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ABSTRACT: 

Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2) will fortify agricultural applications based on satellite 
data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing 
methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric 
resolution.  
In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic 
radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI 
scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly 
collected on 18 maize plots throughout the summer season 2015. 
The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and 
vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and 
conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance 
measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the 
performance of the two approaches over the plant stock evolvement. 
Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the 
biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire 
vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll 
content (SPAD): R² = 0.80; RMSE=4.9.  
Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent 
remote sensing datasets to model biophysical parameters.  

1. INTRODUCTION

Agricultural applications using remote sensing data and 
methods will be fortified by the increase of high-resolution 
multifrequent remote satellite data. New satellite constellations 
like the Sentinels will increasingly allow in combination with 
other systems for high frequent high-resolution observations of 
the crop lifecycle.  
Applications of remote sensing mainly focus on the biophysical 
reality of the crop expressed by crop specific biophysical 
parameters such as the leaf area index (LAI), fraction of 
absorbed photosynthetically active radiation (FPAR), or 
chlorophyll content. One appropriate method that demands 
reduced amounts of auxiliary data (such as climate or soil data) 
is to directly derive statistical relationships between the 
respective biophysical parameter observed in the field and the 
reflectance signal measured by the sensor of the satellite 
(Bronge, 2004) 
Often, univariate statistics are applied to one spectral index, e.g. 
the NDVI, to create maps of crop biophysical parameters 
(Fritsch et al. 2012). Such linking of one spectral index with 
one biophysical parameter implies a direct and permanent 
relationship between the biophysical reality and the reflectance 
values (Myneni and Williams, 1994). But the plants change 
their height, mass and shape, which alters their perception 
through remotely sensed data as well. For instance, Lex et al. 
(2015) or Vina et al. (2011) demonstrated that such simple 
crop-specific statistical relations may vary during a cropping 
season (Koppe et al. 2012). Comparisons of univariate 
statistical models revealed that some vegetation indices 
outreach others in model performance. Such thoughts also 

guided the study by Tillack et al. (2014) who modelled 
biophysical parameters for different phenological stages using 
multivariate statistics that included several vegetation Verrelst 
et al. (2012) applied machine learning methods to the entire 
spectra of remote sensing information and underlined their great 
potential in combination with high resolution remote sensing 
data. However, despite this promising property of machine 
learning algorithms such as random forest, systematic 
applications and comparison of machine learning methods for 
deriving biophysical parameters in agriculture using high 
resolution remote sensing data are still rare.  
The aim of this study is to compare two machine learning 
methods, namely the traditional random forest (rforest) and the 
conditional inference forest (cforest) for modelling biophysical 
parameters of maize in terms of prediction accuracy and 
variable importance. This comparison is done for the complete 
phenological lifecycle of maize using the Landsat 8 OLI. The 
analysis is done completely in R and is based on field 
observation data gathered on maize fields within the test and 
calibration site DEMMIN in Northeast-Germany. During an 
extensive field survey in 2015, FPAR, LAI, and chlorophyll 
content were measured on a weekly basis throughout the 
growing season of maize. 

2. STUDY SITE

2.1 DEMMIN 

The study area was located near the city Demmin in Western-
Pomerania (Mecklenburg), Northeast-Germany. (Figure 1). 
Glaciers and melting waters formed the landscape during 
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Weichsel glaciation (approximately 10.000 years ago). The 
climate zone can be described as moderate, with an average 
annual temperature of 8–8.5 °C and an average annual rainfall 
of 550–600 mm (Borg et al. 2009). 

Figure 1: Study site and location of ESUs on maize fields 

The investigated fields were within the test site DEMMIN 
(Durable Environ-mental Multidisciplinary Monitoring In-
formation Network), one of four test areas of the TERENO NE 
Lowland observatory (http://demminweb.dlr.de/). The test site 
is an intensively used agricultural ecosystem dominated by 
extensive fields (80 ha) where mainly wheat and maize are 
cultivated. The northern part of the study area is characterized 
by low topographical variations between 5 - 84.5 m a.s.l.. The 
south can be described as hilly to undulating. Due to significant 
differences in parent substrate material and topography, soils 
are primarily loamy sands and sandy loams alternating with 
pure sand patches or clayey areas (Gerighausen et al. 2007). 
(http://teodoor.icg.kfa-juelich.de/observatories-
de/norddeutsches-tiefland-observatorium/german-lowland-
observatory-de). 

3. DATA AND METHODS

3.1 Remote Sensing Data and prepossessing 

The Landsat legacy dates back to 1965. Landsat 8 OLI is the 
latest optical sensor of this series deployed in orbit. The sensor 
has a revisit time of 16 days and a spatial resolution of 30m. 
The spectral bands used in this study are: Costal (C) (0,43-0,45 
µm), Blue (B) (0,45-0,51 µm), Green (G) (0,53-0,59 µm), Red 
(R) (0,64-0,67 µm), near infrared (NIR) (0,85-0,88 µm), short-
wave infrared (SWIR 1) (1,57-1,65 µm) and the second short-
wave infrared band (SWIR 2) (2,11-2,29 µm).   
The Landsat 8 OLI data was atmospherically corrected using 
ATCOR2 (Richter et al., 2012). In an additional step, all cloud 
affected areas were excluded using the cloud masks calculated 
in ATOCR.  

Index or 
band name Spectra Name in the 

ensemble 

Costal 0.43 – 0.45µm Band 1 

Blue 0.45-0.51 µm Band 2 

Green 0.53-0.59 µm Band 3 

Red 0.64-0.67 µm Band 4 

near 
infrared 
(NIR) 

0.85-0.88 µm Band 5 

short-wave 
infrared 
(swir1) 

1.57-1.65 µm Band 6 

short-wave 
infrared 
(swir2) 

2.11-2.29 µm Band 7 

Index Formula Reference 

Brightness 
0.3029*blue+0.2786*green+0.47
33*red+0.5599*NIR+0.508*swir

1+swir2*0.1872 

Liu et al. 2014 

Greenness 
0.2941*blue+0.243*green+0.542
4*red+0.7276*NIR+0.0713*swir

1+swir2*0.1608 

Wetness 
0.1511*blue+0.1973*green+0.32
83*red+0.3407*NIR+0.7117*swi

r1+swir2*0.4559 

TCT_4 
0.8239*blue+0.0849*green+0.43
96*red+0.058*NIR+0.2013*swir

1+swir2*0.2773 

TCT_5 
0.3294*blue+0.0557*green+0.10
56*red+0.1855*NIR+0.4349*swi

r1+swir2*0.8085 

TCT_6 
0.1079*blue+0.9023*green+0.41
19*red+0.0575*NIR+0.0259*swi

r1+swir2*0.0252 

SR NIR/red Jordan, (1969), 

NDVI (NIR-Red)/(NIR+Red) Rouse et al. (1974) 

SAVI (1+0.5)*(NIR-
Red)/(NIR+Red+0.5) Huete (1988) 

RDVI NIR-red/sqrt(NIR+Red) Roujean (1995) 

EVI 2.5*((NIR-Red)/(1+NIR+6*Red-
7.5*Blue)) Huete et al. (2002) 

Table 1: spectral bands and indices 

3.2 In-situ-data description 

Field observations of three biophysical parameters, LAI, FPAR, 
and chlorophyll content (expressed by SPAD measurements) 
were taken in the study region every week to bi weekly. FPAR 
and LAI were recorded using a SunScan instrument (Delta-T 
Devies Ltd., Cambridge, England) and the SPAD values were 
measured with a handheld chlorophyll meter (SPAD-502, 
Minola Osaka Company, Ltd., Osaka, Japan).  

The data was collected on each 18 elementary sampling units 
(ESUs) (Baret et al. 2005) on five maize fields. The EUSs had 
an extent of 20 m x 20 m. Within each ESU, twelve 
measurement points were set within a rectangular cross. These 
twelve measurements were averaged for further processing. 
FPAR and LAI were measured once on every point inside the 
ESU. The SPAD measurements were taken on every point ten 
times and averaged.  
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3.3 Linking in situ data with remote sensing data 

The maximal temporal offset between the field observations 
and the day of acquisition of the remote sensing data amounted 
four days. The spectral data was averaged inside a 20m buffer 
around the ESU centre. The averaged spectral information was 
used to calculate the vegetation indices.  

Several vegetation indices were calculated from Landsat data 
comprising simple ratio (SR), NDVI, SAVI, RDVI and EVI. 
The tasselled cap transformation indices which allow for 
monitoring greenness, brightness, and wetness, and which are 
another important source of information for remote sensing 
applications in agriculture (Liu et al. 2014), were also included 
in the analysis.  

3.4 Random Forest 

Machine learning applications have resided a lot of attention in 
the last decades. These approaches can handle nonlinear 
statistical relations and complex interactions between variables 
and have been successful applied for vegetation monitoring 
(Bekenschäfer et al. 2014). Moreover, they have the ability to 
identify variables that are most important for explaining the 
predicted variable (Van der Laan, 2006). 

The random forest technique initially introduced by Breiman 
(2001) belongs to these kind of algorithm and is subject of this 
study. This initial formulation of the random forest in the 
following referred to as ‘rforest’ has a strong prediction power. 
The conditional random forest (‘cforest’) introduced by Strobl 
et al. (2008) is based on the same technology but includes 
elements that can better deal with highly correlated predictors 
and that are supposed to strengthen the analytical and 
explorative character of the algorithm. Both algorithms consist 
of ensembles of recursive partitioning and regression trees 
(RPART) which only differ in the way they search for features 
and threshold values for optimally analysing a set of training 
data. In the rforest and cforest approaches, RPARTS are 
implemented according to Breiman et al. (1984) and Strobl et 
al. (2008), respectively. 

The ensemble of tress, e.g. the selection of variables for tree 
construction, can subsequently be analysed using so-called 
variable importance algorithms. Irrespectively of the type of 
random forest main approaches investigate the reduction of 
accuracy of the random forest when randomly modifying each 
variable (Ishwaran et al. 2007, Strobl et al. 2007, 2008).  

In this study, the R software (Liaw & Wiener, 2002) was used 
for implementing both approaches. The rforest of the R package 
‘h performance of one model and on the variable importance 
(Díaz-Uriarte & Alvarez de Andrés 2006). With mtry = 1, the 
splitting variable would be completely random and mtry = p 
would exclude the randomness from the random forest model.  

Using the caret package 10 different mtry values were tested 
(2,3,5,7,9,10,12,14,16,18 with p=18) for the Landsat 8 OLI 
band index ensemble. The metric for comparing and assessing 
the performance of cforest and rforest was the coefficient of 
determination (R²). This way ensured finding the best tuning 
parameter for the model and so for the prediction of the 
biophysical parameters.  

The variable importance assessments were applied to the 
optimal performing model only, determined by caret. This 
procedure was repeated 100 times for all datasets. The 
distribution of the variable importance shows on the one hand 
the importance of an index or band for predicting a biophysical 

parameter and on the other hand the stability of its selection 
over 100 model runs  

4. RESULTS AND DISCUSSION

4.1 Prediction accuracy 

Due to the relative small dataset and the problem of geo and 
temporal correlation effects, this study used a 10 times repeated 
five-fold cross validation to determine the performance of the 
respective random forests. Each model was tuned to yield the 
highest coefficient of determination value (R²) by altering the 
mtry parameter. The performance results were averaged over 
100 runs. The root mean square error (RMSE) was derived as 
second quality information  

The rforest slightly outperforms the cforest models in terms of 
prediction accuracy modelling the LAI and SPAD values (see 
tables 2 and 3). The FPAR parameter was modelled at equal 
quality levels (R² = 0.85, RMSE = 0.11).  

R² RMSE mtry samples 
FPAR 0.85 0.11 3 93 
LAI 0.64 0.9 13 92 

SPAD 0.80 4.9 10 94 
Table 2. Cforest performance 

R² RMSE mtry samples 
FPAR 0.85 0.11 15 93 
LAI 0.70 0.8 10 92 

SPAD 0.83 4.5 2 94 
Table 3. rforest performance 

Wiegand et al. (1990) modelled FPAR of corn and reported a 
strong relationship between the FPAR and single remote 
sensing indices (max: R² = 0.95). Gitelson et al. (2014) stated 
also a strong connection between the maize FPAR and the 
NDVI (R² = 0.95) which outreaches the performance of this 
study by far concerning coarse remote sensing data (MODIS). 
Gao et al modelled LAI on maize fields in 2013 with an R² of 
0.69 which is comparable to the performance of the random 
forest model in this study.  
Schlemmer et al. (2013) showed a strong relation between EVI 
and chlorophyll content (R² = 0.67) and a higher relation with 
the NDVI (R² = 0.75). 

4.2 Variable importance 

The variable importance of the respective random forest models 
is expressed by boxplots (Figures 2 to 4). These boxplots 
contain the distribution of the unscaled variable importance 
over 100 runs. The boxplots are sorted according to the mean 
importance of those runs. Accordingly, the average variable 
importance decreases top to bottom. It is obvious, that the 
combination of cforest with subsequent variable importance 
assessment, which has a high explorative character (Strobl et 
al., 2008), more distinctly elaborates important variables as 
compared to rforests followed by variable importance 
assessments. 
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Figure 2: Variable importance of FPAR models cforest (left) 
rforest (right) 

Figure 3: Variable importance of LAI models cforest (left) 
rforest (right) 

Figure 4: Variable importance of SPAD model cforest (left) 
rforest (right) 

For FPAR estimations, both methods (cforest and rforest) 
exhibited a completely different distribution of variable 
importance. The variable importance distribution of FPAR 
indicates EVI to be the most important variable for the cforest, 
and band 6 (swir1) to be of highest importance when modelling 
with rforest. 

The LAI models show a narrow distribution of the single 
variable over the 100 runs, for rforest and cforest. Again for the 
cforest EVI is the most important variable while the boxplot of 
the rforest model shows the second band (Blue) to be most 
important. 

For modelling the chlorophyll content (SPAD value) both 
variable importance assessments (cforest and rforest) agree on 
the important role of greenness and RDVI. Again the variable 
importance distribution of the cforest is more exact. 
The statement of variable importance relates only to the 
respective band vegetation index set described in table 1. 
Adding more vegetation indices could change the appearance of 
the variable importance completely. The same is very likely to 
be valid for the model accuracy and the tuning parameter. The 
comparison between the variable importance results of this 
study and the results of Beckschäfer et al (2014) showed that, 
there are only few variables necessary to explain biophysical 
parameters. The selection of these important variables depends 
on the individual band- index input ensemble.  

5. CONCLUSION

The comparison between the two machine learning methods 
cforest and rforest showed, that the rforest outperforms the 
cforest in terms of prediction accuracy, whereas the cforest 
often resulted in a clearer picture of the variable importance 
distribution. The cforest variable importance boxplots often 
show a group of indices and bands sated off against the majority 
of the band index ensemble. The distribution of variables 
relevant for the generation of the rforests was found to be more 
homogeneous.  

In terms of tuning parameters, the major difference of the two 
models is the choice of the best tuning parameters mtry.  

In the end, machine learning methods seem to perform very 
well modelling biophysical parameters of maize. Other studies, 
like Wiegand et al. (1990) and Gitelson et al. (2014) showed 
even better relationship between biophysical parameters and 
remote sensing data, but not for Landsat resolution and not for 
the entire vegetation period. The machine learning models can 
use the entire ensemble of multispectral information. The 
presented results relate to the entire vegetation period and 
include effects like the change of fractional cover and browning 
of the plant. It is very likely that optimization can be achieved 
by focusing on different growing stages.  
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