. EXPERIMENTS AND RESULTS 

 

The following experiments were performed on the second floor 

of York University’s Bergeron Centre for Engineering 

Excellence. For testing purposes, a Microsoft Kinect Sensor for 

Windows 1517 was used to collect the data. The Kinect 

contains an RGB camera producing images of 640x480 pixels at 

30 frames per second, and an infrared (IR) emitter and an IR 

depth sensor, which use a structured light approach to output 

depth images of 640x480 pixels at 30 frames per second. The 

Robot Operating System (ROS) (ROS, 2016) was used to run 

and integrate the Freenect Kinect driver, RGB-D SLAM 

(Endres, 2016), and ViSP.  The visp_tracker package’s ROS 

topic object_position_hint was used to supply ViSP with RGB-

D SLAM’s camera pose estimates. This allowed ViSP to 

maintain tracking when it was not able to estimate its own 

camera pose. A custom ROS package was developed to provide 

RGB-D SLAM with the camera poses estimated by ViSP, 

allowing RGB-D SLAM to start/reset in the 3D wireframe 

model’s coordinate system. This is shown in Figure 8, where 

my_file_2_tf generates the transformation from the 3D 

wireframe model’s coordinate system (object_position0) to 

RGB-D SLAM’s coordinate system (vodom).  

 

Figure 7.  ViSP / RGB-D SLAM integration workflow. 

 

 
Figure 8.  ViSP / RGB-D SLAM tree of coordinate transforms 

output from ROS’s tf/view_frames. 

 

Two experiments are presented in this work. The first 

experiment demonstrates the ability of the combined ViSP / 

RGB-D SLAM system to maintain ViSP’s tracking when the 

3D wireframe model is not in the camera’s field of view.  The 

experiment was performed in the Bergeron Entrepreneurs in 

Science and Technology (BEST) lab. The 3D wireframe model 

consisted of the rectangular outline of the door, in shown on the 

right of Figure 9. 
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Figure 10. Sample frames from the first experiment demonstrating ViSP’s model-based tracker aided by RGB-D SLAM. The door of 

York University’s BEST lab leaves the field of view in B) and E).  The door re-enters the field of view in Frames C) and F), showing 

that tracking the pose was not lost. 

 

 
Figure 9: Initializing ViSP in the first experiment using the 4 

corners of the door to the BEST lab. The 3D wireframe model 

of the door is projected onto the image (green lines) using the 

estimated camera pose. 

 

Figure 10 shows the tracking in progress, where the model of 

the door (red lines) is visible in A). In B), the model leaves the 

field of view as the camera rotates towards the left, but because 

RGBD-SLAM is concurrently providing pose estimates to 

VISP, ViSP does not crash as it would while running alone. In 

C), the model reappears into the field of view as the camera 

rotates towards the right, showing that tracking the pose was 

never lost. D) to F) repeat the demonstration, but first moving 

right, then left.  

 

The second experiment demonstrates that the combined ViSP / 

RGB-D SLAM system is capable of accurately mapping large 

areas without RGB-D SLAM performing large loop closures.  

As previously discussed in Section 4: ViSP / RGB-D SLAM 

INTEGRATION, this provides two benefits: Firstly, by closing 

loops on the 3D wireframe model instead of the RGB-D SLAM 

map, the amount of data and the amount of time spent collecting 

data is reduced because there is no need to re-observe the same 

areas multiple times to generate large loop closures. Secondly, 

and consequently, without the need for RGB-D SLAM’s loop 

closures, its computationally expensive frame-to-frame 

comparisons to random frames, and to graph neighbour frames 

can be set to zero, thus turning RGB-D SLAM into a 

computationally efficient visual odometry system.  Notably, the 

current frame still searched its previous 10 frames to close small 

loops.  This has been shown to reduce the drift in the pose 

estimate without much computational cost (Endres et al., 2014). 

 

Figure 11 shows the 3D wireframe model that was used in this 

experiment. This model was extracted from the full 3D model 

of the Bergeron Centre. ViSP was initialized using the 4 corners 

of the red door. The Kinect then travelled down the hallway 

towards the green door, and finally to the blue door.  Notably, 

the green door is the entrance to the BEST lab, the door used in 

the first experiment. Figure 12 shows 6 sample frames that were 

captured during the traverse. The red door is visible in A) and 

B).  The green door appears in B) to D). The blue door can be 

seen in E) and F).   

This experiment revealed that increases in the frequency of 

ViSP camera pose corrections resulted in trajectories with less 

drift, and increased overall processing speeds.  Conversely, the 

computer slowed down when RGB-D SLAM ran for extended 

periods of time without resetting. This was due to the large 

amounts of data being processed simultaneously. Notably, 

Figure 12B shows a slight misalignment between the image and 

the projected 3D model. This is due to drift in the pose 

generated by RGB-D SLAM. However, RGB-D SLAM often 

corrected this error by closing small loops in every 10 frames.  
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Figure 12:    Sample frames from the second experiment demonstrating ViSP’s model-based tracker aided by RGB-D SLAM. B) 

shows a misalignment between the image and the projected 3D model.  This is due to error in the pose generated by RGB-D SLAM.  

However, RGB-D SLAM often corrected this error by closing small loops in every 10 frames. C) and E) show the portion of the 3D 

model that is behind the camera is inverted and projected onto the image plane.  Tracking was not lost as ViSP is designed to 

recognize these point as outliers. 

 

 
Figure 11: Top) The 3D indoor model of the second floor in the 

Bergeron Centre. The area of interest of the second experiment 

is outlined by the red box. Bottom) The 3D wireframe model 

used in the second experiment.  

The main disadvantage of ViSP is evident in Figure 12 C) and 

E): The portion of the 3D model that is behind the camera is 

inverted and projected onto the image plane. This may cause 

errors in pose estimation when the ME tracker matches these 

edges with edges in the image. Although ViSP is designed to 

recognize these point as outliers, it is not foolproof. Thus, future 

work will supress ViSP from projecting parts of the model that 

are behind the camera.   

 

As RGB-D SLAM was initialized with ViSP’s camera pose, its 

resulting map was in the 3D wireframe model’s coordinate 

system, not a local (odometry) coordinate system where the 

origin is the camera’s perspective center of the first frame. This 

facilitated registering multiple RGBD-SLAM point clouds into 

a single, potentially georeferenced, coordinate system (Figure 

13).   

 

To assess the quality of the generated point cloud, 

CloudCompare’s Cloud to Mesh (C2M) comparison tool (EDF 

R&D, 2011) was used to measure the distances between the 

collected point cloud and the 3D indoor model, i.e. the mesh 

(Figure 13). The C2M function takes in a “reference” point 

cloud and a “compared” 3D mesh. A distance is assigned to 

every point in the reference cloud from itself, along its normal 

vector to the intersection of the mesh. Referring to Table 1, the 

C2M results revealed that 57.5% of the points collected were 

within 10 cm of the 3D model, 76.9% within 20 cm, 93.5% 

within 50 cm, and 95.7% within 1 m. The mean C2M distance 

for the points that were within 10 cm of the model was 6 cm±2 

cm. The means for the points that were within 20 cm, 50 cm, 

and 1 m of the 3D model were 8 cm ± 4 cm, 8 cm ± 4 cm, and 

13 cm ± 13 cm, respectively.   
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Figure 13: Top left) 3D Indoor model of the second floor of the study building. Top right) Point cloud captured using the integrated 

ViSP / RGB-D SLAM system. Bottom left) The collected point cloud overlaid on top of the 3D model. Bottom right) The Cloud to 

Mesh (C2M) distances (with 20 cm) between the collected point cloud and the 3D model. 

 

 

Max. C2M distance [m] 0.1 0.2 0.5 1.0 

% of points less than 

max. C2M distance [%] 

57.5 76.9 93.5 95.7 

Mean C2M dist. [m] 0.06 0.08 0.08 0.13 

Std. Dev. C2M dist.[m] 0.02 0.04 0.04 0.13 

Table 1: Statistics describing the quality of the generated point 

cloud.  The total number of points was 809861. The second row 

shows the percentage of points less than the maximum C2M 

distance specified in the first row. The third and fourth rows 

show the mean and standard deviation, respectively, of the C2M 

distances for the points referred to in the second row.  

 

6. CONCLUSIONS AND FUTURE WORK 

 

This work demonstrated that by integrating ViSP and RGB-D 

SLAM, not only does RGB-D SLAM improve ViSP’s tracking 

performance, but ViSP substitutes RGB-D SLAM’s loop 

closing, while improving runtime performance. Figure 14 shows 

a screen capture of RGB-D SLAM (bottom right) and ViSP 

(bottom left) running concurrently. The large window in the 

background shows the 3D indoor model of the Bergeron Centre, 

and a model of the Kinect, loaded into the Gazebo simulator 

(Gazebo, 2014). The estimated camera pose is updating the pose 

of the virtual Kinect model in real-time. This application is 

currently used for visualization and situational awareness. In the 

future, it will be developed into a tool for mission and path 

planning, and quality control. Further, the simulated sensor 

measurements from the virtual Kinect will be used to aid in 

pose estimation. 

 

Figure 14: Screen capture of ViSP (bottom right window) 

running concurrently with RGB-D SLAM (bottom left window) 

to estimate the camera pose. The Gazebo simulator (background 

window) is displaying the Kinect in its current pose with respect 

to the indoor building model.  
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Future work also includes incorporating measurement from 

additional navigation sensors (e.g., IMU, digital compass) to 

further improve the indoor pose estimation process. Finally, 

work will be done to automate ViSP’s initial camera pose 

estimation process in order to operate in situations where the 

user does not know the camera’s initial pose. 
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