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ABSTRACT

The importance of spatial accuracy of land use/cover change maps necessitates the use of high performance models. To reach this
goal, calibrating machine learning (ML) approaches to model land use/cover conversions have received increasing interest among
the scholars. This originates from the strength of these techniques as they powerfully account for the complex relationships
underlying urban dynamics. Compared to other ML techniques, random forest has rarely been used for modeling urban growth. This
paper, drawing on information from the multi-temporal Landsat satellite images of 1985, 2000 and 2015, calibrates a random forest
regression (RFR) model to quantify the variable importance and simulation of urban change spatial patterns. The results and
performance of RFR model were evaluated using two complementary tools, relative operating characteristics (ROC) and total
operating characteristics (TOC), by overlaying the map of observed change and the modeled suitability map for land use change
(error map). The suitability map produced by RFR model showed 82.48% area under curve for the ROC model which indicates a
very good performance and highlights its appropriateness for simulating urban growth.

1. INTRODUCTION

Around 2% or 3% of the Earth’s land surface is covered by
urban land (Poelmans and van Rompaey 2010). Thus,
information with respect to the intensity and future direction of
urban expansion is of great importance for urban planners,
policy makers and scholars. In this regard, using satellite images
to monitor, identify and analyze urban expansion is the initial
step.

A review of the previous studies shows that urban dynamics
operate in a non-linear and complex manner (Tayyebi et al.,
2014; Shafizadeh-Moghadam et al., 2015). A number of
statistical (e.g., logistic regression and auto-logistic regression)
and machine learning approaches (e.g., neural networks and
support vector machines) have been calibrated and developed
for modelling urban dynamics (Poelmans and van Rompaey

2010; Tayyebi and Pijanowski 2014; Shafizadeh-Moghadam et
al., 2015); however, random forest (RF) (Breiman, 2001) has
rarely been used in the field of land change modelling.

The RF is a non-parametric tree-based model and quite
desirable for dealing with high-dimensional datasets. The appeal
of RF is that it offers an understandable and intuitive structure
with a solid theory. Pal (2005) reported high performance of the
RF in land use classification and that it requires less
user‐defined parameters than support vector machines (SVMs).
Relaxation of normal distribution assumption, robustness to
over-fitting, less required training time and providing
information regarding variable importance are the main
characteristics of this method. Kamusoko and Gamba (2015)
compared the random forest-cellular automata (RF-CA) with
support vector machine cellular automata (SVM-CA) and
logistic regression cellular automata (LR-CA) models for
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modelling urban change. They found that RF-CA model
outperformed SVM-CA and LR-CA models. Compared to
statistical models (e.g., logistic regression), RF is not sensitive
to outliers and is superior to generalized additive mixed models
which fail to account for interaction among the explanatory. For
these reasons, RF is increasingly employed in spatial analysis,
remote sensing and modelling spatial data for purposes such as
land use classification, soil evaluation, uncertainty analysis and
landslide hazard mapping (e.g., Gislason et al., 2006; Loosvelt
et al., 2012; Heung et al., 2014).

To the best of our knowledge, with the exception of Kamusoko
and Gamba (2015) who used the RF-CA urban land change
model, no study has used RFR to simulate urban growth. Thus,
the main objective of this paper is to evaluate RFR model in
terms of urban change detection performance and spatial
accuracy in Rasht, capital of Gilan Province, Iran. The
simulated maps will be evaluated using the observed maps and
statistical tools.

2. MATRIAL AND METHODS

2.1 Study area

Rasht is the largest and most populous city in Iran's Caspian
Sea coast and the capital of Gilan Province. Located on 37°.53´

N and 49°.58´ E and with 920000 people (Fig. 1), the urban
region of Rasht receives thousands of tourists annually. The
total area of the region is approximately 180 km2. The city, in

Figure 1. Study area, Rasht, Iran

recent decades, has experienced increasing population growth
and urban expansion. Due to the urban expansion in recent
decades, many of the peripheral villages have been appended

into the urban regions of Rasht.

2.2 Data

In this study, Landsat data are the main source for information
extraction and monitoring urban change. Table 1 lists the
dataset and driving forces prepared for modeling urban growth
using RFR model. The Landsat images of 1985 (TM, May
1985), 2000 (ETM+, May 2000) and 2015 (ETM+, April 2015)
were processed for spatio-temporal mapping and were then
projected to UTM Zone 39 North with 30m spatial resolution.
The classification procedure was conducted using maximum
likelihood classification followed by a post-classification phase
for improving the accuracy of the classified maps.

The processing stage resulted in five classes including built-up
class, crop land, open land, water bodies and forest. The
classification accuracy, using the Kappa index, was 87%, 86%
and 88% for 1985, 2000 and 2015 respectively.

The urban change between the 1985 and 2000 was the target
variable and a set of 11 driving forces including distance from
main roads, distance from built-up areas, distance from coast,
distance from agricultural land, distance from open land, digital
elevation model (DEM), slope, aspect, northing and easting
were used as explanatory variables. The selection of driving
forces was based on previous experimental studies (e.g. Hu and
Lo 2007; Shafizadeh-Moghadam et al. 2015) and the local
characteristics of the region.

2.3 Method

A set of classification and regression trees (CART) are known
as Random forests so that each tree relies upon the values of an
independently sampled random vector with the same
distribution for all trees in the forest (Breiman 2001; Tayyebi
and Pijanoswski, 2014).  RF can be used for classification and
regression tasks while estimating variable importance through
these processes (Tayyebi et al., 2014). In RFR model, the output
is calculated by taking the average over k of the trees (Breiman
2001). From the total amount of predictors (p), as a rule of
thumb, the square root (m) of p is used to make decisions at
each tree node. Since there were 11 independent factors for
predicting the target variable, the m parameter was set at 4. The
number of trees to be fitted was set at 400. To assess the model
performance, out-of-bag (OOB) approach was used. The OOB
is an internal error estimate of an RF as it is being constructed,
from the data which are not in the bootstrap sampling process
(Mellor et al., 2013).

We used relative operating characteristics (ROC) and following
the recommendation of Pontius and Si (2014), employed total
operating characteristics (TOC), as well as error maps to assess
the goodness-of-fit of transition potential maps (Kamusoko and
Gamba 2015) and visualization of spatial accuracy of the RFR
model in urban growth simulation. Considering multiple
thresholds, ROC reveals how strong each threshold of the
generated index is in diagnosing either presence or absence of a
characteristic which results in a two by two contingency table
without informing the size of each entry (Pontius and Si 2014).
While preserving the important information revealed by ROC,
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Variables Range Mean Data type

Distance from agriculture areas
(m)

0-1,590 42 Continuous

Distance from sea (m) 0-47,306 20,524 Continuous

Distance from built-up areas (m) 0-9,703 1,688 Continuous

Distance from river (m) 0-23,365 5,041 Continuous

Distance from forest (m) 0-1,667 125 Continuous

Distance from roads (m) 0-9,710 2,585 Continuous

DEM (m) 44-683 24 Continuous

Slope (°) 0-51 5 Continuous

Aspect (°) 0-360 175 Continuous

Easting parameter (m) 364,929-403,689 383,062 Continuous

Northing parameter (m) 4,098,817-4,145,917 4,125,967 Continuous

Table 1. Spatial explanatory variables of urban change between 1985 and 2000.

Figure 2. Urban growth for the years between 1985 and 2000 and between 2000 and 2015.

the TOC gives size information of each entry (Pontius and Si
2014).

3. RESULTS AND DISCUSSION

Model construction followed two consequent steps. In order to
develop RF model, we used the urban growth between 1985 and
2000 for model calibration and the urban growth between 2000
and 2015 for model validation (Fig 2). The model obtained from
the calibration phase was then used to predict urban change
between 2000 and 2015. In the modelling process, built- up
areas and water bodies in 2000 were considered as exclusionary
zones and the rest were seen as the regions where urban
expansion could occur. We set the built-up gain between the
two consequent times as target variable (Target variable was
coded as either 0 or 1, pixels that were transformed to the built-
up class between 1985 and 2000 were coded as 1, and those
which were unchanged were considered as 0) and a set of 11
driving forces as explanatory variables (Table 1). By running
the model, as seen from Figure 3, after 100 trees, the model
starts converging and the error rate falls below 0.01 at 400 trees

point. Then, a probability map was obtained with values ranging
from 0 to 1 representing lowest to highest probability of urban
change occurrence. The processes of calibration and prediction
were conducted using MATLAB®.

Figure 3. Decrease in error as a function of the number of trees
for RFR model
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Figure 4. The observed maps of 2000 and 2015 overlaid by the simulated map of 2015.

By subtracting Landsat images of 2000 and 2015, it was
revealed that 68313 cells were transmitted to built-up class from
all other classes. Following the approach of Pijanowski et al.
(2002), 68313 cells which had the greatest change likelihood
values were selected from the output transition probability map
obtained from RFR and classified as new built-up areas. Figure
4 shows the observed changes between 2000 and 2015 along
with the predicted changes obtained by RFR model. The model
was able to correctly predict 44476 out of 68313 urban changes
and 1113353 out of 1156506 non-changed pixels. The area
under ROC curve was 82.48% which indicates good
performance of the model. Each threshold in ROC creates a
two-by-two contingency table, which has four numbers: True
Positive (TP; shows cells which are predicted as change and are
actually change cells in the observed map), False negative (FN;
shows cells which are predicted as change but are actually non-

change cells in the observed map) False positive (FP; shows
cells which are predicted as non-change but are actually change
cells in the observed map), True negative (TN; shows cells
which are predicted as non-change and are actually non-change
cells in the observed map) as shown in Fig. 4. Unlike ROC,
TOC shows the four numbers in contingency table for each
threshold. For example, the values for TP, TN, FP and FN were
44387, 968116, 23926 and 188390 for a threshold of 0.8 in the
TOC curve (Fig. 5), respectively. Also, the area under ROC
curve (82.48%) is equal to the ratio of the area of TOC curve
within the parallelogram to the whole area of parallelogram
(Fig. 5).

On the other hand, the most important variables for explaining
the spatial patterns of urban growth were distance from sea,
easting and northing, distance from water bodies, distance from
roads, distance from built-up areas and DEM in order.
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Figure 5. Total operating characteristic (TOC) for the performance of RFR in simulating urban change between 2000

and 2015

A

B

Figure 6. Variable importance plots based on A) mean decrease accuracy and B) mean decrease Gini for urban growth prediction
which had the highest proportion of variance explained.
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However, the slope, aspect, forest and croplands did not appear
to be significant predictors (Fig 6).

RFR is a powerful model similar to the other black box models
such as neural networks which are desirable where the
prediction is prioritized. In contrast to the logistic regression, a
drawback of RFR model is that it does not provide insights
regarding the positive or negative influence of each variable.
The variable importance is indeed an indicator of the predictive
ability of each variable in RF model.

4. CONCLUSIONS

Understanding the complexity and interaction among the drivers
of urban dynamics is key to accomplishing a highly accurate
urban growth prediction. The spatial accuracy of urban change
simulation map is of great importance to urban planners and
policy makers which highlights the importance of developing

more accurate models. In this paper, on the basis of the
extracted land use classes from the Landsat imageries, RFR
model was calibrated for modeling and understanding the
importance of urban growth factors. Then, using ROC and TOC
statistical tools and by overlaying the observed and simulated
maps, spatial accuracy of RFR model was calculated.

The RFR model proved to be a proper tool for urban growth
simulation. A measure of variable importance was also
computed through the modeling process of RFR which is
related to the predictive ability of the model and thus not
analogues to the statistical approaches such as logistic
regression which are well known for their ability to quantify
causality. On the other hand, by the relaxation of statistical
assumptions, ease of use and parameter tuning, RFR application
is highly recommended for the other geographical regions. It is
also suggested to calibrate the model for multiple land use/cover
change modeling. However, when using RFR, it should be
noted that it is a time-intensive method where running time goes
up enormously by increasing the number of trees.
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