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ABSTRACT:  
 
It is inevitable to bring about uncertainty during the process of data acquisition. The traditional method to evaluate the geometric 
positioning accuracy is usually by the statistical method and represented by the root mean square errors (RMSEs) of control points. It 
is individual and discontinuous, so it is difficult to describe the error spatial distribution. In this paper the error uncertainty of each 
control point is deduced, and the uncertainty spatial distribution model of each arbitrary point is established. The error model is 
proposed to evaluate the geometric accuracy of remote sensing image. Then several visualization methods are studied to represent the 
discrete and continuous data of geometric uncertainties. The experiments show that the proposed evaluation method of error 
distribution model compared with the traditional method of RMSEs can get the similar results but without requiring the user to 
collect control points as checkpoints, and error distribution information calculated by the model can be provided to users along with 
the geometric image data. Additionally, the visualization methods described in this paper can effectively and objectively represents 
the image geometric quality, and also can help users probe the reasons of bringing the image uncertainties in some extent.  
 
 

1. INTRODUCTION  

A variety of complex factors, influence the remote sensing 
image to be positional geometric distortion during the image 
captured including atmospheric refraction, terrain distortions, 
and variation in orbit, etc. In order to integration with other 
spatial data, the imagery is usually geometric corrected and 
registered to standard coordinate systems. All these distorting 
influences and processing stages introduce spatial uncertainty to 
the data.  
Positional accuracy of remote sensing image determines how 
closely the position of discrete objects shown on a geometric 
rectified image agrees with the true position on the ground. A 
standard method of assessing the positional accuracy is based on 
comparison of deviations between corresponding control points 
that can be accurately located on both the reference map and the 
geometrically corrected image. The deviations at these control 
points are used to compute statistics to evaluate the accuracy of 
the geometric corrected image, and in practice, the quantitative 
measure broadly used is the root mean square errors (RMSEs) 
of control points (Janssen & Van Der Wel, 1994, Buiten & Van 
Putten, 1997, Jiao, et al., 2008, Goncalves, et al., 2009, Vieira, 
et al., 2004, Long, et al., 2015). However, the RMSEs can only 
be used to evaluate the positional accuracy of the control points 
and not the accuracy of the overall image. Since the control 
points are individual and discontinuous, it is difficult to describe 
the error spatial distribution of the image.  On the other hand the 
accuracy of the ground control points (GCPs) used for image 
rectification has been ignored in the evaluation of the image 
positional accuracy (Bastin, et al., 2002). It also should be noted 
that when so called geo-coded satellite imagery, processed 
through geometric rectification, is delivered to the user, the 
uncertainties are propagated (Arnoff, 1985, Ge, et al., 2006), 
including positional uncertainties of GCPs, DEM data, and the 
positional model, etc. So it is important to explore the methods 
of representing the positioning uncertainty of remotely sensed 

imagery, and the information about data quality should be 
provided to users along with the data. 
Visualization has often been approved to be an intuitive and 
effective way for quality communication especially useful for 
geospatial data (Beard & Mackaness, 1993, Van Der Wel, et al., 
1994). In the last two decades, visualization prototypes have 
been proposed, which focus on presentation and exploration of 
uncertainty in a remotely sensed image classification (Van Der 
Wel, et al., 1997, Blenkinsop, et al., 2000, Bastin, et al., 2002, 
Lucieer & Kraak, 2004). Our study is focused on the visualizing 
geometric uncertainties in the process of image positioning. 
In this paper, the spatial distribution model of positioning 
uncertainty is deduced firstly. Then the effective visualization 
methods are discussed on representing the uncertainties of 
discrete and continuous data. Next the uncertainty model and 
visualization methods are implemented. Finally, conclusions 
and suggestions are given.  

2. UNCERTAINTY ESTIMATION  

2.1 Sources of positional uncertainty of remote sensing 
image 

Generally, the process of geometric rectification of remote 
sensing image can be described as follows. Firstly, the imaging 
process of the remote sensing image is modelled by a geometric 
model, e.g. rigorous sensor model, polynomial model, rational 
function model (RFM), and so on. Secondly, ground control 
points are used to calculate or optimize the parameters of the 
geometric model. Finally, the optimized geometric model is 
applied to rectify the remote sensing image with the help of 
DEM data. 
Accordingly, the positional uncertainty of rectified remote 
sensing image may come from various aspects, including 
positional uncertainty of ground control points (GCPs), 
positional uncertainty of DEM data, uncertainty of geometric 
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model, uncertainty introduced when estimating the parameters 
of geometric model, etc., and the uncertainty is propagated 
through the process of rectification. 
In this work, we focus on the positional uncertainty of GCPs 
and spatial distribution of GCPs, which may bring about 
uncertainty when the parameters of geometric model are 
estimated. Although the uncertainty is inevitable, the accuracy 
of DEM data can be controlled within an acceptable range by 
improving the quality of these data, thus it is not considered. On 
the other hand, the uncertainty of the geometric model plays an 
important role in the uncertainty of the rectified image. 
Nevertheless, the uncertainty of the geometric model is not 
included in this paper, and related discussion can be found in 
our previous work. 

2.2 Uncertainty range of GCP 

The parameters of the geometric model can be calculated by 
solving the constraint equations derived from the GCPs. 
However, the estimated parameters may not perfectly fit the 
GCPs owing to the uncertainty coming from the geometric 
model and GCPs, as well as random errors. Ideally, random 
errors are expected to obey Gaussian distribution and are also 
averaged to each GCP during the process of least squares. 
Consequently, the residuals of the GCPs when checked by the 
optimized geometric model can be used to evaluate the 
uncertainty of the GCPs since the uncertainty of geometric 
model is not discussed. 
Generally, the geometric model of a remote sensing image can 
be described as 
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where ( , )x y = line and sample coordinates in image space, 

 ( , , )X Y Z  = coordinates of ground point in object space, 

 xf , yf = transformation functions of the geometric 
model, 
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For a ground control point, i i i i i iP (x , y ,X ,Y , Z )= , whose 

image coordinates are ( , )i ix y  and ground coordinates are 

i i i(X ,Y , Z ) , its residuals subject to a geometric model, whose 
parameters are t , can be calculated by formula (2) 
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Then the Residual Sum of Squares (RSS) of n  GCPs can be 
calculated by formula (3) 
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For a confidence level, e.g. 95%, the uncertainty of a GCP can 
be calculated by 
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Then the uncertainty range of a GCP, i i i i i iP (x , y ,X ,Y , Z )= , 
in x direction will be  
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Similarly, the uncertainty range in y direction will be 
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2.3 The impact of GCPs on accuracy of geometric model 

2.3.1 The impact of GCPs on the error of geometric model 
According to the error propagation theory (Bevington, et al., 
2002), the error of an indirect measurement is related to the 
partial derivatives of the function with respect to the direct 
measurements as well as the errors of direct measurements. The 
partial derivatives can be calculated from the direct 
measurements, while the errors of the direct measurements are 
unknown. Consequently, we build a general error model, 
formula(7), for any point in the image with respect to the partial 
derivatives, and the errors of direct measurements are 
substituted by a number of coefficients. 
 

 
1 2 1 2

1 2 1 2

1 2 1 2
1 2 1 2

t t

t t

t t

t t

y y y yx x
n n

n n

y y y yx x
n n

n n

f f f ff f
x a a a b b b

t t t t t t

f f f ff f
y c c c d d d

t t t t t t

∂ ∂ ∂ ∂ ∂ ∂
∆ = + + + + + + +


 ∂ ∂ ∂ ∂∂ ∂∆ = + + + + + + +


 

 

  (7) 

 

where x

i

f
t
∂

 denotes 
(X,Y, Z, )x

i

f
t

∂ t
 for short, and 1 ~

tna a , 

1 ~
tnb b , 1 ~

tnc c  and 1 ~
tnd d  are 4 tn  coefficients of the 

error model for each image point. x∆  and y∆  are the errors 
(or residuals) of an image point in x direction and y direction. 
GCPs can be utilized to build constraint equations like 
formula(7), and then the coefficients can be obtained by fitting 
the partial derivatives to the observed errors (or residuals). 
However, these 4nt coefficients may be dependent and ordinary 
least squares solution, which requires as many as 4nt 

observations (2nt control points) and is unstable due to the 
collinearity between the coefficients, is not suitable. Instead, 
L1-norm regularized least squares (L1LS), which provides 
reliable result from much fewer observations (Long, et al., 
2015b), is used to estimate the coefficients. And the estimated 
coefficients are closely related to the error of the geometric 
model. 
2.3.2 The impact of GCPs on the uncertainty of geometric 
model 
Once the parameters of the geometric model are calculated by 
solving the constraint equations derived from the GCPs, one can 
also evaluate the uncertainty of the estimated parameters. 
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For a GCP, the observation equations can be linearized by 
computing the first order term of the Taylor expansion around 
the initial values, 
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where 0 (X,Y, Z, )xx f= t , 0 (X,Y, Z, )yy f= t . 

Then the coefficient matrix of the error equations derived from 
n  GCPs can be calculated by formula (9) 
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And covariance matrix of the parameters of the geometric 
model can be obtained by calculating the inverse of coefficient 
matrix of norm equations as formula (10) 
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where P  is the weight matrix. 
Then, for a confidence level, e.g. 95%, the uncertainty of the a 
parameter it  can be calculated by 

 ( ) 01.96t i iiU m Q= ⋅ ⋅   (11) 
where 0m  is the mean square error of weight unit, which can be 
calculated by 

 0 2 t

RSSm
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2.4 Spatial distribution of uncertainty 

2.4.1 Error of each point in the image 
Once the coefficients of the error model are estimated, 
formula(7) can be used to calculate the error of any point in the 
image. In this sense, for any ground point which is in the scope 
of the image, the image coordinates in the object space can be 
calculated according to the geometric model (formula(1)). 
Moreover, one can further estimate the possible error of the 
image coordinates by the error model (formula(7)). 
2.4.2 Uncertainty of each point in the image 
On the other hand, once the uncertainty of the parameters of the 
geometric model is obtained, the uncertainty of any ground 
point ( , , )X Y Z  can also be derived according to the 

propagation law of uncertainty. As the coordinates ( , )x y  of 
corresponding image point can be calculated by formula(1), the 
uncertainty of the image coordinates can be evaluated by 
formula (13) 
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However, if only the image coordinates are given, one can 
calculate the ground coordinates ( , , )X Y Z  according to 
formula (1) first, and then apply formula (13) to estimate the 
uncertainty of this point. In this case, the distribution of the 
uncertainty of the whole image can be obtained. 

3. VISUALIZATION METHODS  

3.1 Visual variables 

Usually there are 7 visual variables, which are position, shape, 
orientation, colour, texture, gradation and size, used for 
visualizing variety of spatial information. The colour variable 
has been further extended to hue, lightness and saturation for 
representing the uncertainty and time dimension information 
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(MacEachren, et al., 1994). Different kind of combination of 
these variables can create more representations.  
It is important to use proper visualization methods since this 
directly affects the quality of the spatial information to be 
visualized. Visualization is a very powerful tool, and sometimes 
more powerful than the statistical data itself. This means it can 
better reveal the truth, but it also could more significantly 
enlarge error. To avoid the errors brought by visualization, one 
should consider: first, display the full range of coordinates; 
second, showing comprehensive data; third, select the 
appropriate visualization variables. According to the 
characteristic of the positioning uncertainties of remote sensing 
data, the visualization methods are divided into visualization of 
discrete data and visualization of continuous data. 

3.2 Visualization of discrete data  

During the process of rectification, the discrete data include 
GCPs and check points (CPs), utilized for rectification and 
evaluation of the remote sensing image, always contains a 
certain uncertainty, and it is important to represent their quality 
properly. Many methods have been studied to visualize the 
sparse data, such as error bars, scatter plots, arrow vector, etc. 
(Lei, et al., 2013). The right method for representing the 
uncertainty of discrete points should be chosen based on the 
data attribute and visualization purpose. Histogram is a simple 
and straightforward method for comparing the data magnitude.  
Scatter plots are useful for representing spatial positional 
information, and with some symbols, e.g. label and size symbol, 
data magnitude can be directly plot on the graph. However, due 
to restricted by the spatial positional distribution of the data, 
symbols plot on the graph may appear overlap if they are too 
close to each other, and this leads to undesirable visual effects. 
Besides, spatial uncertainty data have direction. Although the 
above visualization methods are able to represent spatial 
position and magnitude, these methods cannot represent the 
directions. Arrow vector has significant advantages in 
representation of direction. It can represent vector of each 
individual data. However, since an arrow is a geometric shape, 
the same as other symbols, this method is also restricted by the 
spatial distribution. When the distribution of the control points 
is not even, and the spatial position is too close to each other, 
the map makes the observer confused, and cannot get desirable 
visual effects. 

3.3Visualization of continuous data 

In this study, the continuous data come from two aspects. One is 
obtaining the uncertainty of each pixel on the image from error 
model and uncertainty function (formula(7) and formula(13)), 
and the other is interpolation of control points. There are many 
interpolation methods, such as Kriging interpolation (Kriging), 
inverse distance interpolation (IDW), etc. And when the data is 
sparse, the result of Kriging is often better than other 
interpolation methods. 
Visualization of continuous data is usually in the form of 
surface, we often use visual variables, such as colour, brightness, 
transparency, texture, to express the uncertainty by means of 
contours or iso-surfaces. Before representation, the uncertainty 
data often need be encoded or fuzzy processed to achieve 
effective visualization purposes. Visual variable coding is one 
common method used in dealing with the uncertainty data.  The 
data are encoded by mapping them to the visual variables, such 
as colour, brightness, transparency, texture etc., and then 
represented by these variables. Fuzzy processing is the other 
common method utilized to process data. Simple fuzzy 
processing is just dividing the data into several categories, such 
as low uncertainty, medium uncertainty, high uncertainty etc. 

The complex fuzzy processing is building a fuzzy membership 
of each pixel, and then the continuous data are represented by 
proper visual variables. In addition, three-dimensional (3D) 
visualization can be utilized to represents the image quality, 
where x, y axes represent the image location coordinates and z 
axis represents the errors.  
Different data can be represented with different visualization 
method, and one need to choose the appropriate visual 
expression based on the attribute of the uncertainty data. Two or 
more methods combined together can achieve better 
visualization effect.    

4. EXPERIMENTS 

 4.1 Test data 

A scene of Landsat-5 TM L2 image (30 m) captured in July 
2009 was used to perform the experiments. The image is in 
Aksu district, Xinjiang province of China, and the elevation 
range is from 600 m to 4000 m, including some high mountains. 
Another scene of Landsat-5 TM L4 image (ortho product) in the 
same place captured in August 2007 was used as the reference 
image. As the two images were both acquired by Landsat-5 TM 
sensor in the same season of different years, 169 tie points from 
the two images were collected by the automatic matching 
module of PCI Geomatics 2013 software, and 30 evenly 
distributed tie points were chosen as ground control points 
(GCPs) while the other 139 points were used as checkpoints. 
The image and distribution of GCPs and checkpoints are shown 
in fig. 1. 

 
(a) 

 
(b) 

Figure 1. Test image and the distribution of GCPs (a) and 
checkpoints (b). 
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 4.2 Geometric rectification and uncertainty estimation 

4.2.1 Geometric rectification and accuracy report 

The rigorous sensor model (Kramer, 2002) of Landsat-5 L2 was 
used to perform rectification with the help of GCPs and DEM 
data (ASTER GDEM Version 2), and then the residual of GCPs 
and checkpoints can be calculated to evaluate the accuracy of 
the rectified image. As shown in Table 1, the root mean square 
errors (RMSEs) and the maximum residuals of GCPs and 
checkpoints are included. 

 

 
RMSE/pixel Max/pixel 

x y x y 
GCPs 0.564 0.146 -0.946 -0.48 

checkpoints 0.733 0.161 2.617 -0.65 

Table 1. Accuracy report of the geometric rectification. 

From Table 1, one can see that the residuals of checkpoints are 
greater than those of GCPs. This is reasonable as the GCPs were 
utilized to estimate the geometric model while the checkpoints 
were not. Accordingly, the residuals of checkpoints are the most 
frequently used approach to objectively evaluate the geometric 
accuracy of rectified image. However, the residuals of 
checkpoints only show the accuracy of a few points in the image, 
and collecting a large number of checkpoints will be time- and 
labour-consuming. 

4.2.2 Error and uncertainty evaluation 

As described in Section 2.3, the GCPs can be used to calculate 
the coefficients of the error model (7). By applying L1LS 
method, sparse coefficients can be obtained as, 

1a ~ 8a :  (-175.69, -25.834, 0, 0, 13.418, 0, 0, -1.3799) 

1b ~ 8b :  (22.555, 0, 0, 0, 0, 0, 0.30619, -0.0078451) 

1c ~ 8c :  (0, -5.6858, 0, 0, 3.5439, 0, 0, 1.2259) 

1d ~ 8d :  (4.8106, 0, 12.834, 0, 0, 0, -0.0019516, -0.22948) 
As the rigorous sensor model of Landsat-5 L2 includes 8 
parameters, the number of the coefficients of the error model is 
32. One can see that many of the coefficients (more than a half) 

are zeros, which indicates that some of the coefficients are not 
significant or correlated with other coefficients. Then the 
estimated coefficients can be used to calculate the possible error 
of any point.  
To evaluate the proposed error model, the possible errors of 
checkpoints are predicted, and by comparing the predicted 
errors with the actual residuals of the checkpoints, one can see 
how well the error model predicts the possible error of any point. 
Table 2 shows the root mean square errors and maximum errors 
of the predicted error of the 139 checkpoints. 
 

 
RMSE/pixel Max/pixel 

x y x y 
Error of prediction 0.409 0.162 1.519 0.565 

Table 2. The error of the prediction of the error model. 

 
From Table 2, one can see that the predicted errors of the 
checkpoints are very close to the actual residuals. Furthermore, 
according to Table 1 and Table 2, both the RMSEs and 
maximum errors of the predicted error are smaller than those of 
the geometric model.  
On the other hand, one can further calculate the uncertainty of 
any point, say at a confidence level of 95%, according to 
formula (11) and formula(13). Table 3 shows the residuals and 
uncertainties of 30 GCPs, while Table 4 shows the residuals, 
predicted errors and uncertainties of 139 checkpoints. 
 

ID Position Residual Uncertainty 
x y x y x y 

1 879 756 0.248 -0.145 1.105 0.286 
2 4117 5160 -0.632 -0.035 1.105 0.286 
3 439 583 0.433 0.118 1.105 0.286 
4 6267 4976 -0.246 0.287 1.105 0.286 

…… …… …… …… …… …… …… 
…… …… …… …… …… …… …… 
28 4586 2975 0.26 0.157 1.105 0.286 
29 5385 4070 0.68 -0.057 1.105 0.286 
30 2724 3459 0.463 0.069 1.105 0.286 
Table 3. The residuals and uncertainties of the GCPs (pixels). 

 

ID Position Residual Predicted error Uncertainty 
x y x y x y x y 

1 5849 4590 1.683 0.358 0.164 0.015 0.352 0.525 
2 2750 4662 -1.158 -0.65 -0.396 -0.085 0.281 0.27 
3 6011 3921 -0.637 0.106 -0.134 -0.034 0.353 0.502 
4 6149 4162 0.807 0.12 -0.041 -0.015 0.359 0.533 

… … … … … … … … … 
… … … … … … … … … 

137 1858 3101 0.196 -0.01 0.287 0.026 0.25 0.236 
138 5544 1833 0.83 0.062 0.424 0.1 0.331 0.36 
139 4956 2151 1.016 0.117 0.713 0.127 0.313 0.325 

Table 4. The residuals, predicted errors and uncertainties of the checkpoints (pixels).

 
As can be seen from the Table 3 and Table 4, representing data 
by form is not intuitive and not conducive to observation. 
Therefore, appropriate visualization of data is particularly 
important, and the following section will focus on the visual 
expression of the errors and uncertainties. 

4.3 Visualization of error and uncertainty 

4.3.1 Discrete representation 

If the value of the uncertainty is the main concern, then 
visualizing the uncertainty by histogram is enough, as shown in 
fig. 2 and fig. 3. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B2-305-2016

 
309



ID of point
0 5 10 15 20 25 30

Er
ro

r

-1.2

-1.0

-.8

-.6

-.4

-.2

0.0

.2

.4

.6

.8

1.0

Error of x 
Error of y 

 
Figure2. Errors of GCPs. 

 
Figure3. The true errors and the predicted errors of CPs. 

 
From fig. 3, we can see that the true error of CPs is larger than 
the predicted error in general. But visualization by histogram 
can only express the value of uncertainty. If the information of 
spatial distribution is needed, we can visualize the uncertainty 
by arrow vector, just as shown in fig. 4 and fig.5. 

 
Figure 4. Visualizing the uncertainty of GCPs by arrow vector 

(the rectangles represent the uncertainty of GCPs) 

  
Figure 5.  Visualizing the uncertainty of CPs by arrow vector 

(the rectangles represent the uncertainty of CPs) 

As can be seen from the Fig. 4 and 5, visualizing the uncertainty 
by arrow vector can not only express the direction, but also can 
express the value of uncertainty to some extent. 

 
4.3.2 Continuous representation by interpolation 

With the help of Kriging interpolation, we can also obtain the 
error of each point from the errors of checkpoints, and then 
visualize the error in surface or contours with the visual variable, 
as shown in fig. 6. Fig. 6(a) shows the possible errors predicted 
by the error model(7), and fig. 6(b) shows the actual errors (or 
residuals of checkpoints).  

 
(a) 

 
 (b)  

Figure 6. Visualizing the errors of CPs in remote image by iso-
surface. (a) shows the predicted errors and (b) shows the actual 

errors (residuals). 
 
As can be seen from the fig. 6, the predicted error is consistent 
with the true error in general. This means the error model is 
credible. 

 
4.3.3 Continuous representation by pixel-wise prediction 

Interpolation enables us to obtain continuous values from 
discrete points, thus helps to compare the predicted errors and 
the actual errors using the discrete observations (checkpoints). 
However, uncertainty will also be brought about during the 
process of interpolation. Actually, the error of each point in the 
image can be predicted by utilize the estimated error model, and 
fig. 7 shows the error distribution in the whole image and the 
corresponding DEM data. 
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(a) 

 
(b) 

 
(c) 

Figure 7. Error absolute values of the pixels in the whole image 
and the corresponding DEM data. (a) shows the error absolute 

values in x direction while (b) shows those in y direction, and (c) 
is the distribution of DEM value. 

 
In this experiment the positional errors are mainly from the 
errors of GCPs, DEM, and geometric model. The errors from 
GCP are small since both the distribution (fig.1) and RMSEs 
(table 1) of the GCPs are good enough, and the error from the 
geometric model is omitted, so the main displacement is from 
DEM or the attitude difference. This can be seen from fig. 7 
clearly. According to fig. 7, it can be observed that the 
distribution of error is quite related to the DEM data, but the 
relationship is not positive correlation or negative correlation. 
Actually, great errors are likely to be produced by both great 
and small elevation values, while the intermediate values of 
DEM may result in small geometric errors. Moreover, by 
comparing fig.7(a) and fig. 7(b) with fig. 6(b), one can see that 
the distribution of the predicted error is similar to the error map 
interpolated from the residuals of checkpoints.  
Additionally, uncertainty of each point in the image can also be 
calculated by the uncertainty model described as formula (11) 
and formula(13), and fig. 8 shows the uncertainties of the pixels 
in the whole image. 

 
(a) 

 
(b) 

Figure 8. Uncertainties of the pixels in the whole image. (a) 
shows the uncertainties in x direction, and (b) shows those in y 

direction. 
 

Different from the case of predicted errors, the distribution of 
predicted uncertainties is much smoother, and is not obviously 
related the DEM data. The uncertainties show the position 
quality where is much reliable and where is less. 
Finally, both the predicted errors and predicted uncertainties as 
shown in fig. 7 and fig. 8 can be generated as auxiliary products 
of geometric rectified products to evaluate the geometric quality 
of the processed images. 

5. CONCLUSIONS AND SUGGESTIONS  

The work in this study can be concluded as several points. 
Firstly, a generic error model is proposed to evaluate the 
possible positional error of any point on the image based on the 
error propagation theory of indirect measurement. Secondly, an 
uncertainty model is deduced according to the propagation 
theory of uncertainty. Thirdly, several visualization methods are 
studied to represent the discrete and continuous data of 
geometric uncertainties.  
The predicted errors calculated from the estimation model are 
consistent with and very close to the actual residuals of the 
checkpoints. This is clearly represented on the iso-surface. The 
visualization methods described in this paper can effectively and 
objectively represents the image geometric quality, and also can 
help to probe the reasons of bringing the image uncertainties in 
some extent. The proposed error model and uncertainty model 
can be used to evaluate the geometric quality of a rectified 
image. Both the predicted errors and predicted uncertainties 
could be generated as auxiliary products and delivered to users, 
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which are benefit for the users to comprehend the data quality. 
Part of our future work is to test with more images and to 
further study the other error estimation models.   
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