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ABSTRACT: 

 

Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel 

but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy 

classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly 

quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey 

with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy 

maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with “dominance 

profiles” visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of 

all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map 

both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class 

certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation 

procedures, support active learning-based iterative classification and can be applied for operational use. 
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1. INTRODUCTION 

1.1 The problem of fuzzy classification 

The prevailing approach in remote sensing is that each output 

map pixel belongs to one and only one class, but the 

shortcomings of such classification have been identified early 

on (Foody, 1992; Mairota et al., 2015). Crisp classification 

includes a strong reduction of the information in the sensor data 

by binarizing gradients and omitting information on alternatives 

to the selected class. This often compromises the applicability 

of remote sensing derived vegetation maps (Townsend, 2000), 

but alternative approaches remain rare. Fuzzy mapping (also 

known as soft classification) assigns a probability of 

membership for each class to each pixel. It includes information 

on the sub-dominant classes, can handle smooth transitions and 

uncertain identification, and is therefore particularly well suited 

for vegetation mapping. Ensemble classifiers such as random 

forests or neural networks are becoming increasingly popular, 

but although these inherently output fuzzy data, they are mostly 

still used for creating hard-boundary maps.  

Some reasons for this may be that many users ask for clear and 

unambiguous results even if this is not justified by the objects 

they are mapping. Quantitatively conveying the information in a 

fuzzy map is considered difficult towards non-specialists. Also, 

compatibility with standard data formats and especially 

vectorization remains problematic since several alternative 

approaches exist. But most important of all, fuzzy maps are 

regularly criticized because their accuracy is not straightforward 

to quantify. Many possible metrics of fuzzy classification 

accuracy exist, but most are difficult to compare with crisp 

classification maps and no standards have been accepted. 

Therefore, most fuzzy maps are converted to hard maps for the 

purpose of accuracy evaluation, but this approach loses the 

patterns contained in the class membership probabilities. 

 

1.2 State of the art 

The confusion matrix (Congalton, 1991) is the most widespread 

method for accuracy evaluation of hard classifications, since it 

gives a clear overview of the classwise accuracies and the 

individual frequencies of misinterpretations between classes. 

Modifications of the confusion matrix for compatibility with 

fuzzy classification have been proposed (Binaghi et al., 1999) 

but studies of fuzzy classification still continue to be published 

with non-fuzzy evalution (Du et al., 2012). Various indices for 

representing classification certainty from the class membership 

vector in each pixel have been proposed (Maselli et al., 1994; 

Prasad and Arora, 2014), which now allow spatially explicit 

representation of certainty or graphic visualization independent 

from position in space. However, these indices are not 

straightforward to interpret or link to the confusion matirx, and 

may require more detailed ground truthing (Townsend, 2000).  

Hard boundary maps are usually visualized by assigning a 

colour to each class and rendering each pixel to the appropriate 

colour. Accuracy or certainty of classification is evaluated based 

on similarity to independent validation ground truths, and the 

assumption is made that the accuracy figures calculated from 

these samples are a representation of the overall accuracy of the 

classification for the whole map. Hard boundary classifiers do 

not allow direct calculation of classification quality outside 

areas where ground truths are present. Meanwhile, the need for 

spatially explicit evaluation across the whole surface of a map 

and not only within samples of ground truth has been identified 
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(Foody, 2002). Various alternatives for visualization of fuzzy 

vegetation maps have been used, the most popular being the 

calculation of class membership rasters for each category 

separately. These maps are informative if the user is interested 

in a single class, but are difficult to use if several classes are to 

be interpreted simultaneously, as this requires creating and 

visualizing a multi-band raster with a layer for each class. 

Blending the colours of the individual classes according to their 

probability has been suggested  (Foody, 1996) but not applied 

in practice.  

 

1.3 Objectives 

Our objective was to propose an integrated solution for simple 

and straightforward accuracy evaluation metrics and 

visualization methods that unfold the information content of the 

fuzzy image. We also aimed to develop alternatives for 

visualization of fuzzy classification maps together with their 

accuracy that can be understood without high-level knowledge 

of image processing. Backwards-compatibility with indices and 

visualization used for hard-boundary maps and applicability in 

common GIS environments were also required.  

2. METHODS 

2.1 Test site and example data 

The methodology was developed on airborne LIDAR-based 

classification of protected grassland areas in the framework of a 

vegetation monitoring project. The example we present here is a 

classification of various grassland categories from a study site in 

Püspökladány, Hungary. Details about the sensor and field data 

collection, categories and processing are published in Zlinszky 

et al., (2015a). The example dataset we show here contains 6 

classes and covers 88 088 000 pixels of 0.5×0.5 m resolution. 

Classes were selected to include all major land cover types 

together with the three most important grassland habitats that 

are the focus of the classification: alkali short grasslands, alkali 

open swards and tall grass alkali meadows (Deák et al., 2014). 

 

2.2 Random forest classification of multi-band images 

In this example, random forest machine learning was used for 

classification. Random Forest (Breiman, 2001) is a tree-based 

ensemble classifier: individual bootstrap subsamples of the 

training data are taken, and a number of decision trees are 

trained on these (100 in our case). All trees make independent 

predictions for the class membership of each pixel. Therefore, 

for each pixel of the predicted map, we obtain a vector with the 

respective predictions from each tree. The proportion of trees 

within the ensemble predicting a certain class for the pixel is 

interpreted as the probability of the pixel belonging to that 

class. The final class assigned to the pixel is decided by 

majority voting of the individual trees (ordering the vector), i.e. 

the class with the highest value in the membership probability 

vector. The information provided by the random forest 

procedure is therefore immediately suited for further processing 

in a fuzzy sense, but is also compatible through majority voting 

with classical crisp vegetation mapping where each pixel 

belongs to only one class.  

The metrics we developed can be applied to any ensemble 

classifier as long as a number of classifiers is created using the 

same training data and the individual models (also known as 

base or weak classifiers) are diverse enough to learn patterns in 

data that might have been missed by some other base classifier 

in the ensemble. If the individual classifiers’ errors are 

sufficiently uncorrelated, they compensate their individual 

errors, thus improving predictive power of the whole ensemble. 

Even if the individual classifiers output only a hard prediction, 

when the prediction from many such classifiers is merged, it can 

be evaluated as fuzzy in nature. 

 

2.3 Visualization of fuzzy vegetation maps 

Instead of a single product, we created a set of output tables, 

maps, and graphs that can be evaluated individually or together 

(Tab. 1, Figs 1, 2, and 3). Colouring the raster was extended to 

the fuzzy case by rendering each pixel mixing the respective 

colours of the classes that locally had non-zero probabilities, 

weighing the colours according to the probability of the 

corresponding class. The most simple colour blending method 

is based on the Red, Green and Blue (RGB) values of the 

image. Alternatively, we used hue-preserving rendering 

(Chuang et al., 2009) which avoids introducing new, synthetic 

hues, not existing in the original color scheme. Instead, when 

interpolating between distinct hues, the saturation of the first 

color is continually minimized until the color reaches gray 

tones, then the transition progresses towards the new hue of the 

other color of the mixture, increasing saturation until the 

destination color is reached. However, this blending mode only 

supports interpolation between two colors. 

For three selected classes, their respective probability was also 

assigned directly to the R, G and B channels of an image. In this 

case, the map was dark wherever neither of the three classes had 

a high probability, and showed blended colours wherever two 

classes had similar probability. As such, this map already 

provides a spatially explicit representation of classification 

certainty. However, an additional map product was also created 

from the probability vector of each pixel, by defining the 

absolute difference between the number of ensemble votes 

received by the dominant class and the votes of the second most 

probable class as a metric of local classification certainty. This 

indicator we named “probability surplus” directly represents the 

certainty of categorization, and is calculated from the ensemble 

independently for each pixel. As the ensemble classifier 

produces a vector of probabilities for each pixel of the output, 

the expected reliability of the classification was visualized 

based on the “probability surplus”. This output map allows 

spatially explicit interpretation of an accuracy indicator, 

including beyond validation samples. 

 

2.4 Accuracy assessment of fuzzy vegetation maps 

In order to evaluate fuzzy classification accuracy but preserve 

compatibility with the confusion matrix, the approach proposed 

by Lewis and Brown, (2001) was slightly reformulated. Lewis 

and Brown use sub-pixel area of each class in each pixel while 

in our case we use the ratio of classifiers in the ensemble to 

weigh the figure in each cell of the confusion matrix by its 

probability. In our case, this was achieved using the ensemble 

classifier, creating separate confusion matrices from the 

validation dataset for each base classifier. These individual 

confusion matrices were then added, and the resulting cell 

values normalized by the number of base classifiers, creating an 

“ensemble confusion matrix”. The output includes fractional 

values of pixels wherever a fraction of the trees in the ensemble 

made different predictions, but the rows and columns still add 

up to real pixel counts and all confusion matrix based indices 

(producer’s and user’s accuracy, overall accuracy, Cohen’s 

Kappa (Congalton, 1991), quantity and allocation disagreement 

(Pontius and Millones, 2011)) can be calculated and are 

meaningful.  
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However, summing the classwise accuracy into numeric figures 

is a strong over-simplification even where ensemble voting is 

taken into account. Adding further detail to the evaluation by 

exploring the probability relation between the dominant and the 

sub-dominant classes can help refine the classification process 

and better understand the classes in their context. We propose 

“dominance profiles”, a quantitative graphical representation for 

the probability of the dominant class with respect to all other 

classes (Fig. 3). In the first step, all pixels are queried within the 

validation samples identified in the field as belonging to a class. 

On the X axis, the pixels are ranked according to the probability 

of this selected class, and grouped into bins that represent an 

equal number of pixels. On the Y axis, the probability of each 

class is plotted in stacked bars representing each bin. The order 

of classes in the stacked columns reflects their overall frequency 

in the matrix of class probabilities: the dominant class for which 

the graph was created is at the bottom (allowing class 

probabilities to be directly read from the Y-axis for this class), 

with the class occupying the second most area in the full graph 

above and so on until the least represented class. The bars 

representing the dominant class are ordered in a decreasing 

curve, starting from the pixels where the class in focus is 

predicted with the highest probability. The respective area of 

each class in this graph directly corresponds to their total 

number of base classifier votes within the validation sample, 

which is also the producer’s accuracy figure in the ensemble 

confusion matrix. The first bin where a pixel occurs that is not 

dominated by the class in focus is marked by a line on the X-

axis, the “dominance limit”, corresponding to the hard 

producer’s accuracy. 

Alternatively, dominance profiles were calculated not only for 

the pixels within each class of the validation dataset, but also 

for the full study area. In this case, the query is made for all 

pixels of the study area dominated by the class in focus, 

therefore the “dominance limit” is the edge of the graph.  

For well-defined categories where the dominant class has a high 

margin of probability over the rest of the classes, the graph will 

have a large area occupied by the dominant class, with only the 

top right corner representing the rare cases where other classes 

also received some probability. For less certain classes, even the 

pixels where the probability was the highest would include 

considerable probability of other classes, which increases along 

the X axis to the point where the domination becomes marginal. 

In some cases, the area of the graph outside the dominant class 

is evenly distributed between several classes, in other cases, 

there is clearly a single sub-dominant class. 

The level of similarity between the dominance profiles of each 

class within the validation data and the profile for the same 

class over the whole map allow estimating the 

representativeness of the validation samples. If the validation 

samples would be ideally distributed, the dominance profiles 

within the dominance limit would exactly match the profiles for 

the whole dataset. 

 

2.5 Implementation 

The backbone of the implementation is the Scikit-learn python 

library (Pedregosa et al., 2011) that implements a number of 

machine learning algorithms, including ensemble classifiers. 

GDAL was used to provide interoperability with the GIS raster 

and vector data formats used for mapping, and Scikit-image 

library for image processing tasks (Van Der Walt et al., 2014). 

Visualization rendering, colour blending and confusion 

matrices were computed directly in Python code, and 

dominance profiles were plotted with help of MatPlotLib 

library. These modules are part of a full data processing chain 

using Python as a glue language. The full software solution 

(under the working name “Vegetation Classification Studio”) 

has been used for classification tasks in various habitats from 

airborne LIDAR data (Zlinszky et al., 2015a, 2014). 

 

3. RESULTS 

3.1 Alternatives for visualization 

In case of the example dataset with 6 classes, colours were 

assigned to intuitively reflect the type of vegetation they 

correspond to. For a limited number of classes with carefully 

selected colours, the classical RGB colour mixing model 

produced results that are easily interpreted by the human 

operator. Results show that hue-preserving colour blending 

avoids generating new colours that are not among the pre-

defined classes, and that the saturation of the individual colours 

can be used for inferring the level of classification certainty. 

(a)  

(b)  

(c)  

 
 

Figure 1. Classified vegetation map: hard-boundary (a), fuzzy 

blended in RGB (b), fuzzy blended using hue-preserving 

algorithm (c). The same colour scheme is used throughout the 

paper if not otherwise noted 

 

Hard boundary classifications were created from the 

classification output, with different methods. The most simple 

method is majority voting but a hard-boundary map can also be 

generated by assigning all pixels to a certain class if the 

probability is above a given threshold regardless of whether it is 

dominant. This is especially relevant for mapping invasive 

species and other hazards or if focusing on a very rare class 
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where even predictions with low levels of certainty are of 

interest. 

RGB renderings proved to be especially helpful if a subset of 

classes was of special interest, and if these classes were prone to 

create mixtures. If this was the case, various combinations of 

the classes could be recognized from this visualization.  

For spatially explicit accuracy evaluation, the probability 

surplus map was used as this shows at the level of individual 

pixels the certainty of the class assigned to that pixel. Such a 

map allows identification of regions where the classification is 

less certain than other places. Reasons for this may include 

presence of a land cover type that was not included in the 

classification scheme, presence of some sort of noise in the 

sensor data, or local conditions producing an exceptions to the 

general rules used for classification. 

  

(a)  

(b)  

 
Figure 2. RGB three-class rendering (a) with 3 classes mapped 

to individual color channels, Red: class 6 (open alkali 

grassland), Green: class 3 (alkali short grass), and Blue: class 10 

(alkali meadow); and probability surplus map (b) 

of the same area 

 

3.2 Accuracy indices: the ensemble confusion matrix and 

the dominance profile graph 

The “ensemble confusion matrix” we propose is sensitive 

enough to indicate the effect of even one decision tree that 

predicted differently than remaining hundred, but can still 

summarize the information from the whole ensemble. It will 

also show which classes are most frequently mistaken for each 

other even if these have only a low probability compared to the 

dominant class. The ensemble-based confusion matrix is 

directly compatible with the hard confusion matrix due to the 

normalization with the number of classifiers in the ensemble. In 

the theoretical case that all pixels would be classified with all 

classifiers in the ensemble predicting the same result (so total 

certainty and 100% probability surplus), the ensemble 

confusion matrix would be exactly the same as the hard 

confusion matrix. Where this is not the case, the numbers of 

pixels in each cell are modified according to the proportion of 

classifiers predicting that result. The row and column totals add 

up to the true number of pixels, but the accuracy figures are 

always smaller, the numbers in the main diagonal cells are 

always lower than for the hard-boundary confusion matrix. 

The resulting differences in producer’s and user’s accuracy 

compared to the hard boundary matrix represent the level of 

certainty of the individual class assignments. The hard-

boundary confusion matrix overestimates quality since it 

assumes every pixel has full certainty, the ensemble-based 

confusion matrix takes both correctness and certainty into 

account. 

 
 

Table 1. Confusion matrix and ensemble confusion matrix 

representing the hard and fuzzy accuracy figures of the same 

classifier 

 

The dominance profile graphs we created allow exploring the 

prediction certainty reducing the information to individual 

classes, but dropping the spatially explicit dimension for better 

understanding. The dominance profile might be near horizontal 

(indicating that most pixels have the same distribution of 

probabilities), linear in shape (indicating that the various 

probability levels of the dominant class are evenly distributed) 

but always represents a monotone decreasing curve since the X 

axis is ordered by probability of the dominant class. The 

dominance profiles calculated within the validation pixels 

corresponding to each class are directly related to the figures of 

the ensemble confusion matrix: both the areas of the respective 

classes in the graph and the numbers in the corresponding row 

of the ensemble matrix represent the number of votes received 

by each class. The dominance profiles deliver more information 

than simply the count: the distribution of votes according to the 

level of class dominance can be read from the graph. This 

includes both the pixels in the validation sample that were 

assigned to the correct class but had a certain number of 

incorrect votes (and thus a level of certainty below 1) and the 

pixels where the correct class was sub-dominant. For the 

profiles representing the full dataset, the query was made 

according to the dominant class, therefore the dominance limit 

is also the limit of the graph. 
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Figure 3. Dominance profile graphs for the validation pixels (left column) 

and for the whole study area (right column) for respective classes. The “dominance limit” is drawn as the red dashed vertical line in 

left-column graphs.
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For the profiles from the full dataset, the start and end points of 

the dominance profile represent the highest certainty with which 

the class was detected and the lowest probability that was still 

higher than any of the alternative classes.  

For the most certain and also most accurate class, “trees/shrubs 

(4)”, the validation pixel profile shows that 86.5% of the pixels 

were correctly classified. The graph of the total pixels suggests 

that a remarkable 60% of the class assignment is completely 

certain, and for the remaining pixels, all other categories had 

equal (but still rather low) certainty. The profile of all pixels 

dominated by this class is closely resembles the dominance 

profile of validation pixels, cut off at the dominance limit. This 

is the example of a strong and well-defined class, with the 

validation data providing a representative sample of the total. 

On the contrary, for the class “open alkali grassland (6)”, only 

72% of the validation pixels were correctly classified, and 

nearly all the rest were dominated by “alkali short grass (3)”. 

The dominance profile for all pixels in this class shows a similar 

pattern: nearly 80% of the pixels had probabilities lower than 

0.6. The second most probable class, “alkali short grass (3)” has 

probabilities around 0.2 in most pixels, much higher than any of 

the other sub-dominant classes, which suggests that the 

separation of these two classes is problematic not only within 

the validation sample but also over the whole area. Thus, the 

class has weaker accuracies, but the validation data seem 

representative. For the dominance profile for “alkali short grass 

(3)” most probable sub-dominant class is as expected, “open 

alkali grassland (6)”, but is much higher and more linear in 

shape, indicating an even distribution of probabilities. However, 

while the validation pixels suggest that the class “artificial (33)” 

is hardly ever mixed with class (3), in the total pixels this sub-

dominant class has nearly the same level of probability as the 

other two. The interpretation is that the validation data is 

somewhat underrepresenting the possibilities encountered in the 

full dataset. The full-area dominance profile of class “artificial 

(33)” is clearly bimodal, with varying steepness. This might 

indicate that a type of frequent artificial objects is recognized 

with high certainty, while another type is less well recognized. 

The total-pixel profile suggests that no sub-dominant class 

prevails and this is mirrored in the part of the validation 

dominance profile inside the dominance limit; however it is also 

shown that most of the misclassifications belonged to one class 

(4) with total certainty. In the confusion matrix, the class 

“wetland (16)” has the lowest producer’s accuracies. This is 

further explained by the validation dominance profile: the 

discrimination from (4) tree/shrub is often uncertain, with a 

smooth transition between the dominance levels of these two 

classes inside the validation data. Additionally, for 30% of the 

validation pixels, this class had no probability at all, and 

overestimation of three other classes shared base classifier votes 

for these pixels. This is matched by full-area dominance profile 

of this class, which does not start at 1.0. The high certainty 

pixels in the validation sample apparently represent very rare 

cases. The bins of the total profile represent 1% each of the 

data, and even the most certain among these had probabilities 

only around 0.9. Based on the spatially explicit map of 

probability surplus, sub-samples within the image may be 

created where class dominance profiles can be investigated in 

order to better understand the reason for weak class prediction, 

or the dominance profile of the whole image irrespective of 

class can be plotted as an indicator of the overall probability 

surplus distribution and the certainty of the classification. 

 

4. DISCUSSION 

4.1 Fuzzy Visualization schemes 

The multi-class fuzzy colour renderings show a wide range of 

patterns that are not visible or difficult to interpret in the hard-

boundary maps. Especially in cases where the probability 

surplus of the dominant class is low and the second best-class 

has similar probability, fuzzy visualization allows recognition of 

the sub-dominant class. Especially the smooth transitions 

characteristic for grasslands were successfully visualized with 

this approach. Comparison of the map with field experience by 

expert ecologists has shown in many cases that the features 

represented by the sub-dominant classes resemble real patterns. 

Vegetation features that are not defined in a set of classes but 

have a characteristic shape, such has linear vehicle tracks can be 

instantly recognized even if they do not affect the dominant 

class. Instead of large homogeneous fields of colour that are 

typical for hard classification maps, patterns in vegetation can 

be identified even in areas that have the same dominant 

category. Finally, cases where large areas are occupied by a 

relatively even mixture of two classes can be identified, 

potentially leading to better definition of the class scheme. 

Since these maps were created using regular image formats used 

in GIS, their visualization or interoperability with other datasets 

was not problematic. All output maps are compatible with 

standard GIS image formats and involve either one greyscale or 

three RGB channels. Therefore even viewing in an office 

software environment for non-specialists is supported. 

 

 (a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 4: Hard boundary (left column) and fuzzy (right column) 

visualizations of the same area, showing clear linear features in 

(a, b);a large area covered by equal mix of two classes, 

suggesting the need to introduce a new class (c, d); and gradual 

transitions between several classes (e, f), all hardly detectable in 

the corresponding hard boundary map 
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However, simple colour blending visualization becomes less 

and less clear to interpret as the number of categories increases. 

The colour scheme must therefore be appropriately selected. 

Hue-preserving rendering is especially useful if many categories 

are present and their respective colours are not so distinctive. In 

this colour blending method, mixed pixels are always more grey 

than pure pixels, and no new colours are generated. If some 

classes are more interesting for the application of the map than 

others (such as the three main grassland classes in our case), the 

RGB rendering is useful for identifying their respective 

certainty and eventual mixing. 

We have introduced probability surplus as a way of spatially 

explicit classification certainty mapping. This is a longtime 

demand towards remote sensing and has only been made 

possible using ensemble classifiers. Contrary to the confusion 

index proposed by (Burrough et al., 1997), this is not 

normalized by the maximum probability, and investigates only 

the first two dominant classes contrary to the probability 

entropy index (Maselli et al., 1994). We believe this allows 

more straightforward interpretation of the results, especially for 

non-specialists. Even then, the assumption that class certainty 

represents accuracy or quality has to be made. The validity of 

this assumption is confirmed by the link between confusion 

matrix-based producer’s accuracies and the respective class 

dominance profiles within the validation samples. 

Calculating categorization certainty for each pixel also allows 

processing classification tasks through “active learning” (Tuia 

et al., 2011). Compared to the mainstream workflow of 

collecting a static set of ground truths and applying it in a single 

step for training and evaluation, active learning is an iterative 

approach. After every round of classification, the input ground 

truth data is extended by adding reference data in the areas 

where the classification has the least certainty, and ideally for 

classes that are identified with the least accuracy. This allows an 

optimized use of the fieldwork effort, and can be iterated until 

the desired accuracy is reached. Of course, the criteria of evenly 

distributed reference data are still to be taken into account, and 

can be checked by comparing validation sample based and full-

area classwise dominance profiles. 

 

4.2 Accuracy evaluation of fuzzy maps 

Various approaches to evaluating or visualizing fuzzy 

classification have been proposed in the literature. The novelty 

of our approach is that instead of a single indicator or 

visualization, we propose a set of map products and graphics. 

Each of these reduces the multi-dimensional information in the 

output matrix of the ensemble classifier in a different way, from 

2+3 dimensions (RGB rendering, blending in colourspace) 

through 2+1 (probability surplus map) and two dimensions 

(dominance profile graphs, ensemble confusion matrix) to one 

dimension (ensemble-based overall accuracy or Cohen’s 

Kappa). Each index grasps a different aspect of the fuzzy map 

and can be used to answer a different question. Together, these 

data products allow an in-depth understanding of any ensemble 

classification and a much more thorough use of the immense 

information contained in high-resolution airborne sensor 

datasets such as hyperspectral imaging or full-waveform LIDAR 

(Zlinszky et al., 2015b).  

One important and hitherto unevaluated question is how much 

the accuracy of the classification in the sense of agreement with 

ground truths is closely related to the probability surplus. 

Comparing the hard boundary confusion matrix, the ensemble 

confusion matrix and the class dominance profiles calculated 

within the validation samples helps answer this question. The 

producer’s accuracy figures in the ensemble confusion matrix 

directly represent the number of votes from base classifiers that 

each class received within its own validation pixels. The area 

occupied by each class in the dominance profile also equals the 

proportion of votes within the respective validation pixels. The 

user’s accuracy is also represented in the graphs: the area 

occupied by a class in its own dominance profile (the number of 

“correct” votes) divided by the total area of the same class in the 

profiles of all classes (total number of votes) gives the 

ensemble-based user’s accuracy. Therefore, classes where 

dominance is stronger also receive higher user’s accuracies in 

the ensemble confusion matrix. Based on this, it can be assumed 

that the probability surplus map is a valid representation of 

classification correctness (and not “only” certainty), as it shows 

how strong the majority of the dominant class is in each pixel. 

The link between probability surplus and hard-boundary 

confusion indices is weakened by the binarization of class 

membership using majority voting: classical producer’s and 

user’s accuracies are therefore higher than indicated by the local 

probability surplus. Still, areas of the map that have high 

probability surplus figures are expected to be locally more 

accurately classified than areas with lower class dominance. 

 

4.3 Discussion: how to use these indices 

The proposed indices work with any ensemble-based classifier, 

such as random forests, neural networks, probabilistic decision 

trees (Du et al., 2012). In a production environment, it is 

possible to train an ensemble classifier and evaluate its accuracy 

using only the ground truth data as a subset of the original. This 

ensures high-speed processing compared to the regular practice 

of directly working with the whole dataset. For each model 

learning run, the regular (hard-boundary) confusion matrix can 

be generated as a first indicator of accuracy. Where the figures 

in the confusion matrix are favourable, the ensemble confusion 

matrix can also be generated for more detailed analysis of 

classification quality, and further changes to the classifier or the 

class definitions can be made if necessary. In the next step, a 

colour-blended fuzzy visualization is created to check an overall 

impression of the classification and how pure the individual 

pixels are. The probability surplus visualization can quantify the 

level of certainty for the whole study area and support 

recommendations of locations where additional field references 

should be collected (active learning). If certain classes are more 

important, an RGB rendering can inform on their occurrence 

even in the sub-dominant probability levels. The next step is to 

create dominance profile graphs for each class as these will 

allow a detailed understanding of the similarity between classes, 

and alternative sub-dominant categories. The level of 

probability typical for each class can be inferred, and if 

unsatisfactory, additional ground truths may again be added or 

classes merged. Finally, if all these indices are satisfactory, 

hard-boundary maps may be created based on majority vote or 

other output products (such as the probability of a critical class, 

eg Zlinszky et al. 2015b) may be delivered.  

Other areas of application are for automatic optimization of 

machine learning algorithm settings, hyperparameter 

optimization, various settings related to pre-processing of 

remote sensing and reference data and in any processing 

regimes that rely on building hundreds or thousands of 

classification models searching for optimal settings. Such 

optimization approaches might use genetic algorithms, non-

linear optimization algorithms or automatic algorithm 

configuration approaches to search over multi-dimensional 

space of possible parameters influencing the classification 

process, in an attempt to determine parameter values yielding 

classification models with the best accuracy and reliability. In 
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most such contexts classification is treated as a “black box” 

process, therefore an automatic optimization algorithm relies on 

some target function that is able to evaluate accuracy or 

“goodness” of a model. A number of optimization approaches 

also use gradients of target function to guide the algorithms 

towards search areas with more promising quality. 

In this context, the crisp accuracy metrics show considerably 

worse “sensitivity” (or “resolution”) of the accuracy, compared 

to the fuzzy ones. This effect is based on an inherent loss of 

information in traditional metrics that rely on reducing all the 

rich probability vector information generated for every pixel by 

an ensemble classifier to just one single class value. 

So the fuzzy accuracy metrics – while being always lower that 

their hard-boundary counterparts – are much more sensitive to 

the quality of classification and are able to guide the 

optimization algorithm to obtain much faster convergence and 

find models with better properties. 

 

5. CONCLUSIONS 

Spatially explicit accuracy evaluation for classified maps was so 

far mostly done inside ground truth areas, and fuzzy 

classification was rarely used due to the perceived difficulty of 

accuracy assessment. Here we suggest a set of accuracy 

indicators that work on ensemble-based fuzzy maps. These data 

products allow understanding various aspects and levels of map 

quality, from single accuracy figures for the whole map on an 

ensemble basis, through various colour blending-based spatially 

explicit visualizations of classification and its accuracy, to 

classwise dominance profiles that are an intuitive but also 

quantitative way of evaluating the accuracy of class prediction. 

These visualization products can be linked in an efficient 

workflow for stepwise improvement of the classifier. We expect 

that the proposed techniques will facilitate a wider uptake of 

fuzzy classification in operational remote sensing. 
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