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ABSTRACT: 

 

Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an 

essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms 

can optimize time, cost and accuracy of the data acquisition, as a result UAVs’ data has become the first choice in such condition. In 

this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs’ image data. Firstly, imprecise image positions 

are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast 

matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order 

to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method 

uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and 

eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV’s sensors. 

After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are 

equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points 

is 1.72 m. 

 

 

1. INTRODUCTION 

Compare with other traditional ways of gathering comprehensive 

information of catastrophes, which is crucial for catastrophes 

relief and rescue, Unmanned Aerial Vehicle (UAV) based 

platforms photogrammetry has many advantages. In particular 

they are more flexible, which means they can be used in different 

weather conditions and with several operations. Moreover, high 

resolution image and precise position data can be acquired with 

lower cost using UAVs. According to these advantages, UAVs 

have become the first choice to gather this information. Low 

accuracy Global Positioning System (GPS), Inertial 

Measurement Unit (IMU) sensors and small frame high 

resolution camera are used in UAV based platforms due to their 

cost and weight limitation. The views of UAV images are often 

smaller than catastrophe field, so these images should be pasted 

together in order to increase the visual field. Therefore, 

mosaicking UAV images is a critical task.  

 

Image mosaicking is the process of joining overlapping images 

together to form a larger image (Botterill et al, 2010). This is 

widespread and frequently referred to in literature. The review 

papers by Szeliski (2006), Zitova´ and Flusser (2003) describe 

this literature in details. Zitova´ and Flusser (2003) identify four 

stages that most image mosaicking and registration processes 

have in common (Botterill et al, 2010). These are:  

 

1. Feature detection: Salient elements of each image are 

identified and located. 

2. Feature matching: Correspondence between features 

are established, typically by comparing feature descriptors. 

3. Transform estimation: The correspondence between 

features is used to determine a transform that maps one 

image to the other. 

                                                                 
*  Corresponding author S. Mehrdad, sinamhr@gmail.com 
 

4. Image composition: The images are transformed and 

aligned with one another. Some form of interpolation 

is often applied to blend the images.  

 

Both quickness and elimination of moving points should be 

considered in catastrophe images mosaicking algorithms. 

Automatic mosaicking is needed a point matching method to 

extract tie points. Local Descriptor Based Matching (LDBM) 

methods are greatly in use nowadays. These methods have two 

general steps, including keypoints detector and point descriptor 

which satisfy firs two steps of mosaicking process mentioned 

above. UAV images have different attitude parameters in 

compare with each other due to instability of UAV platforms 

during their flight. Therefore we should use a LDBM method for 

these image sequences that is robust against geometric image 

transformations such as rotation and scale. Scale Invariant 

Feature Transform (SIFT) that was introduced by David G. Lowe 

is a LDBM method that is invariant to uniform scaling, 

orientation and partially invariant to affine distortion and 

illumination changes (Lowe, 1999). SIFT point descriptor has 

drawbacks in terms of computation cost and memory usage 

(Botterill et al, 2010). These drawbacks prevent using this 

method for running on devices equipped with a low-end CPU 

such as mobile PC and UAV processors.  

 

In this paper a novel and fast strategy is proposed for registration 

and mosaicking UAV images. Firstly, imaging sensors and low 

cost GPS/IMU were calibrated and Imprecise Exterior 

Orientation Parameters (IEOP) of each image are measured. In 

the next step, SIFT point detector which uses heretical pyramid 

structure is used to extract feature points from images. In order 

to extract description vector Rotation-Aware Binary Robust 

Independent Elementary Feature (rBRIEF) which is fast and 

robust against scale and rotation variety is used (Rublee et al, 

2011). Imprecise image positions are used to find out images that 
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contain same scene – i.e. set of previous images that matches to 

the new image are introduced. In continue of the process, k-

nearest-neighbor method is used for matching description vector 

of feature points. In order to improve computation time, the k-

nearest method performed in Epipolar Rectangle (ER) related to 

each feature point. ERs are built based on Epipolar line offsets by 

considering accuracies of IEOPs. Then Random Sample 

Consensus (RANSAC) is used to eliminating mismatching tie 

points. The use of ERs and RANSAC helps to eliminate moving 

points from matching process and lets us achieve robust points’ 

network. All the sequence images are added to the bundle 

adjuster one by one, and the parameters can be updated by using 

the L-M (Levenberg-Marquardt) algorithm (Press et al, 1992). In 

order to obtain final mosaic, image histograms are equalized and 

a weighted average method is used to image composition in 

overlapping areas.  

 

Despite many successful applications on image mosaicking, 

there are still some restrictions in automatic mosaicking which 

have a lasting impact on the output time and quality. The most 

important one is that well-doing the four different steps of 

mosaicking are time-consuming, that is the more time each step 

consume, the more quality it performs, so that it is much 

troublesome to balance time efficiency and quality over each 

step. This algorithm tries to overcome some of these restrictions, 

for instance it tries to minimize the time of matching process. We 

will detail each role in the following subsections. 

 
2. METHODOLOGY 

2.1 Sensors calibration process 

In order to get every image imprecise attitude and position 

parameters, we need to calibrate the UAV’s sensors individually 

and relative to each other – i.e. determine lever arm offsets and 

boresight mis-alignments between the UAV’s sensors, and lens 

distortion parameters. For this reason, a 300*700 m test field 

gridded at 50*50 m control points with circular pattern targets 

(figure 1) is used for self-calibration bundle adjustment based on 

El-scheimy model (El-sheimy, 2000). 

 

2.2 Find adjoining frames 

The distance from the camera to the target objects is very much 

greater than the motion of the camera between views and image 

planes have less tilt, so the adjoining images can be obtained with 

imprecise position and heading attitude parameters. At this point, 

frame size and geometric parameters of flight and camera, and 

positioning system precision should be considered to set 

thresholds which images within this thresholds known as the 

adjoining frames of the new image. We use heading parameter to 

know if we have heading overlap or side overlap and set different 

threshold for each one. To find all available images in the vicinity 

of the latest frame we use these thresholds and compare this 

frame position and heading with earlier images parameters. This 

causes time efficiency and we will use it in final adjustment. 

 

2.3 Feature detection 

The SIFT algorithm was proposed by David G. Lowe in 1999 to 

detect and describe feature points which are invariant to images 

scaling, translation, and rotation, and partially invariant to 

illumination changes and affine or 3D projection (Lowe, 1999). 

SIFT feature extraction is generally classified into four steps: 

Detect extreme value in scale space, tie point positioning, 

dominant orientation assignment, and descriptor generation (Li 

et al, 2012). Specifically, in order to achieve rotation invariance  

 
(a) 

 

(b) 

 

(c) 

Figure 1. Calibration test field specifications.  

(a) Highlights test field (yellow rectangular) and an image 

frame of test field for instance (red rectangular). (b) Shows an 

image that highlighted in (a). (c) Specifies a control point in 

image frame highlighting by green rectangular in (b) 

 

and a high level of efficiency, SIFT point detector selects key 

locations at maxima and minima of a difference of Gaussian 

function applied in scale space. This can be computed very 

efficiently by building an image pyramid with resampling 

between each level. Furthermore, it locates key points at regions 

and scales of high variation, making these locations particularly 

stable for characterizing the image (Lowe, 1999). SIFT point 

detector which described above is used to detect and localize 

feature point in this paper (figure 2). In order to achieve points  

  

  
Figure 2. Feature points extracted from an image 
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distribution efficacy we divide each image frame to a 5*6 girded 

subspace, and then choose 10 points randomly in each subspace 

if there were enough points. This will lead to maximum number 

of 300 points in each image. We only use these points in 

subsequent steps. This will lead to both time and computational 

efficiency. 

 

2.4 Feature matching 

First of all we need a point descriptor to describe the area around 

each feature point that is specified in last stage. Like  

we said before, this descriptor should be robust against geometric 

image transformations such as rotation and scale. We use rBRIEF 

descriptor as our point descriptor in our algorithm. After that each 

feature point in the image need to be find and match in every 

adjoining images set of this image that contain this point. For this 

reason, for every feature point corresponding ERs are performing 

in every image of adjoining images set. Then k-nearest method is 

used to find any corresponding point between every point in the 

image and the points in its ERs if this point exist in any of ERs. 

This will limit search area for every point in the image with 

geometric restriction. This has two advantage, the first one is to 

speed up the matching process and the second one is to increase 

the chance of elimination of moving points. The detail of using 

of ERs and rBRIEF is represented in the following. 

 

2.4.1 Epipolar rectangle (RE): We consider two perspective 

images of a scene and a point X in the scene, let 𝑥 and 𝑥′ be its 

mapping in two images through the camera centres 𝐶 and 𝐶′ 
(figure 3) 

 

 

Figure 3. Epipolar plane and Epipolar line 

 

The point X, the camera centres 𝐶 and 𝐶′, the mapped points 𝑥 

and 𝑥′ will lie in the same plane named Epipolar plane. In other 

words given a point 𝑥 in the first image, the Epipolar plane is 

defined by the ray through 𝑥 and 𝐶 and the baseline through 𝐶 

and 𝐶′.  A corresponding point 𝑥 thus has to lie on the intersecting 

line 𝑙′ between Epipolar plane and the second image plane. The 

line 𝑙′ is projection of the ray through 𝑥 and X in the second 

image and is called the Epipolar line for 𝑥. The Epipolar line 

corresponded to every feature point in an image can be performed 

in every image in its adjoining images set, if relative attitude and 

position between images is well known. Since we only have 

imprecise attitude and position parameters this line is converted 

to a rectangle (figure 4). The specification of this rectangle is 

determined by a covariance matrix which is performed using 

attitude and position precision and Epipolar geometry equations 

(Ishikawa, 2006).  

 

2.4.2 rBRIEF feature descriptor:  BRIEF  ( Binary   Robust  

Independent Elementary Feature) is an algorithm that uses binary 

strings as an efficient feature point descriptor. BRIEF is not 

designed to be rotationally invariant (Rublee et al, 2011). 

 
(a) 

 
(b) 

Figure 4. Image sequence Epipolar rectangle. First image of 

sequence with a specified point on it (a) with its Epipolar 

Rectangular in second image (b). 

 

Rotation-Aware BRIEF (rBRIEF) is an extension of BRIEF 

method that makes BRIEF description vector robust against 

rotation by use of image intensity centroid (Rublee et al, 2011). 

The BRIEF descriptor is a bit string description of an image patch 

constructed from a set of binary intensity tests. Consider a 

smoothed image patch, p a binary test 𝜏 is defined by: 

 

𝜏(p: 𝑥, 𝑦) = {
  1, : p(𝑥) < q(𝑥)

0, : p(𝑥) ≥ q(𝑥)
 

(1) 

 

where p(𝑥) is the intensity of p at a point 𝑥. The feature is defined 

as a vector of n binary tests: 

 

𝑓𝑛(𝑥) = ∑ 2𝑖−1

1≤𝑖≤𝑛

𝜏(p: 𝑥𝑖 , 𝑦𝑖) 
(2) 

 

So this defines an array of n descriptor for every point. The more 

the n gets, the better it describes point surrounding and the more 

time it spends. In order to balance the time efficiency and 

descriptor quality we set n equal to 128. In order to making this 

descriptor robust against rotation a more efficient method is to 

steer BRIEF according to the orientation of keypoints (Rublee et 

al, 2011). For any feature set of n binary tests at location (𝑥𝑖 , 𝑦𝑖), 
define the 2 ∗ 𝑛 matrix: 

 

𝑆 = [
𝑥1, … , 𝑥𝑛
𝑦1, … , 𝑦𝑛

] (3) 

 

Using the patch orientation θ which is calculated from intensity 

centroid algorithm (Rublee et al, 2011), we construct 𝑆θ that is 

the steered version of S. then the new steered BRIEF operator 

which is named rBRIEF, becomes:  

 

𝑔𝑛(p, θ) = 𝑓𝑛(p)|(𝑥𝑖 , 𝑦𝑖) ∈  𝑆θ  (4) 

Rotation and scaling robustness of this method and SIFT method 

is compared and showed in figure 5 and 6. 
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Figure 5. Comparison between SIFT and rBRIEF and BRIEF 

descriptors in rotation 

 
(a) 

 
(b) 

Figure 6. Comparison between Sift and rBRIEF descriptors in 

rotation (a) and scale (b) 

 

2.5 Transform estimation 

The next step is to compute the geometric relationship between 

neighbourhood images. The relationship between two images can 

be considered as perspective projection: 

 

{
 

 𝑥′ =
𝑚1𝑥 +𝑚2𝑥 + 𝑚3

𝑚7𝑥 + 𝑚8𝑥 + 1

𝑦′ =
𝑚4𝑥 + 𝑚5𝑥 + 𝑚6

𝑚7𝑥 + 𝑚8𝑥 + 1

 

 

(5) 

 

Where (𝑥, 𝑦) are first image coordinates and (𝑥′, 𝑦′) are second 

image coordinates. The 8 parameters of this transform can be 

represented as a 3*3 matrix denoted by: 

 

𝑀 = [

𝑚1 𝑚2 𝑚3

𝑚4 𝑚5 𝑚6

𝑚7 𝑚8 1
] 

 

(6) 

 

Given at least four points correspondence we can estimate 

perspective transform. We use RANSAC approach to solve this 

transform. RANSAC works by repeatedly selecting small 

random subsets of correspondences (hypothesis sets) from which 

to compute candidate solutions. Each candidate solution is 

compared with the entire data set until a solution compatible with 

a large number of correspondences is found. These are assumed 

to be inliers, and a least-squares solution is computed from this 

inlier set and other points are eliminated from the process 

(Botterill et al, 2010). This can eliminate remained mismatch 

points. Figure 7 shows some examples of matching points with 

processing ER and RANSAC and without them. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. (a) Matching without ER and RANSAC  

(b) Matching with ER and RANSAC 

(c) Some example of matching points. 

 

2.6 Transform optimization   

However the two images will rarely line up exactly, due to a 

combination of small errors remaining in the transform estimate, 

uncorrected lens distortion, and intensity variation between 

images. In the case of aerial images the fact that the ground is not 

exactly planar adds to this misalignment (Botterill et al, 2010). In 

order to minimize these accumulation errors we need to optimize 

our transformations. We need to use bundle adjustment to 

improve all the transformation globally. This step can solve the 

problems caused by the accumulated errors. All the sequence 

images are added to the bundle adjuster one by one, and the 

parameters can be updated by using the L-M (Levenberg-

Marquardt) algorithm (Press et al, 1992). 

 

The objective function we use is a sum squared projection error. 

Each feature point is projected into every image in which it 

matches, and the sum of squared distances is minimized. The 

squared residual can be computed by: 

 

𝑑𝑖𝑗
𝑘 = 𝑑2( 𝐹𝑗

𝑘, 𝐹𝑝𝑖𝑗
𝑘 ) + 𝑑2( 𝐹𝑖

𝑘, 𝐹𝑝𝑗𝑖
𝑘 ) (7) 

 

Where  𝐹𝑝𝑖𝑗
𝑘  is is the projection from image i to image j of the 

feature point corresponding to 𝐹𝑖
𝑘 and we can use the following 

equation to compute 𝐹𝑝𝑖𝑗
𝑘 : 

  

𝐹𝑝𝑖𝑗
𝑘 = 𝑀𝑖𝑗𝐹𝑖

𝑘 

 

(8) 

Where 𝑀𝑖𝑗 is the transform matrix between image 𝑖 and 𝑗. It 

should be noted that the transform matrix between the firs image 

and the kth image can be expressed as: 

 

𝑀𝑘1 =∏𝑀(𝑖−1)𝑖

𝑘

𝑖=2

 

 

(9) 
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So using the equation 9 we can perform the relation between 

every images in the process. Then the error function is the sum 

over all the images of the squared residuals: 

 

𝐷(𝑀) =∑ ∑ ∑ 𝑑𝑖𝑗
𝑘

𝑘∈𝑠(𝑖,𝑗)𝑗∈𝐼(𝑖)

𝑛

𝑖=1

 
 

(10) 

 

Where 𝑛 is the number of images, 𝐼(𝑖) is a set of images match 

to image 𝑖 (adjoining images set of the 𝑖th image), and 𝑠(𝑖, 𝑗) is 
the set of matched feature images 𝑖 and 𝑗. We need first 

estimation of transform parameters to operate the algorithm. This 

is a non-linear least squares problem which can be solved by 

using L-M algorithm with iterative process (Cheng et al, 2010). 

 
2.7  Image composition 

In order to make the final mosaic all the images need to transfer 

to a same frame, so the reference plane need to be specified. At 

this point we use IEOPs to reach attitude correction image of first 

image that is the image that does not have any tilt. We use this 

new plane as our reference frame and all images transform 

parameters estimate with this reference frame. Like we said 

before, our optimization algorithm needed first estimation of 

transform parameters and this would be provided by estimating 

the parameters obtained by RANSAC approach between each 

image and its prior image and use of equation 9 to achieve the 

parameters between every two images. After optimization 

process we need to use these optimized parameters to register 

each image to the reference plane. In this step there are many 

overlapping areas. Directly overlay images after registration will 

appear obvious seamline, adverse visual feelings and low-quality 

stitching. To overcome this, there are a lot of proposed methods. 

Each method has sort of advantages and disadvantages. Two 

common solutions to this problem are firstly to choose seams 

minimizing visual discontinuities, or secondly to hide seams by 

interpolating between overlapping images (Botterill et al, 2010). 

The first approach has a disadvantage of time-consuming and an 

advantage of good visual view. A variation of the first approach 

is used by Brown et al (2007), which successfully hides seams, 

although moving objects or poor alignment can result in multiple 

images of objects appearing named ghosting (Botterill et al, 

2010). We use a similar approach that uses weighted averaging. 

This has the advantage of time efficiency. Moreover there are 

also many factors that affect the quality of image stitching, one 

of them is exposure differences. In order to minimize exposure 

differences between images we use histogram equalization 

before stitching process. 

 

 
3. THE EXPEREMENT SYSTEM DESIGN AND 

RESULTS ANALYSIS  

This paper introduces a UAVs mosaicking method which is 

collection of different approaches and ideas. It is designed to 

minimize computation time of process.  It uses IEOPs of the 

UAV in order to minimize computation time as much as possible. 

After using SIFT point detector for extracting images salient 

elements, the rBRIEF descriptor which is time efficient and 

robust against geometric transformations is used to describe 

points. In the matching process the UAV’s IEOPs is used to 

extract Epipolar rectangle to minimize search area of detected 

points which reduces the time of process and uses as mismatch 

points eliminator. In the matching process, it matches maximum 

100 points between each two overlapped images. It also chose 

points from different region of images in order to keep points 

distribution efficient. The 8 projective transformation parameters 

then be calculated using RANSAC approach which eliminates 

remained mismatch tie points. A global bundle adjustment is used 

to minimize accumulation error in the process. The most time 

efficiency methods is used in image stitching process. C++ 

programing language is used to implement the algorithm process. 

We use multithreaded programing in order to maximize time 

efficiency. Figure 8 shows the flowchart of the algorithm. 

 

 

 

                                                            

 

 

                                   

 

 

 

                                   

 

 

 

 

 

 

 

 

 

                                   

 

 

                                   

 

   

 

 

 

 
 

                                   

 

 

 

                                   

 

 

 

 

 

 

Figure 8. Mosaicking algorithm flowchart 

 

The implement of this paper algorithm is performed on a desktop 

computer with a 3.20 GHz Intel core i7 processor and 8GB RAM. 

The size of images is 1500*2500 pixels and the images Ground 

Sample Size (GSD) is about 7 cm. The rate of heading and cross 

overlap are about 70% and 40% respectively. The average flight 

height of the UAV is about 1000 m. Table 1 shows the hardware 

specification that are used in this research. 

 

An experiment mosaic with 40 images has been performed using 

this method over our test field (figure 9). The total RMSE over 

all matching points is 1.72 m. Matching time and RMSE and 

other statistical data for an image with maximum joining image 

set (11 images) are shown in table 2. Mosaic time for each image 

Sensed image 

Find joining 

images set 

Preprocessing 

Adjacent images 

SIFT point 

detector 
Preprocessing 

rBRIEF 

descriptor 
Images database 

Matching process 

RANSAC 

Have all images 

been processed? 

N 

Y 

Input 

new 
imag

e 

Image fusion 

Output mosaic 

Global optimization 
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depend on its parameter optimization time and overlap area, 

varies in 1-3 s range.  

 

 

parameters  

Length 2.88 m 

Width (with wing) 3.25 m 

Height ( with antennas) 0.9088 m 

weight 83 Kg 

Max flight height 14000 PA 

Max operation time 90 min 

IMU Xsense MTi-G-700 

GPS Novatel 

Table 1. Specification of UAV 

 

 

Figure 9. The mosaic over test field 

 

Images ID Match points 

number 

Total RMSE 

(m) 

Match time 

24-16 45 1.854  

 

 

 

 

0.9135 s 

24-17 67 1.783 

24-18 19 1.913 

24-22 65 1.633 

24-23 93 1.586 

24-25 95 1.564 

24-26 74 1.594 

24-27 31 1.756 

24-30 22 1.932 

24-31 59 1.901 

24-32 48 1.887 

Table 2. Specification of UAV 

 

4. CONCLUSIONS 

Investigation of experimental result shows that the proposed 

algorithm which uses maximum geometric and computational 

potentials to minimize mosaicking time, presents a system for 

fully automatic panorama mosaicking and high efficient on 

registration and mosaicking process with time consideration. But 

there are still some problems include fusion ghost which can be 

minimized using methods that find optimum seam paths. And of 

course using of GPU can significantly reduce the time of process. 

UAVs automatic mosaicking can provide short-time information 

that can minimize life and property damage.  

 

REFERENCES 

Botterill, T. Mills, S. Green, R., 2010. Real-time aerial image 

mosaicking. In: Image and Vision Computing New Zealand 

(IVCNZ), 2010 25th, IEEE, pp. 1-8 

 

Brown, M. Lowe, D. G., 2007. Automatic panoramic image 

stitching using invariant features. International journal of 

computer vision, 74(1), pp. 59-73. 

 

Cheng, X. Wang, J. Xu, Y., 2010. A method for building a mosaic 

with UAV images. International Journal of Information 

Engineering and Electronic Business, 2(1), pp. 9-15. 

 

El-sheimy, N., 2000. Inertial Techniques and IMU/DGPS 

integration, Department of Geomatics Engineering, The 

University of Calgary. 

Ishikawa, H. Geiger, D., 1998. Occlusions, discontinuities, and 

epipolar lines in stereo. In Computer Vision—ECCV'98, pp. 232-

248. Springer Berlin Heidelberg. 

 

Li, M. Li, D. Fan, D., 2012. A Study On Automatic UAV Image 

Mosaic Method For Paroxysmal Disaster. In: Proceedings of the 

International Society of Photogrammetry and Remote Sensing 

Congress, Melbourne, Australia, Vol. 25, pp. 123-128 

 

Lowe, D. G., 1999. Object recognition from local scale-invariant 

features. In: Computer vision, 1999. The proceedings of the 

seventh IEEE international conference on, Vol. 2, pp. 1150-

1157). IEEE. 

 

Press, W. Teukolsky, S. Vetterling, W. Flannery, B., 

1992. Numerical Recipes in C: The Art of Scientific Computing. 

Cambridge University Press. 

 

Rublee, E. Rabaud, V. Konolige, K. Bradski, G., 2011. ORB: an 

efficient alternative to SIFT or SURF. In: Computer Vision 

(ICCV), 2011 IEEE International Conference on, pp. 2564-

2571). IEEE. 

 

Szeliski, R., 2006. Image alignment and stitching: A 

tutorial. Foundations and Trends® in Computer Graphics and 

Vision 2, no. 1, pp. 1-104. 

 

Zitova´, B. Flusser, J., (2003). Image registration methods: a 

survey. Image and vision computing, 21(11), pp. 977-1000 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-941-2016

 
946




