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ABSTRACT: 

 

This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the 

overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric 

quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their 

position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that 

are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the 

data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling 

the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to 

quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting 

practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-

swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance 

(i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is 

too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are 

residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following 

are suggested to be used as criteria for defining the inter-swath quality of data: 

a) Median Discrepancy Angle 

b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces 

c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope) 

It is suggested that 4000-5000 points are uniformly sampled in the overlapping regions of the point cloud, and depending on the 

surface roughness, to measure the discrepancy between swaths. Care must be taken to sample only areas of single return points only. 

Point-to-Plane distance based data quality measures are determined for each sample point. These measurements are used to 

determine the above mentioned parameters. This paper details the measurements and analysis of measurements required to determine 

these metrics, i.e. Discrepancy Angle, Mean and RMSD of errors in flat regions and horizontal errors obtained using measurements 

extracted from sloping regions (slope greater than 10 degrees). The research is a result of an ad-hoc joint working group of the US 

Geological Survey and the American Society for Photogrammetry and Remote Sensing (ASPRS) Airborne Lidar Committee. 
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1. INTRODUCTION 

1.1 Lidar data geometric assessment 

Lidar data, particularly for larger area projects, are usually 

collected in long swaths. These swaths often overlap for a 

variety of reasons, including providing higher point density, 

assurance of coverage, calibration, etc. These overlapping 

regions of the data sets provide the user of the data with an 

opportunity to test the geometric quality of the data.  As in 

Latypov, 2002, we are more concerned with providing a method 

of quantifying the relative accuracy of point cloud by making 

measurements between the points in the overlapping regions. In 

this paper, we do not talk about “correcting” the data either by 

adjustment of calibration parameters (Habib et al., 2010) or by 

the practice of strip adjustment (e.g., Munjy 2015). Latypov 

analyses the vertical differences between conjugate surface 

patches in the overlapping regions of the point cloud as a 

function of surface density and flatness. Other researchers 

(Habib et al., 2010; Sande et al., 2010) use planar features to 

assess the relative accuracy and also to adjust the overlapping 

strips to minimize the point to plane distance. In this paper, we 

describe the efforts of a collaborative effort between the US 

Geological Survey and the American Society for 

Photogrammetry and Remote Sensing (ASPRS) to establish 

guidelines on Quality Assurance and Control (QA/QC) of lidar 

data. We present methods to quantify the quality of lidar data in 

terms of their relative vertical, horizontal accuracy, and also 

quantify the systematic errors present in lidar data.      

 

1.2 Scope of the paper 

Figure 1 shows errors found in swath data, indicating 

inadequate quality of calibration. The images show profiles of 

objects in overlapping regions of adjacent swaths. It is the goal 

of this research to have methods that automatically flag 

overlapping swaths that have these errors. Such errors indicate 

poor geometric data quality, and are often the result of 

inadequately rigorous calibration (system or boresight) 

procedures.  
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Calibration should be performed as directed by the instrument 

manufacturer either periodically, or based on usage. Calibration 

should also be performed when an instrument has had a shock 

or vibration (which potentially may put it out of calibration) or 

whenever observations appear questionable. In many cases 

calibration can be performed in situ (field tests or self-

calibration), and it is a standard practice among Lidar data 

providers to perform such a calibration. However, there is no 

single/accepted method of lidar system calibration, and this can 

lead to varying quality of data, depending on the validity and 

efficiency of calibration procedure. It is also recognized that 

lidar systems are unique, and each type may have different 

sensor models that demand different calibration philosophies. It 

is not the goal of this document to discuss calibration 

procedures for the instruments, but to discuss processes to test 

the quality of calibration.  

 

Quality Control (QC)  is used to denote post-mission 

procedures for evaluating the quality of the final Lidar data 

product (Habib et al., 2010). The user of the data is more 

concerned with the final product quality, than the system level 

Quality Assurance procedures that may vary depending on the 

type of instrument in use. Thus, as far as the user is concerned, 

the acquisition system is a black box. The user wants to avoid 

situations as shown in Figure 1, without having to understand 

the entire data acquisition process and sensor models.  

 

 
 

 
 

Figure 1. Errors found in swath data indicating inadequate 

quality of calibration. The images show profiles of objects in 

overlapping regions of adjacent swaths 

 

The QC procedures discussed in this paper are system agnostic 

and work with only point cloud data delivered by the data 

provider. The procedures use three concepts to quantify the 

inter-swath quality of lidar data.  

 Median Discrepancy Angle 

 Mean and Root Mean Square 

Differences(RMSD) of Horizontal Errors 

 Mean and RMSD of vertical errors  

These three quantities can provide a more complete 

understanding of the quality of lidar system calibration and data 

acquisition.  

2. THE INTER SWATH DATA QUALITY METRICS 

(DQM) 

2.1 DQM Definitions 

Calibration methods can be different for different sensors, and 

will change as new types of sensors are introduced in the future. 

This further increases the need to have standard processes to 

test the quality of calibration. The quality of calibration can be 

judged by observing the area covered by overlapping Lidar 

scans. Any quantitative measures on the quality of calibration 

can be generated by analyzing these regions. For government 

procurement guidelines, it is desired to have a measure of mis-

registration between overlapping scans/point clouds, after they 

have been calibrated and before further processing (i.e. point 

cloud classification, feature extraction, etc.) is done. This 

measure can also be seen as Data Quality Measure (DQM). 

Many researchers (Habib et al. 2010; Latypov 2002; Sande 

2010) have discussed methods of reporting registration errors 

between adjacent strips of Lidar data. The registration errors 

can be treated as indicators of the quality of calibration. The 

importance of correct calibration of a lidar system to the data 

acquisition process and to the geometric quality of data cannot 

be overstated. A good calibration involves precise 

measurements between the various subsystems of lidar system, 

including the lidar sensor/instrument, GPS receiver and Inertial 

Measurement Units (IMU).  

Figure 2 shows a profile of a surface that falls in the 

overlapping region of two adjacent swaths. The surface as 

defined by the swaths is shown in dotted lines while the solid 

profile represents the actual surface. A poorly calibrated system 

leads to at least two kinds of errors in lidar data. The first one is 

that the same surface is defined in two (slightly) different ways 

(relative or internal error) by different swaths, and the second 

one is the deviation from actual surface (absolute error).  For 

most users of lidar data, the calibration procedures are of less 

concern than the data itself. However, they would like to have a 

process to test the quality of calibration of the instrument, 

because a well calibrated instrument is a necessary condition for 

high quality data. While data providers make every effort to 

reduce the kind of errors shown in Figure 1 and 2, there are no 

standard methodologies in current QC processes to measure the 

internal goodness of fit between adjacent swaths (i.e. internal or 

relative accuracy).  
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Absolute error 

Relative horizontal 

error: not accounted 

for currently 

Relative vertical error 

Swath # 1 

Swath # 2 

 

Figure 2 Surface uncertainties in hypothetical adjacent swaths. 

Profile of nominal surface is shown as solid line while the 

surface defined by swath # 1 and swath # 2 are shown as dotted 

lines 

Current specifications documents (e.g. Heidemann 2014) do not 

provide adequate guidance on measuring the inter-swath 

(internal accuracy) goodness of fit of lidar data. Three quantities 

that measure the inter-swath goodness of fit are listed in Table 

1. These measures describe the discrepancy between two 

overlapping point clouds and are often used to obtain optimal 

values of the transformation parameters. The DQMs are not 

direct point-to-point comparisons because it is nearly 

impossible for a lidar system to collect conjugate points in 

different swaths. It is easier to identify and extract conjugate 

surfaces and related features (e.g. roof edges) from lidar. The 

DQMs over natural surfaces and over roof planes assume that 

these conjugate surfaces are planar, and determine the measure 

of separation between a point and the surface (plane). The 

DQM over roof edges extract break lines or roof edges from two 

intersecting planes and measure their discrepancy. 

Nature 

of 

surface 

Examples 

Data Quality 

Measures 

(DQMs)/Goodness of 

fit measures 

Natural 

surfaces 

Hard surface, 

i.e. not trees, 

chimneys, etc. 

Point to natural surface 

(tangential plane to 

surface) distance 

Man-

made 

surfaces 

Roof planes Perpendicular distance 

from the centroid of one 

plane to the conjugate 

plane 

Roof edges Perpendicular distance of 

the centroid of one line 

segment to the conjugate 

line segment 

Table 1 Data Quality Measures (DQMs) or inter-swath 

goodness of fit measures 

The DQM over natural surfaces based point to (tangential) 

plane distance is the most easy to implement as it does not 

involve feature extraction. It is also easy to find enough of these 

planar features in a uniform sampling of the overlapping regions 

of the point cloud, by defining planar regions as those with 

small standard deviations of plane fit.  

This measure is calculated by selecting a point from one swath 

(say point ‘p’ in swath # 1), and determining the neighboring 

points (at least three) for the same coordinates in swath # 2. 

Ideally, the point ‘p’ (from swath # 1) should lie on the surface 

defined by the points selected from swath # 2. Therefore, any 

departure from this ideal situation will provide a measure of 

discrepancy, and hence can be used as a DQM. This departure 

is measured by fitting a plane to the points selected from swath 

# 2, and measuring the (perpendicular) distance of point ‘p’ to 

this plane. As shall be made clear, the point-to-plane DQM 

along with the information about the normal vector (i.e. the 

distance “vector”) is very important in describing the errors in 

the overlapping regions of the point cloud. 

 

Point to (tangential) plane 

distance 

Point ‘p’ in swath # 1 

Tangential plane 
Surface described by 

points in swath # 2 

 

Figure 3 Representation of DQM over natural surfaces. Point 

‘p’ (red dot) is from swath # 1 and the blue dots are from swath 

# 2  

2.2 DQM implementation 

The US Geological Survey (USGS) has prototyped software 

that implements the concept of point to plane DQM over natural 

surfaces. The prototype works on ASPRS’s LAS format files 

containing swath data. If the swaths are termed Swath # 1 and 

Swath # 2 (Figure 4), the software uniformly samples single 

return points in swath # 1 and chooses ‘n’ (user input) points. 

The neighbors of these ‘n’ points (single return points) in swath 

# 2 are determined.   

 

Figure 4 Implementation of prototype software for DQM 

analysis 
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In the prototype software, there are three options available for 

determining neighbors: Nearest neighbors, Voronoi neighbors 

or Voronoi-Voronoi neighbors. However, other nearest 

neighbor methods such as “all neighbors within 3 m” are also 

acceptable. A least squares plane is fit through the neighboring 

points using eigen value/eigen vector analysis (in a manner 

similar to Principal Component Analysis). The equation of the 

plane is the same as the component corresponding to the least of 

the principal components. The eigenvalue/eigenvector analysis 

provides us the planar equations as well as the root mean square 

error (RMSE) of the plane fit. The use of single return points in 

conjunction with a low threshold for RMSE is used to eliminate 

sample measurements from non-hard surfaces (such as trees, 

etc.). The DQM software calculates the offset of the point (say 

‘p’) in Swath # 1 to the least squares plane. The output includes 

the offset distance, as well as the slope and aspect of the surface 

(implied in the planar parameters). 

The advantages of using the method of eigenvalues/PCA/least 

squares plane fit are fivefold: 

a) The RMSE of plane fit provides an indication of the 

quality of the control surface. A smaller eigenvalue 

ratio indicates high planarity and low curvature. It 

provides a quantitative means of measuring control 

surfaces. 

b) It is the accepted “point cloud” technique, and has 

been developed on the back of a rich technical 

literature. 

c) Converting surfaces to raster results in (however 

small) loss of accuracy that is not easily quantified. It 

also introduces another level of processing that 

introduces products not used anywhere else.   

d) The arc cosine of Z component of eigenvector gives 

the slope of terrain 

e) The normal vector of the planes are crucial to 

calculate the horizontal errors 

3. QUANTIFYING ERRORS 

3.1 Vertical and Systematic Errors 

The DQM measurements need to be analyzed to extract 

estimates of horizontal and vertical error.  To understand these 

errors associated with overlapping swaths, the DQM prototype 

software was tested on several data sets, as well as against 

datasets with known boresight errors. The output of the 

prototype software not only records the errors, but also the x, y 

and z coordinates of the test locations, eigenvalues and the 

eigenvectors, as well as the least squares plane parameters.  

The analysis mainly consists of three parts 

a) The sampled locations are categorized as functions of 

slope of terrain: Flat terrain (defined as those with 

slopes less than 5 degrees) versus slopes greater than 

10 degrees.  

b) For estimates of relative vertical error, DQM 

measurements from flat areas ( slope < 5 degrees) are 

identified:  

 DQM errors are measured as a function of 

distance of sample check points from center 

of overlap (Dco). The center of overlap is 

defined as line along the length of the 

overlap region passing through median of 

sample check points (Figure 5) 

 The Discrepancy Angle (dSi) (Illustrated in 

Figure 5) at each sampled location, defined 

as the arctangent of DQM error divided by 

Dco, is measured 

c) The errors along higher slopes are used to determine 

the relative horizontal errors in the data as described 

in the next section.  

 

Profile view: Discrepancy Angle s=arc 

tangent (dSi/Dco) 

dsi 

dsj   

Center of overlap 

 

Figure 5 Analysis of DQM errors and center line of overlap 

It must be noted that the possibility of outliers cannot be ruled 

out. To avoid these measurements, an outlier removal process 

using robust statistics was used. For each category (Flat and 

higher slopes separately), the following quantities were 

calculated:  

  

  

   

  

Only those points that are deemed acceptable are used for 

further analyses. The Median Absolute Deviation method is 

only one of many outlier detection methods that can be used. 

Any other well defined method should also be an acceptable 

method. 

Relative vertical errors are easily estimated and defined as 

DQM measurements made on locations where the slope is less 

than 5 degrees.  Figure 6 shows two plots of DQM output from 

flat areas as function of the distance from the centerline of 

swath overlap.  The analysis of errors based on point-to-plane 

DQM can use the sign of the errors. If the plane (least squares 

plane) in swath #2 is “above” the point in swath # 1, the error is 

considered positive, and vice versa. Both these methods of 

representation of errors can be used to easily identify and 

interpret the existence of systematic errors also. 
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Figure 6 Visual representations of systematic errors in the swath 

data. The plots show DQM errors isolated from flat regions 

(slope < 5 degrees). 6(a) plots signed DQM Errors vs. Distance 

from the center of Overlap, while 6(b) plots Unsigned DQM 

errors vs. Distance from center of overlap. 

In the presence of substantial systematic errors, relative vertical 

errors tend to increase as the measurements are made away from 

the center of overlap. In particular, errors that manifest as roll 

errors (the actual cause of errors may be completely different) 

will cause a horizontal and vertical error/discrepancy in lidar 

data. Therefore it is possible to observe these errors in the flat 

regions (slope less than 5 degrees), as well as sloping regions. 

In the flat regions, the magnitude of vertical bias increases from 

the center of the overlap. Using the sign conventions for errors 

defined previously, these errors can be modelled as straight line 

passing through the center of the overlap (where they are 

minimal).   

In Figure 7, the red dots are measurements taken from flat 

regions (defined as those with less than 2 degrees), the green 

and the blue dots are taken from regions with greater than 20 

degrees slope. The green dots are measurements made on slopes 

that face away from the centerline (perpendicular to flying 

direction), whereas the blue dots are measurements taken on 

slopes that face along (or opposite to) the direction of flight.  

If non-flat regions that slope away from the centerline of 

overlap are available for DQM sampling, horizontal errors can 

also be observed. The magnitude of horizontal errors is usually 

greater than that of the vertical errors, for the same error in 

calibration. This is also reflected in the plots shown in Figure 7. 

 

Figure 7 DQM errors as function of distance of points from 

center of the overlap (each column has different scales). The 

blue line is a regression fit on the error as function of distance 

from center of overlap 

In Figure 7, the first column shows the plot of DQM versus 

distance of sample measurements from centerline of overlap. 

The consistent and quantifiable slope of the red dots indicates 

that Roll errors are present in the data. A regression line is fitted 

on the errors as a function of the distance of overlap. The slope 

of the regression line defined by the red dots is termed 

‘Calibration Quality Line’ (CQL).  The slope of the CQL 

corresponds theoretically to the mean of the all the Discrepancy 

Angles measured at each DQM sample test points. In practice, 

the value is closer to the median of the measured Discrepancy 

Angles (perhaps indicating outliers). 

Pitch errors cause discrepancy of data in the planimetric 

coordinates only, and the direction of discrepancy is along the 

direction of flight. The discrepancy usually manifests as a 

constant shift in features (if the terrain is not very steep). This 

requires them to be quantified using measurements made from 

non-flat/sloping regions.  Figure 7 shows that this can be 

achieved (blue dots in the second column indicate pitch errors) 

using the DQM measurements.  The blue dots indicate that 

there is a constant shift along the direction of flight. The 

presence of red dots close to the zero error line (and following a 

flat distribution) indicates that these errors are not measurable 

in flat areas. The presence of green dots closer to the zero line 

also indicates that pitch errors are not measurable in slopes that 

face away from the flight direction. The third column in Figure 

7 indicates that when these errors are combined (as is almost 

always the case), it is possible to discern their effects using 

measurements of DQM on flat and sloping surfaces. 

3.2 Horizontal Errors 

The process of measuring the point-to-plane DQM also 

provides us with estimates of the normal vectors of the planar 

region, along with an estimate of curvature. It will be shown in 

the section below that if the neighborhood is large enough (this 

ensures that the planar fit is stable), and if the curvature is low, 

the normal vectors, and the point-to-plane DQM can be 

combined to estimate the presence of relative horizontal errors 

in the data. Many researchers have identified, extracted and 

compared the position of conjugate man-made features to 

estimate horizontal errors in the data. However, if the objective 
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is to obtain summary statistics of horizontal errors (i.e. the 

mean, standard deviation and the root mean square deviation), it 

can be shown that estimates can be obtained without performing 

feature extraction.  

 

Figure 8 Three points the measured DQMs, the 

corresponding planar patches (PL1, PL2, PL3) in Swath 

#1(green) and Swath # 2 (blue) and their virtual point of 

intersection (P’ and P) are shown 

Consider any three points that have been sampled for measuring 

DQMs in Swath # 1 ( , 
in Figure 8). Let these points be selected from areas that have 

higher slopes. These three points have corresponding 

neighboring points and three planar patches measured in Swath 

# 2. Let’s assume that these three planar patches intersect at 

point P in Swath # 1(a virtual point, point P may not exist 

physically). Let’s assume that the conjugate planar patches in 

Swath # 2 intersect at P’. Let the equations (together called 

Equation 1) of the three planes be 

    

   (1) 

   

            

 

 

If are the direction cosines of the normal vectors of 

the planar patches, then  is the signed perpendicular distance 

of the planes from the origin.  

If the intersection point P is represented by   

then Equation 1 can be written as: . Similarly, for 

the point P’ in Swath # 2, we have . 

If ,  and  we 

get 

  

   (2) 

 

Expanding Equation 3, we get: 

 
However , therefore we get 

   (3) 

Since we are interested only in , and there are no changes to 

the normal vectors or displacement vectors when there is a pure 

shift involved,  the analysis can be further simplified by shifting 

the origin to (i.e. . Therefore Equation 3 

becomes  

    (4) 

Since we are measuring the discrepancy in calibrated point 

clouds, the expectation is that  are small, and hence 

the product  can be neglected, (typically, . 

Therefore Equation 4 becomes: 

       (5) 

Equation 5 is the equation of planes intersecting at , and at a 

signed perpendicular distance   from the origin. Since the 

origin (the point P) lies on all three planar patches, and again 

emphasizing the fact that we are testing calibrated data, 

values will be very close to the three measured point to 

plane distance errors or DQMs. This is because the point to 

perpendicular plane distance does not change if the point P and 

p1 lie on the same plane, and the planes (PL1 in Swath #1 and 

Swath #2) are near parallel. Therefore Equation 6 can be 

approximated by  

     (6) 

 

Considering the same analysis for all triplets of points of 

patches with higher slopes, we replace  with ,  

with N (which is a matrix containing normal vectors 

associated all ‘n’ DQM measurements that have higher slopes), 

and  as the vector of all DQM measurements. This 

leads to the simple least squares equation for  

 

   (7) 

 is easily calculated and the standard deviation for is 

also easily obtained by using standard error propagation 

techniques. 

 

The methodology to estimate provides quantitative 

estimate of the mean relative horizontal and vertical 

shift/displacement of features in the inter swath regions of the 

data. Assuming pure shifts is not unreasonable because the 

point clouds are nominally calibrated and traditionally, 

geospatial data have been assessed in terms of mean/bias, 

standard deviation and root mean square deviation. Mean/bias 

reduces the error in geospatial data to a shift, and standard 

deviation is used to explain the departure from this assumption. 

In the theory described above, the same assumptions have been 

made. The three dimensional errors are also described as a shift 

(Mean), and the departure (standard deviation) from this 

assumption.    
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4. IMPLEMENTATION ANALYSIS AND 

CONCLUSION 

4.1 Implementation and Analysis 

The DQM point-to-plane natural surfaces algorithm was used to 

test several data sets with the US Geological Survey. The 

software implementation was used on complete data sets, and 

not just on a few swaths. The results were summarized in an 

excel sheet, a sample of which is shown in Figure 9. The output 

summarizes the vertical, and the horizontal error (mean, 

standard deviation and RMSD) for each pair of overlapping 

swaths in a project. 

 

Figure 9. A sample excel sheet showing the summarizing of the 

results. The excel sheet shows the vertical, horizontal errors, 

systematic errors present between all overlapping swaths in a 

complete project. 

Most users and owners of data will not look at swath data 

directly. Most of the processing, analysis and conflation with 

other geospatial data is performed with data in tiles. The 

summary of the analysis shown in excel sheet provides a way to 

directly look at those swath pairs that indicate higher errors.  

The implementation does not call for any feature extraction of 

planar features. It uses only regions that are sampled and are 

highly planar, based on the standard deviation of the plane fit.  

The analyses have been used to identify errors in urban, semi 

urban and other areas with no man made features (but with 

higher slopes). It is sufficient to have reasonably planar regions 

that have high slopes than actual man made planar surfaces.  

4.2 Conclusion 

Current accuracy measurement and reporting practices followed 

in the industry and as recommended by data specification 

documents (e.g. Heidemann 2014) potentially underestimate the 

inter-swath errors, including the presence of systematic errors in 

lidar data. Hence they pose a risk to the user in terms of data 

acceptance (i.e. a higher potential for Type II error indicating 

risk of accepting potentially unsuitable data). For example, if 

the overlap area is too small or if the sampled locations are 

close to the center of overlap, or if the errors are sampled in flat 

regions when there are residual pitch errors in the data, the 

resultant Root Mean Square Differences (RMSD) can still be 

small. To avoid this, the following are suggested to be used as 

criteria for defining the inter-swath quality of data: 

a) Median Discrepancy Angle 

b) Mean and RMSD of Horizontal Errors using DQM 

measured on sloping  surfaces 

c) RMSD for sampled locations from flat areas (defined 

as areas with less than 5 degrees of slope) 

4000-5000 points are uniformly sampled in the overlapping 

regions of the point cloud, and depending on the surface 

roughness, to measure the discrepancy between swaths. Care 

must be taken to sample only areas of single return points only.  

 

Point-to-Plane data quality measures are determined for each 

sample point. These measurements are used to determine the 

above mentioned quality metrics. This document details the 

measurements and analysis of measurements required to 

determine these metrics, i.e. Discrepancy Angle, Mean and 

RMSD of errors in flat regions and horizontal errors obtained 

using measurements extracted from sloping regions (slope 

greater than 10 degrees). 

 

 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge the contributions and 

support of the members of the ASPRS and the US Geological 

Survey’s National Geospatial Technical Operations Center 

(NGTOC) for this work.  

 

REFERENCES 

Habib, A., Kersting, A P., Bang, K I., and Lee, D C., 2010. 

Alternative Methodologies for the Internal Quality Control of 

Parallel LiDAR Strips.  IEEE Transactions on Geoscience and 

Remote Sensing, vol. 48, no. 1, pp. 221-236, Jan. 2010. 

doi: 10.1109/TGRS.2009.2026424 

Heidemann, H. K., 2014. Lidar base specification version 1.2, 

U.S. Geological Survey Techniques and Methods, Book 11, 

Chapter. B4, 63 p. 

Latypov, D., 2002. Estimating relative LiDAR accuracy 

information from overlapping flight lines. ISPRS Journal of 

Photogrammetry and Remote Sensing, 56 (4), 236–245.  

Munjy, R., 2014. Simultaneous Adjustment of LIDAR Strips. 

Journal of Surveying Engineering 141.1 (2014): 04014012.  

Sande, C., Soudarissanane, S., Khoshelham, K.,2010.  

Assessment of Relative Accuracy of AHN-2 Laser Scanning 

Data Using Planar Features. Sensors . 10, 8198-8214. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B1-93-2016

 
99




