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ABSTRACT: 
 
Multiple sensors are used in a variety of geolocation systems.  Many use Time Difference of Arrival (TDOA) or Received Signal 
Strength (RSS) measurements to estimate the most likely location of a signal.  When an object does not emit an RF signal, Angle of 
Arrival (AOA) measurements using optical or infrared frequencies become more feasible than TDOA or RSS measurements.  AOA 
measurements can be created from any sensor platform with any sort of optical sensor, location and attitude knowledge to track 
passive objects.  Previous work has created a non-linear optimization (NLO) method for calculating the most likely estimate from 
AOA measurements.  Two new modifications to the NLO algorithm are created and shown to correct AOA measurement errors by 
estimating the inherent bias and time-drift in the Inertial Measurement Unit (IMU) of the AOA sensing platform.  One method 
corrects the sensor bias in post processing while treating the NLO method as a module.  The other method directly corrects the 
sensor bias within the NLO algorithm by incorporating the bias parameters as a state vector in the estimation process.  These two 
methods are analyzed using various Monte-Carlo simulations to check the general performance of the two modifications in 
comparison to the original NLO algorithm. 
 

1. INTRODUCTION 

1.1 AOA Localization 

Many localization methods incorporate the use of multiple 
transmitters or receivers.  RSS and TDOA methods use multiple 
measurements from different sensing or transmitting 
configurations to calculate the location of an object.  While 
these methods have been proven to be an effective method of 
localization, they require the object to be emitting some sort of 
RF signal.  AOA measurements in the optical and infrared 
bands are not difficult to accomplish with a focal plane array 
(camera), and provide an alternative method when RSS and 
TDOA may not be applicable.  Utilizing camera position and 
attitude parameters, together with camera calibration 
information, a Line of Sight (LOS) measurement can be created.  
Computer vision techniques have been developed to create 
localization estimates through a method called triangulation.  
Triangulation calculates the most likely target location by 
minimizing the distance between multiple LOS vectors (Hartley 
2000).  While triangulation works well, it calculates the most 
likely position from the smallest Euclidean distance error from 
the LOS vectors and not the smallest amount of AOA 
measurement error.  This leaves the algorithm prone to 
increased error when the sensor configuration is bad or if one 
sensor has more error than another.  Most triangulation 
algorithms also do not consider the effect of non-time 
coincidental measurements on a fast moving object. 
 
1.2 The NLO Algorithm 

The NLO algorithm developed in previous work (Hartzell 2015) 
for AOA measurements incorporates non time coincidental 
measurements, varying sensor error to optimize a position 
solution according to the smallest amount of error in the AOA 
measurements.  The AOA NLO algorithm has also been 

developed to find the most likely kinematic model from AOA 
measurements.  The NLO could be used to find one specific 
estimate or a set of estimates of a moving object according to a 
specific kinematic model.  The highest order kinematic model 
estimated by the NLO assumes a constant acceleration between 
position estimates.  The NLO algorithms incorporated the 
Covariance Intersection (CI) in order to account for self 
correlated sensor error.  The CI allowed the NLO to estimate 
improved confidence ellipses as well as more accurate location 
estimations (Sprang 2015). 
 
Of the different AOA NLO algorithms that have been 
developed, the Kinematic Model Acceleration Velocity NLO 
with CI (KMAVNLOCI) created the most accurate position 
estimates.  The different algorithms were tested on simulated 
space based sensors, which tracked simulated objects in Low 
Earth Orbit (LEO) or orbiting objects with some randomly 
applied external force (Sprang 2015).  The NLO algorithm did 
not account for any sort of initial bias or time drift in each of the 
AOA sensors.  For many LOS sensor platforms, the largest 
source of error is induced by a drifting error in the IMU.  IMU 
error directly transforms into AOA error.  If the sensing period 
of the object is short enough, the IMU error could be estimated 
as a linear function with an unknown initial bias and nearly-
linear time drift as well as a zero mean random walk.  It is 
possible to estimate and correct for this type of sensor error in 
localization algorithms (Woodman 2007, Wu 1998). 
 

2. BACKGROUND 

2.1 Sensor Error 

IMU error has been well modelled.  Depending on the quality of 
the gyroscope, an IMU can accurately track attitude for a long 
period of time.  Unfortunately, IMUs tend to contain a tiny 
measurement bias when measuring rotational movement.  Even 
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though the bias is small, the IMU integrates rotational 
movement to create an attitude estimate.  The integration of the 
measurement bias creates a time drift affected by the magnitude 
of the measurement bias and the sampling rate of the IMU.  The 
measurement bias is affected by a non-linear relationship with 
environment temperature which is difficult to model and 
correct.  The temperature change is caused by the outside 
environment or by its own electronic heating.  Many systems, 
especially space based systems where pointing accuracy is 
paramount, utilize some self correction methods such as star 
calibration.  These systems are not perfect and may not be 
utilized often enough to fully mitigate the time drift of the IMU.  
Given a short enough period of time, this sensor error can be 
modelled with a flat initial bias, a time-linear drift and added 
noise as the result of a zero-mean random walk (Woodman 
2007, Wu 1998). 
 
2.2 Localization Algorithms 

Localization systems tend to use similar elements.  Any 
localization method uses multiple measurements from multiple 
location references to estimate one unknown location.  The 
previously developed AOA NLO uses a very similar 
mathematical method to the Global Positioning System (GPS) 
localization algorithm.  GPS as well as the KMAVNLOCI uses 
a Gauss-Newton approach by creating an initial state guess and 
then incrementally changing the state estimate until the 
algorithm converges on a solution.  The position-measurement 
derivative takes the form of a Jacobian due to the multiple 
measurements and state elements.  Like GPS, the localization 
algorithm is implemented in the Cartesian Earth Centred Earth 
Fixed (ECEF) coordinate system (Kaplan 2005). 
 
The AOA NLO algorithm begins with an initial object state 
estimate X and changes the state estimate with a XΔ value 
calculated by  
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where J is the Jacobian matrix, 1−
ΩΣ  is the pre-calculated sensor 

variance matrix, w is a sensor weighting matrix and ΔΩ  is the 
change in measurement matrix.  J is populated with the 
analytically derived partial derivatives of each state element 
with each corresponding AOA measurement.  ΔΩ  is 
calculated by taking the difference of the observed AOA 
azimuth (θ ) and elevation (φ ) measurements and the AOA 
measurements that should be seen given the estimated state 
(Sprang 2015). 
 
The GPS localization algorithm is not just a good example of 
calculating the optimum localization estimate but it also corrects 
for a measurement bias.  TDOA estimates like those used by 
GPS are highly sensitive to any sort of receiver clock bias.  
Assuming that the receiver clock bias is the same for each of the 
different TDOA measurements, the receiver clock error can be 
included as a state element in the state estimation.  This is done 
by adding a column of ones in the Jacobian because the change 
in clock error and TDOA measurement is a one-to-one 
relationship.  This same technique can be applied to estimate the 

sensor bias and time drift for the AOA NLO application  
(Kaplan 2005). 
 
2.3 Confidence Metrics 

Confidence ellipses of the NLO algorithm estimates can be 
created for each position estimate.  Previous work has shown 
that the Covariance Intersection can be used to estimate a 
confidence ellipse that the object position is likely to be within 
up to a desired probability.  Using this method the 
KMAVNLOCI was shown to be slightly under-confident by 
using the Normalized Estimation Error Squared (NEES) metric.  

The NEES is calculated using the CI matrix 1
X
−Σ , created by 

the weighted sensor covariance matrix and calculated Jacobian 

matrix, as well as the estimate error ( )X X−  as shown in 
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where X  is the truth. 
 
Given that the estimation error is distributed normally, and the 
covariance describes a normal distribution, the NEES will 
ideally be distributed as a chi-squared distribution with three 
degrees of freedom as a result of the three ECEF coordinates 
being estimated.  The NEES metric is a good metric when both 
the true error and the expected error are normal; however, from 
trial to trial, averaging the NEES to confirm the degrees of 
freedom is extremely sensitive to large outlying values.  This 
causes the NEES to regularly favor under-confident estimates 
rather than over-confident estimates.  Because of these 
characteristics it is necessary to interpret the resulting NEES 
values by the distribution it produces and not just the average 
NEES as normally done for a chi-squared distribution (Vesselin 
2001). 
 
AOA localization estimation error is not only affected by the 
error in the sensors themselves but the actual geometric sensor 
configuration.  If the sensors’ LOS vectors create an angle close 
to zero or 180 degrees, the position estimation is not as accurate 
as estimates when the LOS vector intersection is orthogonal 
(Yang 2005).  Both the sensor variance and configuration are 
accounted for when using the CI matrix as an estimator. 
 

3. METHODOLOGY 

3.1 Bias Drift Modular NLO (BDMod) Method  

The sensor bias correcting method begins by taking the ΔΩ  
from the last iteration of the KMAVNLOCI algorithm and 
estimating the most likely bias and drift values for each /θ φ  
measurement per sensor used.  Given these values, the system 
for the bias and drift vector can be written as a linear system 
and solved as seen in 
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where H is a matrix populated with 1’s and t’s determined by 
the sensor being used at that measurement row and the time of 

measurement.  As seen in (3) 2
1θ  is the first theta measurement 

from sensor two and 2
1̂θ is the expected measurement given the 

state estimate. 
 
Once the sensor bias vector is estimated, the values are applied 
to the observed AOA measurements.  The KMAVNLOCI 
algorithm is then applied to the corrected measurements.  This 
process is repeated until there is no significant bias-drift 
detected in the ΔΩ  vector.   
 
This method is simple to implement; however, it is highly 
dependent on the initial accuracy of the KMAVNLOCI.  If the 
first state estimate is accurate, the ΔΩ  vector will accurately 
reflect the inherent bias values in the sensors.  If the state is not 
accurate enough the BDMod will likely calculate inaccurate or 
insignificant bias correction terms for the system.  This method 
create a positive feedback loop for the original algorithm at the 
risk of estimating inaccurate bias drift values which could create 
a worse state estimate.  Ideally, this method corrects each flat 
initial sensor bias, B, and each linear time drift D leaving just 
the zero mean random walk error in the system.   
 

3.2 Bias Drift NLO (BDNLO) 

The second method to correct the NLO sensor bias directly 
changes the Jacobian.  In this method there is a sensor bias term 
concatenated at the end of the state estimate X.  The H matrix 
used in the modular method is concatenated on the right side of 
the Jacobian to act as the column of 1s in the GPS NLO 
method.  If (1) is written out in full matrices the alteration can 
be seen in 
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This modification increases the number of columns of the NLO 
Jacobian by 4*Number of Sensors.  With the bias and drift 
correction in the algorithm itself, the performance will not be as 
dependent on the initial KMAVNLOCI accuracy. 
 
3.3 Kinematic confidence 

In previous research only the 3x3 block of the CI matrix 
corresponding to position variance was incorporated in the 
confidence estimate (Sprang 2015).  The success of the 
confidence estimates did not incorporate the possible variance 
in the velocity or acceleration.  A new confidence estimate will 
be created to include each element of the kinematic model.  The 
new confidence estimate is created by including each kinematic 
element covariance matrix and the length of time the estimation 
window spanned.  Once the positional error is re-written to 

include these higher order elements the new 1
X
−Σ  covariance 

matrix can be calculated as seen in 
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This new method is expected to diminish a significant right tail 
in the resulting NEES distribution when the confidence method 
was used and the higher order kinematic elements were much 
higher.    
 
3.4 Simulation 

Each sensor was given three different error parameters; the 
initial bias B, the linear drift D and the drift instability DI.  The 
creation of each simulated error function E(ii) can be seen in  
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where the first error value is B.  Each error is then based off of 
the previous error and incremented by the two drift factors D 
and DI where td  is the time difference in between 
measurements.  The error is simulated this way to mimic the 
integrated nature of IMU error.   
 
The three error values were uniformly randomly generated for 
each sensor in each trial.  Each trial contained a bias, drift and 
drift instability factor representing the maximum value for each 
element.  In most of the tests, the bias could be a maximum of 
500 micro radians, a drift maximum of 0.1 micro radians per 

second and drift instability of 0.1 micro radians per second 1/2  
which were similar magnitudes to the numbers used in a 
previous space based IMU simulation (Wu 1998).  These 
numbers highly depend on the quality of IMU which is highly 
related to the application (Woodman 2007). 
 
A general Monte-Carlo test is conducted in order to characterize 
the over-all performance of the two bias-drift correcting 
algorithms and their baseline algorithm the KMAVNLOCI.  In 
the general test, the number of sensors used was uniformly 
random from two to eight and the number of measurements per 
sensor was uniformly random from 200 to 800.  Each sensor 
was placed in a random orbit where there would be a direct line 
of sight with the simulated object over the entire sensing period.  
The object was simulated as either a simple or complicated 
path.  Simple paths consisted of a random object in LEO while 
the complicated paths consisted of an additional random force 
vector causing the object acceleration to change unpredictably.   
 
Once certain patterns are established from the general Monte-
Carlo trials as described, another set of tests are completed to 
more specifically characterize relationships between 
performance and certain random variables.  In these tests a set 
of simulations are created and all random values except one 
would be held constant.  The variable is then incremented 
across a reasonable range.  This test is also implemented where 
two variables are incremented across a two dimensional grid.  
These tests describe limits of algorithm performance across 
important random variables. 
 
 

4. RESULTS AND ANALYSIS 

4.1 Accuracy Improvement 

From the general tests, the BDNLO was determined to be the 
most accurate but most likely to diverge while the BDMod 
method showed marginal but regular and stable improvement to 
the KMAVNLOCI.  Convergence is never guaranteed because 
of the non-linear nature of the algorithm.  If a system is unstable 
enough or the initial guess is too erroneous, the algorithm will 
not converge to a solution. 
 
The BDMod algorithm contained an extremely low risk factor 
for complicated paths as opposed to a much higher risk seen 
from the BDNLO.  For simple paths, the BDMod converged in 
98.6% of the trials and improved the performance of the 
KMAVNLOCI for 95% of the trials at an average 20.8% 
increase in accuracy.  For complicated paths, the BDMod 
converged in 98.2% of the trials and improved the performance 
for 86.3% of the trials at an average 10.9% improvement rate.  
As predicted, the highest improvements accomplished by the 

BDMod algorithm occurred when the KMAVNLOCI contained 
very low amount of state estimate error.  The improvement rate 
was still relatively marginal. 
 
The BDNLO algorithm did not perform as regularly as the 
BDMod but produced greater accuracy improvement.  For 
simple paths, the BDNLO converged in 97.5% of the trials and 
improved the performance of the KMAVNLOCI for 93.7% of 
the trials at an average 68.3% increase in accuracy.  For 
complicated paths, the BDNLO converged in 92.3% of the trials 
and improved the performance for 69.7% of the trials at an 
average 22.9% improvement rate.  The BDNLO’s performance 
was not linked to the initial performance of the KMAVNLOCI 
but was very unstable as the path became more complicated and 
further away from the constant acceleration kinematic model 
used in the NLO algorithm.  As soon as the object path type 
strayed from the model, applying the BDNLO became much 
more risky than the BDMod.  Even in the riskier complicated 
tests, on average the BDNLO performed much better than the 
BDMod. 
 
4.2 Confidence Analysis  

In the general tests, the position only covariance NEES values 
produced distributions drastically different than the expected 
chi-squared distribution.  The distribution produced by the 
kinematic confidence estimates were much closer to a chi-
squared distribution but still did not regularly follow the ideal 
distribution expected.  When the algorithms were tested with 
simple paths, the NEES distribution would regularly spike in 
between NEES values between zero and four far above the ideal 
distribution and quickly drop to zero with a small right tail.  The 
NEES distribution can be seen in Figure 1.  This result showed 
a regular under confidence for all three algorithms tested, 
particularly the BDNLO which was consistently under 
confident for simple path estimations.  Although the 
KMAVNLOCI and the BDMod appeared to create a regularly 
under confident distribution, NEES values under one were 
rarely produced reflecting the effect of the uncorrected sensor 
bias. 
 
The NEES values were drastically different for the complicated 
path trials.  The initial spike still existed but was closer to the 
ideal distribution.  The NEES distribution contained a long right 
tail showing an increased amount of over confident trials, 
particularly when only the position covariance was used to 
create the confidence estimate.  The right tail diminished 
drastically once the kinematic covariance was implemented.  
The resulting NEES distributions for each algorithm can be seen 
in Figure 2 juxtaposed over the ideal chi-squared distribution 
with three degrees of freedom.   The KMAVNLOCI and the 
BDMod distributions still appear to be shifted right from the 
uncorrected bias but contain less significant right tails closer or 
under the ideal distribution.  The BDNLO appeared to have 
corrected the simulated sensor bias but has a larger probability 
of creating over confident estimates.   
 
Even in the confidence estimates, the BDNLO performs the best 
but least stable.  The NEES analysis has also revealed that the 
NLO algorithm creates certain non-normal elements in the error 
distributions.  Some of the non-normal elements were 
eliminated by including the higher order elements in the 
confidence estimate but some elements still remain.  These 
elements could be induced by the binary nature of the NLO 
algorithm converging on multiple object tracking estimates.  If 
the NLO converges well in one trial, all of the estimates from 
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that trial will be under confident; otherwise each estimate 
becomes significantly more over confident.   
 
The Kullback-Leibler Divergence (KLD) is another effective 
way of determining how well the current model accurately 
represents the statistical characteristics of a system.  The KLD 
measures the amount of information lost by using one model to 
describe a process.  In this case, the statistical model would be 
the multi-variate Gaussian metric used to calculate positional 
confidence and the process is the actual error function created 
when using the NLO algorithms described in this paper.  Below 
in Table 1 is the KLD metrics for the different algorithms for 
the NEES values created by only using the position covariance 
matrix and NEES values created by using all kinematic 
elements in the covariance matrix as described in (5).  Using the 
full Kinematic covariance improves the performance of the 
model in every case except the BDNLO algorithm on the simple 
path.  This occurs because the BDNLO is already creating under 
confident estimates and then creating even larger confidence 
regions to account for acceleration and velocity covariance.  
The model will continue to be very under confident especially 
for the bias-drift methods until the confidence of the sensor 
bias-drift estimation functions is accounted for in the final 
sensor covariance used in the position confidence estimation.  
On the other hand, as soon as acceleration and velocity becomes 
more irregular and harder to track such as in the complex path 
tests, the kinematic estimation model performs much better than 
the position estimation model (Kullback, 1951, Hershey 2007). 
 

KLD Simple Path 
 Position Kinematic 
KMAVNLOCI 3.02 1.84 
BDNLO 3.98 8.40 
BDMod 3.16 2.85 
KLD Complex Path 
 Position Kinematic 
KMAVNLOCI 3.77 3.19 
BDNLO 20.70 0.97 
BDMod 2.62 0.59 
Table 1. Kulback Leibler Divergence Values  

4.3 Algorithm Limits 

One of the controlled tests revealed one of the significant limits 
of the BDNLO compared to the KMAVNLOCI and the BDMod 
algorithms.  At low numbers of sensors and measurements per 
sensor, the BDNLO is extremely likely to produce inaccurate 
measurements and diverge.  This is likely caused by the lack of 
measurements and sensor reference points in order to converge 
on a steady sensor bias-drift state.  The mean error of each of 
the algorithms from that particular test on a set of complicated 
paths can be seen in Figures 3-5.  If there are only two sensors, 
the BDNLO is expected to diverge.  For a complicated path, this 
effect exists in the other algorithms but is not guaranteed.  
When this test was repeated on simple paths, the KMAVNLOCI 
and BDMod regularly converged at two sensors at a slightly 
less accurate estimate but the BDNLO continued to diverge.  
The BDNLO appeared to be more easily affected when 
measurements per sensor are lower as well.  As seen in Figures 
3-5.  Once an adequate amount of measurements are made on 
enough platforms, the BDNLO appears to perform regularly. 
 
Another test for the three algorithms revealed the effect of 
increasing and decreasing the different error simulation 
elements on the three different algorithms.  As seen in Figure 6, 
once the initial sensor biases are as high as 100 micro radians, 
the KMAVNLOCI and BDMod algorithms begin to steadily 

decrease in accuracy.  The BDNLO has a high variation in 
performance at any instant but appears to perform relatively the 
same until maximum initial biases of 40 milli-radians.  At this 
moment, the initial guess becomes so inaccurate that the 
BDNLO cannot converge.  Similar results were found in the 
drift test shown in Figure 7 where the KMAVNLOCI and 
BDMod performance began decreasing at a maximum 1 micro 
radian per second and the BDNLO maintained constant 
performance until the maximum drift factor reached 0.2 milli-
radians per second.   
 
The last control test presented in Figure 8 shows the affect of 
increasing the drift instability has on the different algorithms.  
In this test the BDMod and the KMAVNLOCI performed more 
resistant than the BDNLO which began seeing increasingly 

degraded performance around 0.1 micro radians per second 1/2 .   
There is a point where the zero mean element of the IMU 
random walk can prevent the BDNLO from converging.  
Regardless of the spectrum of bias instability tested, the 
BDMod algorithm continued to improve the KMAVNLOCI on 
a regular basis.   
 
It is important to keep all of these parameters in mind when 
choosing an algorithm with a particular system.  If IMUs in a 
system are accurate enough, including the bias drift elements in 
the NLO algorithm only creates more performance variance.  
The BDMod method, though not as significant of a modifier, 
contains very little risk for such systems containing higher end 
IMUs.   
 

5. CONCLUSION 

5.1 Algorithm Improvement 

The two modifications to the KMAVNLOCI have very different 
performance affects.  The BDMod marginally improves 
accuracy but contains extremely little risk of significantly 
hurting performance while the BDNLO significantly improves 
accuracy of the KMAVNLOCI at a more significant risk of 
hurting performance.  The BDNLO does appear to perform 
much more regularly as path types become much more 
simplistic or more information is included from more sensors.  
The BDNLO works in a much more specific window than the 
other two algorithms.   
 
These algorithms are practical for any type of remote sensing 
platforms where LOS measurements are collected.  Now that 
unknown multi-sensor bias and drift can be corrected, LOS 
localization applications can be used on a larger variety of 
sensing systems where the IMU drift has previously been too 
significant to accurately track an object.  Pointing accuracy is 
the largest component impeding AOA localization applications 
and now it can be done with much cheaper IMUs. 
 
5.2  Future Work 
 
Further testing not included has shown that when certain 
sensors contain much higher sampling frequencies than other 
sensors divergence in the NLO algorithms is much higher.  
When 85% of an estimation window’s measurement is from 
only one sensor divergence becomes unavoidable.  The 
dominant perspective of a single sensor weights the solution 
heavily towards that sensors own error causing the problem.  If 
a more robust windowing method was developed, many 
problems inherent in combining older sensors and newer 
sensors containing significantly more measurements would be 
mitigated. 
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The development of these NLO algorithms has been in a 
MATLAB environment and the algorithms are still too slow to 
be implemented in a real-time environment.  The most 
computationally intense operations include creating large 
matrices in set up and more significantly calculating the change 
in state during each NLO iterative step.  Each change in state 
calculation inverts and multiplies matrices which grow quickly 
as more and more measurements are included in the trial.  The 
algorithm has plenty of room to be speed up by implementing 
the method in a fast lower level language and optimizing the 
matrix operations either in code or on a GPU array.  
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Figure 1. NEES distribution for Simple path 

 
Figure 2. NEES distribution for a complicated path 
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Figure 3. KMAVNLO Mean Error 

 
Figure 4. BDMod Mean Error 

 
Figure 5. BDNLO Mean Error 

 
Figure 6. Bias Test 

 
Figure 7. Drift Test 

 
Figure 8. Bias Instability Test 
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