
Augmenting ViSP’s 3D Model-Based Tracker with RGB-D SLAM for 3D Pose

Estimation in Indoor Environments

J. Li-Chee-Ming, C. Armenakis

Geomatics Engineering, GeoICT Lab

Department of Earth and Space Science and Engineering Lassonde School of Engineering,

York University Toronto, Ontario, M3J 1P3

{julienli}, {armenc} @yorku.ca

Commission I, ICWG I/Vb

KEY WORDS: Pose estimation, ViSP, RGB-D, SLAM, tracking

ABSTRACT:

This paper presents a novel application of the Visual Servoing Platform’s (ViSP) for pose estimation in indoor and GPS-denied

outdoor environments. Our proposed solution integrates the trajectory solution from RGBD-SLAM into ViSP’s pose estimation

process. Li-Chee-Ming and Armenakis (2015) explored the application of ViSP in mapping large outdoor environments, and tracking

larger objects (i.e., building models). Their experiments revealed that tracking was often lost due to a lack of model features in the

camera’s field of view, and also because of rapid camera motion. Further, the pose estimate was often biased due to incorrect feature

matches. This work proposes a solution to improve ViSP’s pose estimation performance, aiming specifically to reduce the frequency

of tracking losses and reduce the biases present in the pose estimate. This paper explores the integration of ViSP with RGB-D

SLAM. We discuss the performance of the combined tracker in mapping indoor environments and tracking 3D wireframe indoor

building models, and present preliminary results from our experiments.

1. INTRODUCTION

The GeoICT Lab at York University is working towards the

development of an indoor/outdoor mapping and tracking system

based on the Arducopter quadrotor UAV. The Arducopter is

equipped with a Pixhawk autopilot, comprised of a GPS sensor

that provides positioning accuracies of about 3m, and an

Attitude and Heading Reference System (AHRS) that estimates

attitude to about 3°. The Arducopter is also equipped with a

small forward-looking 0.3MP camera and an Occipital Structure

sensor (Occipital, 2016), which is a 0.3MP depth camera,

capable of measuring ranges up to 10m ± 10%.

Unmanned Vehicle Systems (UVS) require precise pose

estimation when navigating in both indoor and GPS-denied

outdoor environments. The possibility of crashing in these

environments is high, as spaces are confined, with many

moving obstacles. We propose a method to estimate the UVS’s

pose (i.e. the 3D position and orientation of the camera sensor)

using only the on-board imaging sensors in real-time as it

travels through a known 3D environment. The UVS’s pose

estimate will support both path planning and flight control.

Our proposed solution integrates the trajectory solution from

RGB-D SLAM (Endres et al., 2014) into ViSP’s pose

estimation process. The first section of this paper describes

ViSP, along with its strengths and weaknesses. The second

section explains and analyses RGB-D SLAM. The third section

describes the integration of ViSP and RGB-D SLAM and its

benefits. Finally, experiments are presented with an analysis of

the results and conclusions.

2. VISUAL SERVOING PLATFORM (ViSP)

ViSP is an open source software tool that uses image sequences

to track the relative pose (3D position and orientation) between

a camera and a 3D wireframe model of an object within the

camera’s field of view. ViSP has demonstrated its capabilities in

applications such as augmented reality, visual servoing, medical

imaging, and industrial applications (ViSP, 2013). These

demonstrations involved terrestrial robots and robotic arms,

equipped with cameras, to recognize and manipulate small

objects (e.g., boxes, tools, and cups).

Figure 1. ViSP’s pose estimation workflow.

Figure 2. Example of ViSP’s initialization process. Left) 4 pre-

specified 3D points on the wireframe model. Right) The user

selects the 4 corresponding points on the image. ViSP uses

these corresponding points to estimate the first camera pose.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

925

Figure 3. Determining the point position in the next image using the oriented gradient algorithm: A) calculating the normal at sample

points, B) Sampling along the normal, C)-D) 2 out of the 180 3x3 predetermined masks, C) 180o, D) 45o (Comport et al., 2003).

ViSP’s overall workflow is shown in Figure 1. The pose

estimation process begins by forward projecting the 3D model

onto the current image frame using the previous frame’s camera

pose. The Moving Edges (ME) algorithm (Boutemy, 1989)

extracts and matches feature points between the image and

projected 3D model. The current camera pose is then estimated

by a non-linear optimization technique called Virtual Visual

Servoing (VVS) (Marchand and Chaumette, 2002), it uses a

vision-based motion control law to adjust the previous camera

pose such that the 2D image distances between corresponding

feature points of the projected model and the current frame are

minimized. The resulting camera pose is fed back into the

Moving Edges tracker for the next cycle. To initialize ViSP, the

camera pose of the first image frame is estimated via VVS after

the user manually selects 4 points minimum in the first image

frame that correspond to pre-specified points in the 3D model

(Figure 2). The following sections explain the ME and VVS

algorithms in more detail.

2.1 The Moving Edges Tracker

The Moving Edges (ME) algorithm matches image edges in the

video image frames to the 3D model’s edges that are projected

onto the image plane using the previous frame’s camera pose.

The projected edges are referred to as model contours in ViSP.

Firstly, model contours are sampled at a user specified distance

interval (Figure 3A). For each sample point pt, a search is done

for the corresponding point pt+1 in the image It+1. Specifically, a

one dimensional search {Qj, jϵ[-J, J]} is performed along the

normal direction (δ) of the contour for corresponding image

edges (Figure 3B). An oriented gradient mask is used to detect

edges (e.g., Figures 3C and 3D). That is, for each position Qj

lying the direction δ, a mask convolution Mδ corresponding to

the square root of a log-likelihood ratio ζj is computed as a

similarity measure between the image and the gradient mask.

Thus the new position pt+1 is given by:

��∗ � argmax	
�∈��,��

�� (1)

with

�� � �������
��� ∗ �� � ���� �

� ∗ ��� (2)

υ(.) is the neighbourhood of the considered pixel. ViSP’s

default is a 7x7 pixel mask (Comport et al., 2003).

One of the advantages of this method is that it only searches for

image edges which are oriented in the same direction as the

model contour. An array of 180 masks is generated off-line

which is indexed according to the contour angle. The run-time

is limited only by the efficiency of the convolution, which leads

to real-time performance (Comport et al., 2003). Line segments

are favourable features to track because the choice of the

convolution mask is simply made using the slope of the contour

line. There are trade-offs to be made between real-time

performance and both mask size and search distance.

2.2 Virtual Visual Servoing

ViSP treats pose estimation as a 2D visual servoing problem as

proposed in (Sunareswaran and Behringer, 1998). Once each

model point’s search along its normal vector finds a matching

image point via the Moving Edges tracker, the distance between

the two corresponding points is minimized using a non-linear

optimization technique called Virtual Visual Servoing (VVS). A

control law adjusts a virtual camera’s pose to minimize the

distances, which are considered as the errors, between the

observed data sd (i.e., the positions of a set of features in the

image) and s(r), the positions of the same features computed by

forward-projection of the 3D features P. For instance, in

Equation (3), oP are the 3D coordinates of the model’s points in

the object frame, according to the current extrinsic and intrinsic

camera parameters:

∆� "#"$% & #'% � ()*+"$, ,- % & #'. (3)

where)*+"$, ,- % is the projection model according to the

intrinsic parameters ξ and camera pose r, expressed in the

object reference frame. It is assumed the intrinsic parameters are

available, but VVS can estimate them along with the extrinsic

parameters. An iteratively re-weighted least squares (IRLS)

implementation of the M-estimator is used to minimize the error

∆. IRLS was chosen over other M-estimators because it is

capable of statistically rejecting outliers.

Comport et al. (2003) provides the derivation of ViSP’s control

law. If the corresponding features are well chosen, there is only

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

926

one camera pose that allows the minimization to be achieved.

Conversely, convergence may not be obtained if the error is too

large.

2.3 TIN to Polygon 3D Model

ViSP specifies that a 3D model of the object should be

represented using VRML (Virtual Reality Modeling Language).

The model needs to respect two conditions:

1) The faces of the modelled object have to be oriented so

that their normal goes out of the object. The tracker uses

the normal to determine if a face is visible.

2) The faces of the model are not systematically modelled by

triangles. The lines that appear in the model must match

image edges.

Due to the second condition, the 3D building models used in the

experiments were converted from TIN to 3D polygon models.

The algorithm developed to solve this problem is as follows:

1) Region growing that groups connected triangles with

parallel normals.

2) Extract the outline of each group to use as the new polygon

faces.

The region growing algorithm was implemented as a recursive

function (Li-Chee-Ming and Armenakis, 2015). A seed triangle

(selected arbitrarily from the TIN model) searches for its

neighbouring triangles, that is, triangles that share a side with it,

and have parallel normals. The neighbouring triangles are added

to the seed’s group. Then each neighbour looks for its own

neighbours. The function terminates if all the neighbours have

been visited or a side does not have a neighbour. For example,

the blue triangles in Figure 4 belong to one group.

Once all of the triangles have been grouped, the outline of each

group is determined (the black line in Figure 4). Firstly, all of

edges that belong to only one triangle are identified, these are

the outlining edges. These unshared edges are then ordered so

the end of one edge connects to the start of another. The first

edge is chosen arbitrarily.

Figure 4. An example of region growing and outline detection:

The blue triangles belong to a group because one triangle is

connected to at least one other triangle with a parallel normal.

The outline of the group (black line) consists of the edges that

belong only to one triangle.

3. RGB-D SLAM

RGB-D SLAM follows the general graph-based SLAM

approach. The system consists of a frontend module and a

backend module (Figure 5). The frontend processes the sensor

data, i.e. the sequence of RGB and depth images, to compute

the sensor’s motion relative to detected landmarks. A landmark

is composed of a high-dimensional descriptor vector extracted

from the RGB image, such as SIFT (Lowe, 2004) or SURF

(Bay et al., 2008) descriptors, and its 3D location relative to the

camera pose of the depth image. The relative motion between

two image frames is computed via photogrammetric bundle

adjustment using landmarks appearing in both images as

observations. Identifying a landmark in two images is

accomplished by matching landmark descriptors, typically

through a nearest neighbour search in the descriptor space.

Figure 5. RGB-D SLAM’s workflow for pose estimation and

map creation.

Continuously applying this pose estimation procedure on

consecutive frames provides visual odometry information.

However, the individual estimations are noisy, especially when

there are few features or when most features are far away, or

even beyond the depth sensor’s measurement range. Combining

several motion estimates, by additionally estimating the

transformation to frames other than the direct predecessor,

commonly referred to as loop closures, increases accuracy and

reduces the drift. Notably, searching for loop closures can

become computationally expensive, as the cost grows linearly

with the number of candidate frames. Thus RGB-D SLAM

employs strategies to efficiently identify potential candidates for

frame-to-frame matching.

The backend of the SLAM system constructs a graph that

represents the camera poses (nodes) and the transformations

between frames (edges). Optimization of this graph structure is

used to obtain a globally optimal solution for the camera

trajectory. RGB-D SLAM uses the g2o graph solver (Kümmerle

et al., 2011), a general open-source framework for optimizing

graph-based nonlinear error functions. RGB-D SLAM outputs a

globally consistent 3D model of the perceived environment,

represented as a coloured point cloud (Figure 6).

Figure 6. Screen capture of RGB-D SLAM. The top window

shows the map (RGB point cloud) being created. The bottom

right and left windows show the SIFT image feature (red dots)

and their scales (green circles), respectively.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

927

4. ViSP / RGB-D SLAM INTEGRATION

Li-Chee-Ming and Armenakis (2015) assessed the performance

of Visual Servoing Platform’s (ViSP) pose estimation

algorithm. They found that ViSP crashed when tracking was

lost, and needed to be manually re-initialized. This occurred

when there was a lack of model features in the camera’s field of

view, and because of rapid camera motion. The following

experiments demonstrate that the tracking performance

improves when RGB-D SLAM concurrently provides camera

pose estimates to ViSP.

Experimenting with stand-alone RGB-D SLAM revealed that

drift was often present in g2o’s globally optimized trajectory.

There were two reasons for this: Firstly, data was not collected

that enabled a loop closure, i.e., not returning to a previously

occupied vantage point. Secondly, the loop closure was not

detected by RGB-D SLAM. That is, the user is able to configure

various parameters that affect the probability of detecting a loop

closure, for the reason that reducing this probability increases

computational efficiency of the overall system. Since it is

infeasible to compare every frame with every other frame, the

user is able to specify the number of frame-to-frame

comparisons to sequential frames, random frames, and graph

neighbour frames. Alternatively, ViSP’s pose estimation

process can be thought of as loop closing on the 3D wireframe

model instead of RGB-D SLAM’s map. This allows the RGB-D

SLAM’s loop closure parameters to be set very low, essentially

turning RGB-D SLAM into a computationally efficient visual

odometry system, without sacrificing the accuracy provided by

large loop closures.

In summary, by integrating the two systems, not only does

RGB-D SLAM improve ViSP’s tracking performance, but ViSP

substitutes RGB-D SLAM’s loop closing, with improved

runtime performance. The proposed integrated solution is

analogous to GPS/INS integration, where ViSP provides a low-

frequency and drift-free pose estimate that is registered to a

(georeferenced) 3D model, similar to GPS. Complementarily,

the RGB-D SLAM visual odometry solution provides a high

frequency pose estimate that drifts over time, similar to the

behaviour of an INS (Inertial Navigation System).

Figure 7 shows the strategy for integrating ViSP and RGB-D

SLAM. Firstly, the user initializes ViSP by manually selecting

at least 4 points in the first image frame that correspond to pre-

specified points in the 3D wireframe model. ViSP’s VVS

algorithm uses these image measurements to estimate the

camera pose in the 3D wireframe model’s coordinate system.

RGB-D SLAM then begins mapping and tracking the camera

pose, and continues until ViSP’s ME algorithm detects

corresponding image and model feature points. ViSP’s VVS

algorithm then corrects the camera pose and RGB-D SLAM is

reset at ViSP’s provided pose. Upon resetting, RGB-D SLAM

saves each depth frame, with its corresponding camera pose,

that was collected since the last reset.

5. EXPERIMENTS AND RESULTS

The following experiments were performed on the second floor

of York University’s Bergeron Centre for Engineering

Excellence. For testing purposes, a Microsoft Kinect Sensor for

Windows 1517 was used to collect the data. The Kinect

contains an RGB camera producing images of 640x480 pixels at

30 frames per second, and an infrared (IR) emitter and an IR

depth sensor, which use a structured light approach to output

depth images of 640x480 pixels at 30 frames per second. The

Robot Operating System (ROS) (ROS, 2016) was used to run

and integrate the Freenect Kinect driver, RGB-D SLAM

(Endres, 2016), and ViSP. The visp_tracker package’s ROS

topic object_position_hint was used to supply ViSP with RGB-

D SLAM’s camera pose estimates. This allowed ViSP to

maintain tracking when it was not able to estimate its own

camera pose. A custom ROS package was developed to provide

RGB-D SLAM with the camera poses estimated by ViSP,

allowing RGB-D SLAM to start/reset in the 3D wireframe

model’s coordinate system. This is shown in Figure 8, where

my_file_2_tf generates the transformation from the 3D

wireframe model’s coordinate system (object_position0) to

RGB-D SLAM’s coordinate system (vodom).

Figure 7. ViSP / RGB-D SLAM integration workflow.

Figure 8. ViSP / RGB-D SLAM tree of coordinate transforms

output from ROS’s tf/view_frames.

Two experiments are presented in this work. The first

experiment demonstrates the ability of the combined ViSP /

RGB-D SLAM system to maintain ViSP’s tracking when the

3D wireframe model is not in the camera’s field of view. The

experiment was performed in the Bergeron Entrepreneurs in

Science and Technology (BEST) lab. The 3D wireframe model

consisted of the rectangular outline of the door, in shown on the

right of Figure 9.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

928

Figure 10. Sample frames from the first experiment demonstrating ViSP’s model-based tracker aided by RGB-D SLAM. The door of

York University’s BEST lab leaves the field of view in B) and E). The door re-enters the field of view in Frames C) and F), showing

that tracking the pose was not lost.

Figure 9: Initializing ViSP in the first experiment using the 4

corners of the door to the BEST lab. The 3D wireframe model

of the door is projected onto the image (green lines) using the

estimated camera pose.

Figure 10 shows the tracking in progress, where the model of

the door (red lines) is visible in A). In B), the model leaves the

field of view as the camera rotates towards the left, but because

RGBD-SLAM is concurrently providing pose estimates to

VISP, ViSP does not crash as it would while running alone. In

C), the model reappears into the field of view as the camera

rotates towards the right, showing that tracking the pose was

never lost. D) to F) repeat the demonstration, but first moving

right, then left.

The second experiment demonstrates that the combined ViSP /

RGB-D SLAM system is capable of accurately mapping large

areas without RGB-D SLAM performing large loop closures.

As previously discussed in Section 4: ViSP / RGB-D SLAM

INTEGRATION, this provides two benefits: Firstly, by closing

loops on the 3D wireframe model instead of the RGB-D SLAM

map, the amount of data and the amount of time spent collecting

data is reduced because there is no need to re-observe the same

areas multiple times to generate large loop closures. Secondly,

and consequently, without the need for RGB-D SLAM’s loop

closures, its computationally expensive frame-to-frame

comparisons to random frames, and to graph neighbour frames

can be set to zero, thus turning RGB-D SLAM into a

computationally efficient visual odometry system. Notably, the

current frame still searched its previous 10 frames to close small

loops. This has been shown to reduce the drift in the pose

estimate without much computational cost (Endres et al., 2014).

Figure 11 shows the 3D wireframe model that was used in this

experiment. This model was extracted from the full 3D model

of the Bergeron Centre. ViSP was initialized using the 4 corners

of the red door. The Kinect then travelled down the hallway

towards the green door, and finally to the blue door. Notably,

the green door is the entrance to the BEST lab, the door used in

the first experiment. Figure 12 shows 6 sample frames that were

captured during the traverse. The red door is visible in A) and

B). The green door appears in B) to D). The blue door can be

seen in E) and F).

This experiment revealed that increases in the frequency of

ViSP camera pose corrections resulted in trajectories with less

drift, and increased overall processing speeds. Conversely, the

computer slowed down when RGB-D SLAM ran for extended

periods of time without resetting. This was due to the large

amounts of data being processed simultaneously. Notably,

Figure 12B shows a slight misalignment between the image and

the projected 3D model. This is due to drift in the pose

generated by RGB-D SLAM. However, RGB-D SLAM often

corrected this error by closing small loops in every 10 frames.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

929

Figure 12: Sample frames from the second experiment demonstrating ViSP’s model-based tracker aided by RGB-D SLAM. B)

shows a misalignment between the image and the projected 3D model. This is due to error in the pose generated by RGB-D SLAM.

However, RGB-D SLAM often corrected this error by closing small loops in every 10 frames. C) and E) show the portion of the 3D

model that is behind the camera is inverted and projected onto the image plane. Tracking was not lost as ViSP is designed to

recognize these point as outliers.

Figure 11: Top) The 3D indoor model of the second floor in the

Bergeron Centre. The area of interest of the second experiment

is outlined by the red box. Bottom) The 3D wireframe model

used in the second experiment.

The main disadvantage of ViSP is evident in Figure 12 C) and

E): The portion of the 3D model that is behind the camera is

inverted and projected onto the image plane. This may cause

errors in pose estimation when the ME tracker matches these

edges with edges in the image. Although ViSP is designed to

recognize these point as outliers, it is not foolproof. Thus, future

work will supress ViSP from projecting parts of the model that

are behind the camera.

As RGB-D SLAM was initialized with ViSP’s camera pose, its

resulting map was in the 3D wireframe model’s coordinate

system, not a local (odometry) coordinate system where the

origin is the camera’s perspective center of the first frame. This

facilitated registering multiple RGBD-SLAM point clouds into

a single, potentially georeferenced, coordinate system (Figure

13).

To assess the quality of the generated point cloud,

CloudCompare’s Cloud to Mesh (C2M) comparison tool (EDF

R&D, 2011) was used to measure the distances between the

collected point cloud and the 3D indoor model, i.e. the mesh

(Figure 13). The C2M function takes in a “reference” point

cloud and a “compared” 3D mesh. A distance is assigned to

every point in the reference cloud from itself, along its normal

vector to the intersection of the mesh. Referring to Table 1, the

C2M results revealed that 57.5% of the points collected were

within 10 cm of the 3D model, 76.9% within 20 cm, 93.5%

within 50 cm, and 95.7% within 1 m. The mean C2M distance

for the points that were within 10 cm of the model was 6 cm±2

cm. The means for the points that were within 20 cm, 50 cm,

and 1 m of the 3D model were 8 cm ± 4 cm, 8 cm ± 4 cm, and

13 cm ± 13 cm, respectively.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

930

Figure 13: Top left) 3D Indoor model of the second floor of the study building. Top right) Point cloud captured using the integrated

ViSP / RGB-D SLAM system. Bottom left) The collected point cloud overlaid on top of the 3D model. Bottom right) The Cloud to

Mesh (C2M) distances (with 20 cm) between the collected point cloud and the 3D model.

Max. C2M distance [m] 0.1 0.2 0.5 1.0

% of points less than

max. C2M distance [%]

57.5 76.9 93.5 95.7

Mean C2M dist. [m] 0.06 0.08 0.08 0.13

Std. Dev. C2M dist.[m] 0.02 0.04 0.04 0.13

Table 1: Statistics describing the quality of the generated point

cloud. The total number of points was 809861. The second row

shows the percentage of points less than the maximum C2M

distance specified in the first row. The third and fourth rows

show the mean and standard deviation, respectively, of the C2M

distances for the points referred to in the second row.

6. CONCLUSIONS AND FUTURE WORK

This work demonstrated that by integrating ViSP and RGB-D

SLAM, not only does RGB-D SLAM improve ViSP’s tracking

performance, but ViSP substitutes RGB-D SLAM’s loop

closing, while improving runtime performance. Figure 14 shows

a screen capture of RGB-D SLAM (bottom right) and ViSP

(bottom left) running concurrently. The large window in the

background shows the 3D indoor model of the Bergeron Centre,

and a model of the Kinect, loaded into the Gazebo simulator

(Gazebo, 2014). The estimated camera pose is updating the pose

of the virtual Kinect model in real-time. This application is

currently used for visualization and situational awareness. In the

future, it will be developed into a tool for mission and path

planning, and quality control. Further, the simulated sensor

measurements from the virtual Kinect will be used to aid in

pose estimation.

Figure 14: Screen capture of ViSP (bottom right window)

running concurrently with RGB-D SLAM (bottom left window)

to estimate the camera pose. The Gazebo simulator (background

window) is displaying the Kinect in its current pose with respect

to the indoor building model.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

931

Future work also includes incorporating measurement from

additional navigation sensors (e.g., IMU, digital compass) to

further improve the indoor pose estimation process. Finally,

work will be done to automate ViSP’s initial camera pose

estimation process in order to operate in situations where the

user does not know the camera’s initial pose.

ACKNOWLEDGEMENTS

NSERC’s financial support for this research work through a

Discovery Grant is much appreciated We thank Planning &

Renovations, Campus Services & Business Operations at York

University for providing the 3D model of the Bergeron Centre

of Excellence in Engineering.

REFERENCES

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. 2008.

Speeded-up robust features (SURF). Comput. Vis. Image

Underst., vol. 110, pp. 346–359.

Bouthemy P. 1989. A maximum likelihood framework for

determining moving edges. IEEE Trans, on Pattern Analysis

and Machine Intelligence. 11(5): 499-511.

Comport A, Marchand,E, and Chaumette F. 2003. Robust and

real-time image-based tracking for markerless augmented

reality. Technical Report 4847. INRIA.

EDF R&D., T.P. 2011. CloudCompare (version 2.5) [GPL

software]. Retrieved from http://www.danielgm.net/cc/

(accessed: 2 April, 2016).

Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W. 2014.

3D Mapping with an RGB-D Camera. IEEE Transactions on

Robotics.

Endres. F., 2016. Rgbdslam v2. RGB-D SLAM for ROS Hydro.

Retrieved from http://felixendres.github.io/rgbdslam_v2/

(accessed: 2 April, 2016).

Gazebo, 2014. Gazebo: Robot simulation made easy. Retrieved

from http://gazebosim.org/ (accessed: 1 April, 2016)

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and

Burgard, W. 2011. g2o: A general framework for graph

optimization. In Proc. of the IEEE Intl. Conf. on Robotics and

Automation (ICRA), Shanghai, China.

Li-Chee-Ming, J., and Armenakis, C. 2015. A feasibility study

on using ViSP’S 3D model-based tracker for UAV pose

estimation in outdoor environments. UAV-g 2015, ISPRS

Archives, Vol XL-1/W4, pp 329-335.

Lowe, D. 2004. Distinctive image features from scale-invariant

keypoints. Intl. Journal of Computer Vision, vol. 60, no. 2, pp.

91–110.

Marchand, E., and Chaumette, F., 2002, Virtual Visual

Servoing: a framework for real-time augmented reality. Proc.

Eurographics, pp. 289-298.

Occipital. 2016. The Structure Sensor. Retrieved from

http://structure.io/. (accessed: 1 April, 2016).

ROS. 2016. The Robot Operating System. Retrieved from

http://www.ros.org/ (accessed: 1 April, 2016).

Sundareswaran V, and Behringer R. 1998. Visual servoingbased

augmented reality. In IEEE Workshop on Augmented Reality,

San Fransisco.

ViSP. 2013. ViSP: Visual servoing platform – Lagadic research

platform. Retrieved from www.irisa.fr/lagadic/visp/visp.html

(accessed: 1 April, 2016).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B1-925-2016

932

