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ABSTRACT: 
 
Nowadays, content-based image-retrieval techniques constitute powerful tools for archiving and mining of large remote sensing 
image databases. High spatial resolution images are complex and differ widely in their content, even in the same category. All 
images are more or less textured and structured. During the last decade, different approaches for the retrieval of this type of images 
have been proposed. They differ mainly in the type of features extracted. As these features are supposed to efficiently represent the 
query image, they should be adapted to all kind of images contained in the database. However, if the image to recognize is somewhat 
or very structured, a shape feature will be somewhat or very effective. While if the image is composed of a single texture, a 
parameter reflecting the texture of the image will reveal more efficient. This yields to use adaptive schemes. For this purpose, we 
propose to investigate this idea to adapt the retrieval scheme to image nature. This is achieved by making some preliminary analysis 
so that indexing stage becomes supervised. First results obtained show that by this way, simple methods can give equal performances 
to those obtained using complex methods such as the ones based on the creation of bag of visual word using SIFT (Scale Invariant 
Feature Transform) descriptors and those based on multi scale features extraction using wavelets and steerable pyramids.  
 
 

1. INTRODUCTION 

With the steadily expanding demand for remote sensing images, 
many satellites have been launched, and thousands of high 
resolution satellite images (HRSI) are acquired every day. 
Therefore, retrieving useful images quickly and accurately from 
a huge image database has become a challenge. Given its 
importance, this problem has been drawing the attention of 
people and has received a lot of attention in the literature. As 
high spatial resolution images are complex and differ widely in 
their content, even in the same category, the main issue is to 
find relevant features according to colour, texture and shape 
information describing the image contents. Many approaches 
have been proposed to retrieve low and mid-satellite images 
using their content such as region level semantic features 
mining (Lu and al., 2012), Knowledge-driven information 
mining (KIM) (Daschiel and al., 2003) , texture model (Aksoy 
and al., 2013) entropy-balanced bitmap (EBB) tree (Scott and 
al., 2011). High resolution satellite retrieval schemes use 
different features according to colour (spectral) features (Bag 
and Guo, 2004), texture features (Yang and Newsman, 2012) 
(Sebai and al. 2015) (Shao and al., 2014) and structure features 
(Yang and Newsman, 2012). Most of these approaches are 
expressed by visual examples in order to retrieve from the 
database all the HRSI that are similar to the examples and 
achieved a satisfactory success for some types of categories. 
Indeed, approaches based on global features are more adapted to 
mono thematic images, whereas techniques based on key points 
extraction are more suited to multi thematic images. So, their 
efficiency depends on the choice of the set of visual features 
and on the choice of the similarity metric that models user 
perception of similarity. Recent studies (Eptoula, 2014) (Sebai 
and al. 2015) (Shao and al., 2014) (Yang and Newsman, 2012) 
(Bouteldja and Kourgli, 2015) using a common dataset showed 
that multi scale feature are more adapted for the retrieval of 
HRSI. 
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 Even if we can reach, using these methods, better precision 
values, some categories are not well retrieved especially built-
up categories and classes containing several different objects. 
We still believe that a CBIR (Content Based Image Retrieval) 
scheme dedicated to HRSI should be adapted to all types 
contained in a typical dataset. So, our work is motivated by a 
need to develop an efficient content-based image retrieval 
scheme so that the recognition of arbitrarily oriented objects in a 
complex high resolution satellites image can be achieved. To 
this aim, a preliminary stage is added to the CBIR process to 
make it adaptive. Accordingly, the paper is organized as 
follows. Section 2 gives an explanation of how we intend to 
introduce preliminary stage in on our CBIR scheme. Section 3 
presents the experimental and discussed results; and Section 4 
concludes. 
 

2. SUPERVISED CBIR SCHEME 

A Content Based Image Retrieval System (CBIR) is a system 
which analyzes the visual features such as colour, texture and 
shape of a query image and retrieves similar images from the 
image database on the basis of a similarity distance. What 
features and representations should be used in image indexing 
depend on the type of images to be retrieved.  For remote 
sensing images the choice of indexing features depends on the 
type and resolution of the sensor. The main problem in all 
retrieval strategies is the optimal selection and combination of 
useful features that provide efficient similarity matching in large 
databases. To this end a number of relevance feedback 
mechanisms are currently adopted to refine image queries by 
modifying the feature space to improve the searching strategy. 
In a relevance-guided iterative retrieval process (Grana and al., 
2008), the user feedback is specified through the identification 
of a set of relevant and irrelevant images, aiming to better 
approach the target that the user has in mind. In general, 
relevance feedback methods demand too much user effort to 
increase retrieval accuracy (Zhang and al.). Another solution is 
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to conceive a system that guides the user to search for an image 
on the basis of a first categorization based on image nature. To 
better explain the issue and the solution proposed, we prefer to 
introduce the dataset in this section. 
 
2.1 Dataset 

It is a manually constructed data set consisting of 21 image 
classes LULC (Land use Land cover), containing each 100 
images of size 256 × 256 with spatial resolution of 30 cm (Yang 
and Newsman, 2012). it contains the following classes: 
agricultural, airplane, baseball diamond, beach, buildings, 
chaparral, dense residential, forest, freeway, golf course, harbor, 
intersection, medium residential, mobile home park, overpass, 
parking lot, river, runway, sparse residential, storage tanks, and 
tennis court.  
 

 
Figure 1. Image patches of the 21 land-use/land-cover classes. 

 
Studying references (Eptoula, 2014) (Sebai and al. 2015) (Shao 
and al., 2014) (Yang and Newsman, 2012) (Bouteldja and 
Kourgli, 2015), one can observe that false images are retrieved 
when different categories share some common textures or/and 
structures such as those representing buildings, intersection, 
storage tanks, overpass and tennis court categories. This could 
be explained by the fact that these categories are more complex 
containing different structures with different shapes and 
textures. For example intersections images contain houses 
sharing some similarities with residential categories, while some 
areas of golf course category look like those of baseball 
diamond category (See Figure 1). 
 

 
 

 
 

 
Figure 2. Some samples belonging to buildings, tennis court and 

storage tanks classes. 

Moreover, for some categories, objects of interest are too 
different for the same class and the use of global as well as local 
features, do not permit to fully and exclusively describe those 
images (See Figure1). Thus, the feature vectors average the 
information and the heterogeneous images such as tennis court 
(surrounded by residences or trees) or storage tanks of different 
sizes in the middle of fields are not well represented even with 
SIFT descriptors based on key point description. Thus, the main 
information with these categories is embedded.  
 
2.2 Pre-Analysis Step 

To address both the confusion occurring between classes and 
differences intra-classes, we thought about pre-analysing the 
images constituting the base. This preliminary analysis aims, 
among others, to determine the categories that are mono-
textured or representing the same structures from those 
containing specific objects. As, this pre-analysis is expected to 
be simple and fast, we tested some common features 
characterising texture, structure and shape. They are briefly 
presented below. 
 
2.2.1 2nd Order statistical moments: In statistical texture 
analysis, texture features are computed from the statistical 
distribution of observed combinations of intensities at two 
specified positions relative to each other in the image. 
Although, there is a lot of parameter describing texture, we 
restricted our tests on some uncorrelated measures namely: 
correlation, local variance and local entropy. Our main 
motivation behind the use of such simple texture features based 
on statistics of texture is that they are known to provide less 
number of relevant and distinguishable features in comparison 
to existing methods such as those based on wavelet 
transformation or Gabor filters. 
 
2.2.2 HOG (Histogram of Gradients): The HOG  feature is 
widely use for object detection (Dalal and Triggs, 2005). It 
captures edge or gradient structure that is very characteristic of 
local shape. The basic idea is that local object appearance and 
shape can often be characterized rather well by the distribution 
of local intensity gradients or edge directions. HOG 
decomposes an image into small squared cells, computes a local 
1-D histogram of gradient directions or edge orientations in 
each cell normalizes the result using a block-wise pattern for 
improved accuracy, and returns a descriptor for each cell. The 
blocks can be overlapped with each other for performance 
improvement. By concatenating all the normalized histograms 
into a single vector, we get the global HOG feature. 
 
2.3 Features Extraction 

Once pre-analysis is realized, a label is given to each query 
image before features extraction and retrieval stage. Feature 
extraction is the basis of content-based image retrieval. It is 
carried out by computing a visual feature on colour images. In a 
broad sense, visual features include colour, texture, and 
structure/shape. Because of our image nature, some invariant 
rotation and translation features are required to characterize 
spatial colour distribution and thus integrate structure 
information. As our purpose is to test the pre-analysis stage, 
simple features are employed: Local variance, and a thresholded 
version of Local Binary Pattern (LBP). Both are computed 
using only luminance images. 
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2.3.1 Local Variance: Measures of local variance have been 
widely used in image processing for texture and spatial image 
structure measures. As, this parameter is invariant to 
illumination changes, we compute the average value of local 
variances (LV) estimated around each pixel according to each 
luminance image. The histogram of LV computed in this 
manner will constitute a rotation invariant feature that permits 
to identify localized intensity distributions. In this study, it is 
used both for characterization and for improving labelling (see 
section 3.2). 
 
2.3.2 Thresholded LBP: The original LBP operator is 
defined in a rectangular 3 × 3 pixel neighbourhood. It operates 
with eight neighbouring pixels using the center as a threshold. 
The final LBP code is then produced by multiplying the 
threshold values by weights given by powers of two and adding 
the results (Ojala and al., 2002). This LBP is extended to a 
generalized greyscale and rotation invariant operator.  However, 
conventional LBP is very sensitive to noise and a single 
difference in neighbourhood induces a significant change in the 
code generated. To avoid this issue, we modified the 
thresholding function that assigns a bit 1 or 0 according to the 
difference between neighbouring gray levels and the central 
pixel so that it depends on if this difference is less than a 
threshold T. 
 
2.4 Supervising Indexing Scheme 

In a query by example scheme, we are interested in retrieving 
several similar images and this requires comparing two 
descriptors to obtain a measure of similarity (or dissimilarity) 
between the two image patterns. Distance measures permit one 
to translate the similarity concept through a mathematical 
representation. The choice of distance is crucial and should be 
considered carefully. Generally, some experience is required in 
selecting an appropriate distance for a given application. Some 
common measures are tested in this paper. They are 
summarized in Table 1. 
 

Manhattan 
distance 

��1� = ���, 	� = ∑ |�� − 	�|����    (1) 

Euclidian 
distance 

��2� = ���, 	� = �∑ ��� − 	�������  (2) 
Chi-square 
distance ���, 	� = �∑ ��������

������� 	�����        (3) 

Canberra distance ���, 	� = ∑ |�����|
|�����|

����                 (4) 

Squared chords 
distance ���, 	� = ∑ ���� − �	�������   (5) 

 
Table 1. Common Similarity measures 

 
To obtain the labelling, the parameters introduced in section 2.2 
are computed for different non overlapping windows for each 
image of the database and similarity (defined by range or 
variance) between the different blocks is measured to derive a 
label related to the parameter employed. 
Then, to make the process supervised, the feature vector 
corresponding to the query image with a label Li is compared to 
all the features extracted from the dataset possessing also a label 
L j. Then the similarity measure is weighted by α defined as: 

	
���, 	� = α	.		���, 	�						 	 				(6) 

 

Where α is given the value 1 for features providing of images 
whose have the same label. The more the labels differ, the more 
the value of  α increases. 
By this way, the query image is preferably compared to the ones 
possessing the same label i.e. sharing similar characteristics. 
 

3. TESTS AND RESULTS 

Tests have intensively been conducted using 8 classes according 
to the following reference (Shao and al., 2014). These are 1: 
agricultural, 2: airplane, 3: beach, 4: buildings, 5: chaparral, 6: 
dense residential, 7: forest, and 8: harbor. Two kinds of 
investigations have been carried out. The first series of tests is 
designed to find the feature that permits to label the images and 
to show the effect of pre-analysis stage as well. 
 
3.1 Labelling using single parameter 

To build the pre-analysis stage, we tested some parameters 
known to characterize the structure and texture and others 
recognized to highlight the shape of objects. First, to make the 
distinction between mono-thematic images and those that are 
not, the images are divided into non overlapping blocks, and the 
parameters described in section 2.2 are computed. The 
parameters obtained for the different blocks according to each 
image are compared via a difference measure (range or 
variance) to obtain one single value.  

Figure 3. Variance of parameter correlation using 9 windows for 
each sample (1: agricultural, 2: airplane, 3: beach, 4: buildings, 
5: chaparral, 6: dense residential, 7: forest, 8: harbor). 

Figure 4. Variance of parameter entropy using 25 windows for 
each sample (1: agricultural, 2: airplane, 3: beach, 4: buildings, 

5: chaparral, 6: dense residential, 7: forest, 8: harbor). 
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Figure 5. Variance of HOG histograms using 9 windows for 

each sample (1: agricultural, 2: airplane, 3: beach, 4: buildings, 
5: chaparral, 6: dense residential, 7: forest, 8: harbor). 

 

The above figures illustrate the values obtained in the form of 
images. Recall that we are using 8 classes, each one containing 
100 samples. These figures show that the correlation parameter 
varies little (low value in blue) between different windows for 
agricultural, chaparral and forest classes that are mono-textured. 
For other classes, it is not very discriminator. As expected, 
entropy parameter, reflecting the degree of disorder, is almost 
constant between the different blocks of a single image 
composed of the same textures such as the three categories 
mentioned previously.  However, for some samples of dense 
residential class, this value is also low, which generates 
confusion and does not permit to choose a fixed threshold.  
The last parameter HOG related to the shape not only helps to 
differentiate images containing one thematic but permits also to 
distinguish between structured and non structured ones. Indeed, 
agricultural images are textured and most of them are also 
structured with predominant orientation. 
 
This parameter permits to define three intervals [01 0.03 0.08]. 
Once the intervals determined, a label is given to each image of 
the database according to the interval it belongs to. 
The next step is features extraction. As mentioned before, our 
aim is to study the impact of pre-analysis, so we consider 
simple features: global histogram of local variance computed on 
16 bins and global histogram of thresholded uniform LBP 
constituted of 10 different codes. 
Usually, CBIR performance is measured by precision and recall. 
Precision P as well as average precision and AP are given as: 
 

� =  !"#$%	&'	%$($)*+,	-"*.$/	%$,%-$)$�	
0&,*(	+!"#$%	&'	-"*.$/	%$,%-$)$�       (7) 

 

1� = �
23∑ ��-�					23

��� 		  (8) 

 
where Nq represents the number of queries. 
Similarly, recall R and average recall AR are given as : 
 

� =  !"#$%	&'	%$($)*+,	-"*.$/	%$,%-$)$�
0&,*(	+!"#$%	&'	%$($)*+,	-"*.$/ 								 (9) 

 

14 = �
23∑ 4�-�23

��� 						  (10) 

 
We first give some indexing results using the chi-square 
distance with (Fig.6) and without (Fig. 7) pre-analysis stage. 

The index of retrieved images are sorted from left to right and 
given accordingto their color. 
One can observe from Fig. 6 that the images belonging to the 
first class (top left in dark blue) are very poorly indexed because 
the features employed are quite simple and not suitable for this 
category but the fact of going through a preliminary stage of 
analysis increases the number of correctly retrieved images 
(Fig. 7). This is true for other categories because the confusion 
between different classes diminishes. Thus the values of 
precision and recall increase (see Figure 8 and Table 2). 
 

Figure 6. Retrieved image indexed by corresponding colour 
without employing pre-analysis stage. 

 

Figure 7. Retrieved image indexed by corresponding colour 
employing pre-analysis stage. 

 

 
Figure 8. Precision-Recall curves obtained using the 800 

samples with (in blue) and without (in red) pre-analysis stage. 

 

 

1 2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

90

100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

 

 

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si
on

 

 

with pre-analysis

without analysis

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B2-201-2016

 
204



 

 
Table 2 and Table 3 illustrate the overall recognition rate 
obtained for different precision values using the similarity 
measure of Chi-square for each category. 
 
Cl Pr% 

10 
Pr% 
 20 

Pr% 
30 

Pr% 
40 

Pr% 
 50 

Pr% 
 60 

Pr% 
70 

Pr% 
80 

Pr% 
 90 

Pr% 
100 

Avg 

1 55,9 45,0 40,6 37,2 34,8 33,0 31,2 30,3 28,6 27,4 36,4 
2 82,8 75,7 68,6 63,8 61,0 58,1 55,6 53 50,8 48,8 61,8 
3 84,7 76,6 71,8 67,3 63,4 56 56,4 54,0 51,9 49,6 63,6 
4 69,6 63,0 58 55,6 53 51,1 49,1 47,5 46,2 45 53,9 
5 79,4 74,9 72 70,2 67,8 66,5 64,7 62,8 60,3 57,3 67,6 
6 78,1 70,7 68,6 67,3 66,2 65,0 64,2 63,2 61,8 60,6 66,6 
7 63,7 55,4 51,7 49,1 46,7 44,8 42,8 41,6 40,0 38,8 47,5 
8 95,3 94,3 93,3 92,1 90,6 88,4 86,1 83,7 80,5 76,1 88 

 
Table 2. Average precision values for each category. 

 
Cl Pr% 

10 
Pr% 
20 

Pr% 
30 

Pr% 
40 

Pr% 
 50 

Pr% 
 60 

Pr% 
70 

Pr% 
80 

Pr% 
 90 

Pr% 
100 

Avg 

1 79,8 74,0 69,8 64,1 58,9 54,3 50,2 46,9 44,2 41,6 58,4 
2 84,5 78,8 72,9 68,5 65,5 62,6 59,6 56,8 54,6 52,2 65,6 
3 82,8 75,4 70,3 65,9 62,6 58,5 55,1 51,9 49,2 47,0 61,9 
4 70,6 62,0 57,6 53,7 51,1 48,7 46,9 45,3 43,9 42,7 52,2 
5 80,7 76,5 74,0 72,4 70,2 69,0 67,7 66,5 64,3 62,2 70,3 
6 77,5 71,0 68,9 67,9 67,4 66,4 65,6 64,5 63,5 62,4 67,5 
7 76,3 69,8 67,1 65,5 63,8 61,5 59,5 57,6 55,6 53,8 63,1 
8 95,2 94,2 93,3 92,1 90,7 88,5 86,4 83,8 80,9 76,4 88,2 

 
Table 3.  Average precision values for each category after pre-

analysis stage and labelling. 
 

 

 
 

Figure 9.  Average precision using simple statistics with an 
without labelling for each category. 

 
One can notice that the addition of the pre-analysis stage allows 
the overall mean accuracy to increase from 59% to a precision 
of 65.9 i.e. a gain of 6%. To assess the effect or reanalysis and 
labelling, we compared the results obtained using more complex 
approaches. Thus, comparisons are limited to the basic version 
of these approaches and summarized in the following table  
 

Precision/ 
Feature 

Pr% 
10  

Pr% 
20  

Pr% 
30  

Pr% 
40  

Pr%  
 50  

Pr%  
 60  

Pr%  
70  

Pr% 
80  

Pr%  
 90  

Pr% 
100  

Avg  

CGOT  80  70  65  62  59  56  54  52  49  47  60  
SP  87,5  79,9  75,0  71,0  67,6  64,8  61,9  59,3  56,8  54,3  67,8  
SIFT  81,2  76,6  74  72,2  70  68  66,1  64,1  61,8  59,1  69,2  
CT-DWT  85,9  77,3  71,7  67,3  63,7  60,5  57,6  54,9  52,3  49,8  64,1  
Simple 
statistics 80,9  75,2  71,7  68,8  66,3  63,7  61,4  59,2  57,0  54,8  65,9  

 
Table 4. Comparison with other methods using average 

precision values for each category. 
 
The table 4 shows that inserting a pre-analysis step in the CBIR 
scheme yields to interesting results compared to approaches 
found in recent references. Let one keeps in mind that for each 
channel, SIFT operator, computed on a vector of 128 elements 
(Lowe, 1999), needs the buildings of a bag of visual word, 
whereas CT-DWT (Kingsbury, 2000) and Steerable Pyramid 
produce a huge vector whose elements (histograms or statistical 

moments) are derived from the sub images in different 
orientations at different levels. Also, CGOT vector is 
constituted of 80 Gabor texture features which give a long 
vector (Shao and al., 2014). While, we tested the proposed 
scheme with two features histogram of local variance computed 
using 16 bins and a modified uniform LBP that produce an 
histogram on 10 bins constituting after concatenation a feature 
vector whose length is 26.  
 
3.2 Labelling using parameter combination 

To increase the performances of labelling, other parameters are 
tested and combined to make labelling more efficient. Indeed, 
high resolution satellite images can broadly be divided into two 
types of images: The first type concerns the images representing 
objects of interest such as airplane, harbor and built-up areas, 
while with the second kind of images; the main information is 
texture such as those representing agricultural, beach, chaparral 
and forest. This second category of images can be, in turn, 
subdivided into 3 main classes: structured, mono textured, multi 
textured.   Whereas, the first type gathers, also, three kind of 
images: those that are highly structured with heterogeneous 
areas between many objects to recognize such as those 
corresponding to built-up areas, those which correspond to few 
objects surrounded by homogenous textures (airplane class is an 
example of this type) and finally those containing also many 
objects with a mono textured back ground. This classification 
leads to the following labelling scheme. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Adapting labelling to high resolution satellite 
images characteristics.  

 
To establish the first distinction, the similarity between the 
different blocs of the image is measured via the local variance. 
Again, each image is decomposed into overlapping blocks (see 
Fig.11). For each block Bi, the range between local variances is 
estimated and the average of the range values is computed 
according to the following formulas:  
 

4�56� = %*+.$�)*%��, 	�, �, 	 ∈ 8-)       (11)        

 
9$*+:;< = �

2
∑ 4�56�

2
���          (12) 

 
Where N is a number of blocks. 

High Resolution 
satellite images 

Textured Images Images containing 
objects of interest 

Structured 

Mono textured  

Multi textured  

 

Highly structured in heterogeneous area 

Few objects in homogeneous area  

Many objects in homogeneous background 
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 For a textured image, the mean defined by equation (12) will be 
small because the range of local variances will be the same for 
each block Bi. 
 

 
Figure 11. Example of nine overlapping blocks. 

 
As it can be observed in the following figure (Fig.12), this 
parameter is low for textured images such as agricultural, beach, 
chaparral and forest (from blue to green) 

 

Figure 12.  MRLV for each sample (1: agricultural, 2: airplane, 
3: beach, 4: buildings, 5: chaparral, 6: dense residential,           

7: forest, 8: harbor). 
 
To distinguish if the textured images contains some structured 
areas as agricultural another parameter is computed, it is 
obtained by computing the correlation of HOG vector defined 
by: 
 

=&%%>?@�(� =  �
;

∑ ABC(+)ABC(+ + ( );�E
���      (13) 

 
Where L represents the size of HOG vector. 
 
The use of correlation of HOG instead of HOG vector allows to 
discriminate between textures that are also structured (high 
value in red and yellow) in Fig. 13. 
The distinction between mono and multi textured images is 
obtained through the use of homogeneity parameter derived 
from co-occurrence matrix. It is defined as:  
 

A&"&.$+$-,	 =  ∑ ∑ F(�,G)

��(��G)�G�         (14) 

 
Where p(i,j) are the elements of  co-occurrence matrix. 
As shown by Fig. 14, most of multi textured images such as 
beach exhibit a high value for homogeneity while mono 
textured ones such as agricultural, chaparral and forest show 
low values (in blue). 
 

 

Figure 13. HOG correlation for each sample (1: agricultural,    
2: airplane, 3: beach, 4: buildings, 5: chaparral, 6: dense 

residential, 7: forest, 8: harbor) 

 

Figure 14. Homogeneity of co-occurrence matrix for each 
sample (1: agricultural, 2: airplane, 3: beach, 4: buildings,        

5: chaparral, 6: dense residential, 7: forest, 8: harbor). 
 

For the second category of images : two parameter are used to 
distinguish between those containing few objects in 
homogeneous area, those containing many objects and finally 
those containing many objects in heterogeneous area. These 
parameters are entropy and dissimilarity. While entropy is 
locally estimated for the whole image, the dissimilarity is 
computed from co-occurrence matrices. It is defined below: 
 

H-//-"-(*%-,	 = �(-, I)�-� − I�     (15) 
 
Again, an image shown in Fig. 15 depicts the result for 
dissimilarity measure while for entropy, we refer to Fig. 4. The 
combination of the two parameters show that most of images 
containing man-made structures with homogeneous background 
exhibit a high value of entropy (see fig.4) 
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Figure 15. Dissimilarity parameter derived from co-occurrence 
matrix for each sample (1: agricultural, 2: airplane, 3: beach,    
4: buildings, 5: chaparral, 6: dense residential, 7: forest, 8: 

harbor). 

 
These different parameters permit to define the six labels 
contributing in the supervised indexing process. 

We first give some indexing results using simple statistics and 
the chi-square distance with pre-analysis stage and the improved  
labelling obtained through parameter combination. 

 

Figure 16.  Retrieved image indexed by corresponding colour 
with improved labelling using simple statistics. 

 
Compared to Fig. 7, Fig.16 shows that refining the labelling 
permits to gain more precision as confirmed by table 4 and Fig. 
17. The gain in terms of precision is almost 10%. 
 

Precision/ 
Feature 

Pr% 
10  

Pr% 
20  

Pr% 
30  

Pr% 
40  

Pr%  
 50  

Pr%  
 60  

Pr%  
70  

Pr% 
80  

Pr%  
 90  

Pr% 
100  

Avg  

Simple 
labelling 

76,2 69,5 65,7 62,9 60,5 58,4 56,3 54,5 52,5 50,5 60,7 

Improv. 
labelling 

83,5 78,7 75,8 73,6 71,1 68,7 66,3 63,8 61,2 58,6 70,1 

CGOT  80  70  65  62  59  56  54  52  49  47  60  
SP  87,5  79,9  75,0  71,0  67,6  64,8  61,9  59,3  56,8  54,3  67,8  
SIFT  81,2  76,6  74  72,2  70  68  66,1  64,1  61,8  59,1  69,2  
CT-DWT  85,9  77,3  71,7  67,3  63,7  60,5  57,6  54,9  52,3  49,8  64,1  

 
Table 5. Comparison using average precision values for each 

category for improved labelling using simple statistics. 
 

Fig. 17 permits to compare simple statistics to CT-DWT, one 
can observe that complex and heterogeneous images such as 
built-up areas (buildings, dense residential) and harbor that are 
not usually well retrieved because of their complexity gain 
better retrieving scores when the images are pre-analysed. 

 

Figure 17.  Average precision for each category. 

 Compared to basic versions of more complex descriptors such 
as those based on multi scale analysis, simple statistics using 
luminance images boosted by pre-analysis stage perform better. 
Precision versus recall curves depicted by Fig. 18 prove that 
simple statistics (in light blue) associated to labelling stage is as 
good as the best descriptor (i.e. SIFT descriptor) (in green).  

 

Figure 18. Precision-Recall curves obtained using the 800 
samples. 

To confirm the advantages of introducing pre -analysis step in 
any indexing scheme, other tests have been conducted using 
CT-DWT and SIFT descriptors. 
 
3.3 Applying labelling to CT-DWT and SIFT descriptors 

Multi scale representation of features descriptors is used to 
better reflect the objects of different sizes and shapes present in 
HRS images (Sebai and Kourgli, 2015).  Multi resolution DT-
CWT technique (Kingsbury, 2000) is widely used since it 
allows analysis that is localized in both space and frequency. It 
calculates the complex transform of a signal using two separate 
DWT decompositions (two trees). While SIFT (Scale invariant 
feature transform) descriptor  developed by David Lowe (Lowe, 
1999) permits to detect and describe local features in images. It  
is extracted from image patches around the interest point and 
then associated to a bag of visual word representation. 
Again, we associated pre-analysis stage to both indexing 
schemes. Results are summarized in table 6. Comparing average 
precisions reported in table 5 and table 6, one can notice a gain 
of approximatively of 7% for indexing scheme based on CT-

 

 

1 2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

90

100

10

15

20

25

30

35

40

 

 

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B2-201-2016

 
207



 

DWT, while for the one based on SIFT representation, the gain 
reachs 4% 
 

Precision/ 
Feature 

Pr% 
10  

Pr% 
20  

Pr% 
30  

Pr% 
40  

Pr%  
 50  

Pr%  
 60  

Pr%  
70  

Pr% 
80  

Pr%  
 90  

Pr% 
100  

Avg  

Simple 
statistics 

83,5 78,7 75,8 73,6 71,1 68,7 66,3 63,8 61,2 58,6 70,1 

SIFT 85,4 81,5 79,4 77,1 75,1 72,4 69,8 67 64,0 60,8 73,2 

CT-
DWT 89 83,7 79,5 76,4 73,7 71,2 68,7 65,6 62,4 58,8 72,9 

 
 

Table 6. Applying improved labelling to the other methods 
(SIFT, CT-DWT). 

 
Once more, precision versus recall curves (Fig.19) permit to 
illustrate the advantage of incorporating a pre-analysis stage on 
different types of indexing schemes. In all case, it boost the 
CBIR performances. 

 

Figure 19. Precision-Recall curves obtained using the 800 
samples. 

 
To better evaluate the effect of adding pre-analysis stage, one 
query image has been chosen  from the two categories that are 
the most difficult to retrieve i.e.: buildings and dense residential.  
Both contain man-made objects and share some similarities 
whether for shape or for structure.  
 

 
Figure 20. Examples of images retrieved using simple statistics 

without labelling (buildings:7/18, dense residential: 13/18). 

The retrieval results are presented in Fig. 21. One can observe  
that less confusions since labelling is employed whatever 
scheme is employed. Moreover, simple statistics, that are based 
on the concatenation of two global histogram yielding to a 
vector of 26 elements, give interesting performances. Indeed, 
using simple statistics, one gain not only, in terms of precision 
but also in terms of speed. 

 

Figure 21. Examples of images retrieved a) simple statistics 
with labelling: buildings:16/18, dense residential: 18/18. b) CT-

DWT without labelling: buildings:8/18, dense residential: 
12/18. c)   CT-DWT with labelling: buildings:16/18, dense 
residential: 12/18. d) SIFT without labelling:10/18, dense 
residential: 11/18. c)  SIFT with labelling: 17/18, dense 

residential: 17/18. 

4.CONLUSION 

Rapid growth of remote sensed information generates a new 
research challenges in processing, transferring, archiving, and 
retrieving of these huge amounts of data. Existing methods 
share some common issues; the main important is that they are 
not adapted to all types of categories. In this paper, we have 
proposed to modify CBIR scheme by adding a new stage that 
permits to label the image to be retrieved according to its 
inherent characteristics. We quantitatively analyzed the 
efficiency of the weighting of distance measure. From the tests, 
it appeared that this stage can greatly improve the retrieval 
process by boosting its performances even for basic features. 
Thus, associated to multi scale representation of colour features 
descriptors, this will permit to better take into account objects of 
different sizes and shapes present in HRS images. Future work 
includes extending the investigation to consider the 21 
categories and better combine efficient parameters in the pre-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B2-201-2016

 
208



 

analysis to obtain a robust labelling and thus further improve the 
retrieval performance as well as to bridge the semantic gap.  
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