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ABSTRACT: 
 
Remote sensing via LiDAR (Light Detection And Ranging) has proven extremely useful in both Earth science and hazard related 
studies. Surveys taken before and after an earthquake for example, can provide decimeter-level, 3D near-field estimates of land 
deformation that offer better spatial coverage of the near field rupture zone than other geodetic methods (e.g., InSAR, GNSS, or 
alignment array). In this study, we compare and contrast estimates of deformation obtained from different pre and post-event 
airborne laser scanning (ALS) data sets of the 2014 South Napa Earthquake using two change detection algorithms, Iterative Control 
Point (ICP) and Particle Image Velocimetry (PIV). The ICP algorithm is a closest point based registration algorithm that can 
iteratively acquire three dimensional deformations from airborne LiDAR data sets. By employing a newly proposed partition 
scheme, “moving window,” to handle the large spatial scale point cloud over the earthquake rupture area, the ICP process applies a 
rigid registration of data sets within an overlapped window to enhance the change detection results of the local, spatially varying 
surface deformation near-fault. The other algorithm, PIV, is a well-established, two dimensional image co-registration and 
correlation technique developed in fluid mechanics research and later applied to geotechnical studies.  Adapted here for an 
earthquake with little vertical movement, the 3D point cloud is interpolated into a 2D DTM image and horizontal deformation is 
determined by assessing the cross-correlation of interrogation areas within the images to find the most likely deformation between 
two areas. Both the PIV process and the ICP algorithm are further benefited by a presented, novel use of urban geodetic markers. 
Analogous to the persistent scatterer technique employed with differential radar observations, this new LiDAR application exploits a 
classified point cloud dataset to assist the change detection algorithms. Ground deformation results and statistics from these 
techniques are presented and discussed here with supplementary analyses of the differences between techniques and the effects of 
temporal spacing between LiDAR datasets. Results show that both change detection methods provide consistent near field 
deformation comparable to field observed offsets. The deformation can vary in quality but estimated standard deviations are always 
below thirty one centimeters. This variation in quality differentiates the methods and proves that factors such as geodetic markers 
and temporal spacing play major roles in the outcomes of ALS change detection surveys. 
 
 

1. INTRODUCTION 

Observations of earthquake ruptures are essential to the 
understanding of earthquake mechanics and the hazards they 
produce. However, observations within approximately 20 km   
of an earthquake rupture, commonly referred to as being in the 
‘near-field,’ have historically been sparse and inconsistent. 
Measurements of deformation caused by an earthquake in the 
near-field can help characterize seismic hazard, illuminate fault 
geometry, better recognize fault linkages, and relate slip at the 
surface and at depth (Nissen et al., 2012; Oskin et al., 2012). 
The amount of deformation and its spatial dispersal in particular 
are paramount to understanding the stress and strains associated 
with an earthquake and its rheology (Rice & Cocco, 2007).   
 
A deformation measurement itself is not difficult to acquire; 
they can be made with common surveying equipment using 
alignment array stations for example (Lienkamper et al., 2014), 
but the spatial resolution of that type of data is lacking. 
Accurate modelling of distributed near-field deformation 
demands high resolution surveys over large areas. Modern 
InSAR techniques can map an earthquake rupture with high 

precision over large areas, but lack a full 3D component, can 
break down in vegetated areas, and suffer from loss of 
coherence in the near field during measureable surface faulting 
(Nissen et al., 2012). Continuous Global Positioning (GPS) sites 
can provide very precise deformation measurements, but are 
often inadequately spaced for high resolution modelling. For 
example, the closest continuous GPS site to the 24 August Mw 
6.0 South Napa Earthquake was approximately 11 km from the 
epicenter (Hudnut et al., 2014). Another observational technique 
is seismic strong motion or seismic waveform modelling. 
Seismic only modelling is accurate but complex and may suffer 
when modelling distant ruptures, with sparse seismic stations, 
or with a lack of near field data to constrain slip measurements. 
More comprehensive seismic modelling often combines seismic 
observations with InSAR or GPS, incorporating some of the 
same spatial restrictions (Wei et al., 2015).  
 
An emerging method to survey the near field deformation of an 
earthquake rupture is differential Light Detection and Ranging 
(LiDAR) analysis. Airborne laser scanning (ALS) surveys can 
cover vast tracks of land with little to no loss of coherence and 
make observations at a decimeter level that are at a better 
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resolution than most earthquake displacements (Nissen et al., 
2014). This active remote sensing system consists of a laser 
ranging device on an airborne platform coupled with position 
and orientation data to return a 3D, globally geo-referenced 
distribution of x, y, and z points known as a point cloud 
(Glennie et al., 2013). If a pre-event ALS survey has been made 
before an earthquake rupture, a post-event survey can be flown 
and near field deformation resolved from change detection 
algorithms applied to the temporally spaced 3D point clouds. 
Thanks to broad LiDAR surveying across the Western US a pre-
event dataset was available for the South Napa earthquake and a 
post-event survey was subsequently flown shortly after the 
earthquake for differential analysis.  
 
The South Napa earthquake in particular provides a chance to 
thoroughly test the differential ALS methodologies due to its 
low magnitude and correspondingly low displacements that are 
near the simulated RMS detection thresholds of 20 cm 
horizontal (Nissen et al., 2012). Early results of deformation 
from the earthquake have already been published and early ALS 
results look promising (Barnhart et al., 2015; Brocher et al., 
2015; Brooks et al., 2014; Morelan et al., 2015). Similar studies 
of ruptures with displacements greater than 1m like the 2010 
Mw 7.2 El Mayor-Cucapah earthquake, 2008 Iwate-Miyagi Mw 
6.9 earthquake, and 2011 Fukushima-Hamadori Mw 7.1 
aftershock earthquake have all resulted in ALS estimates of near 
field deformations (Oskin et al., 2012; Nissen et al., 2014). 

Therefore, the purpose of this study is to build upon initial 
results of the South Napa earthquake and determine the best 
change detection methods for measuring ALS derived near field 
deformations as well as expound upon any best practices or 
differing results symptomatic of data type or temporal effects. 
 
1.1 Tectonic Setting 

The city of Napa, California, USA is located within an area of 
major north-northwest-trending fault systems forming part of 
the greater San Andreas Fault system along the west coast of the 
United States. The closest active fault is the West Napa fault, a 
system of discontinuous strike-slip faults along the western 
margin of the geologic basin underlying Napa Valley. The Mw 
6.0 24 August 2014 South Napa earthquake initiated 8km south-
southwest of Napa and 1.7 km west of the West Napa fault 
system approximately 11.3 km below the surface (Brocher et 
al., 2015; Wei et al., 2015). The earthquake subsequently 
ruptured approximately 12 to 15 km in a northwest direction; 
the total rupture zone covering an area of approximately 75 
km2. Only part of the rupture was connected to previously 
mapped portions of the West Napa system. Five surface rupture 
traces were field identified post-earthquake (Fig. 1). Moment 
tensors and focal mechanisms from the earthquake show fault 
slip along the fault system was that of a right-lateral strike slip 
earthquake, similar to movements seen throughout the region.  
 

Figure 1. Map of field identified earthquake traces (red) in the Napa Valley after South Napa earthquake. Right inset shows DTM of 
the Browns Valley Neighborhood with buildings added. Yellow box shows area of detailed analysis for this study. Red line through 

inset represents the primary fault trace A and blue line represents the fault trace C (Hudnut et al., 2014). 
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The earthquake displacements caused widespread infrastructure 
damage in Napa County and nearby Solano County with 
concentrated pockets of damage in areas such as the Browns 
Valley neighborhood, Cuttings Wharf, western and downtown 
Napa (Bray et al., 2014). For this study, we concentrated on the 
Browns Valley neighborhood in Napa (Fig. 1) to test and 
contrast the differential ALS change detection algorithms. Rates 
of fault slip in the Napa region before the earthquake varied 
between 1 and 9.5 mm/yr. along the West Napa fault (Barnhart 
et al., 2015; Brocher et al., 2015). Slip during the earthquake, or 
Coseismic slip, was measured to be between 1.5 and 46 cm 
along the earthquake rupture, with coseismic slip on the western 
trace of the study area measuring 23 cm in the south, decreasing 
to 6 cm further north and as high as 5 cm on the eastern trace 
(Brocher et al., 2015; Morelan et al., 2015). Slip post-
earthquake, or afterslip, varied up and down the fault ranging 
from 10-20 cm per day in some locations to just over 40 mm in 
Browns Valley after 60 days (Hudnut et al., 2014). Cumulative 
displacement on the southern section of the western trace in the 
Browns Valley study area as of September 5th was measured to 
be approximately 34 cm by alignment array NLOD 
(Lienkaemper et al., 2016).  
 
 

2. METHODS 

2.1 ALS Datasets 

The amount of displacement from the coseismic rupture was 
atypical for the magnitude of the Napa earthquake (Bray et al., 
2014). The greater displacements allowed for visible offsets that 
could be measured by a wide array of survey instruments. 
Relevant to this study, the displacements were large enough to 
attempt estimation via the differencing of two ALS point 
clouds. Three different ALS datasets were acquired for this 
study (Table 1); two pre-earthquake datasets and one post-
earthquake. The first pre-earthquake dataset was collected 
between May 15, 2003 and June 1, 2003 by the National Center 
for Airborne Laser Mapping (NCALM) in a study of the Napa 
River watershed from Calistoga, CA to San Pablo Bay. The 
instrument used was an Optech 2033 Airborne Laser Terrain 
Mapper (ALTM) with a resultant point density of 1.3 pts/m2. 
The second pre-earthquake dataset was collected June 7th, 2014 
over Napa County, CA by Quantum Spatial as a mapping 
update for the city of Napa, CA. The instrument used in this 
collection flight was a Leica ALS60 with a nominal point 
density of 8 pts/m2. Following the earthquake rupture on August 
24, 2014, a post-earthquake dataset was acquired by a 
consortium group for the express purpose of scanning the 
earthquake affected area in hopes of analysing the differential 
LiDAR results (Hudnut et al., 2014). An Optech Orion M300 
scanner collecting point densities of ~11.4 pts/m2 was flown by 
Towill, Inc. on September 9, 2014. Both the 2003 dataset and 
September 2014 dataset are available for public access via 
opentopography.org (Hudnut et al., 2014). A short summary of 
ALS acquisition parameters from the three flights are included 
in Table 1 for comparison. 
 
2.2 Change Detection Techniques 

Differential LiDAR has proven exceptionally useful for 
documenting earthquake events, analysing their effects, and 
understanding earthquake mechanics (Hudnut et al. 2014; 
Nissen et al. 2012; Oskin et al. 2012; Brooks et al. 2014; 
Glennie et al. 2014; Zhang et al., 2015). There are many 
temporal spaced change detection methods for LiDAR point 
clouds including one dimensional slope based methods, two 

dimensional image based methods, 2.5D digital elevation model 
(DEM) and mesh grid methods, and 3D point cloud methods 
(Zhang, 2016). This study focuses on a 2.5D method called 
Particle Image Velocimetry (PIV) and a 3D closest point based 
method called Iterative Control Point (ICP).  
 
ICP is one of the most common change detection methods used 
on 3D point clouds. It is based on an algorithm that matches two 
point sets by iteratively minimizing the root mean squared 
distance (RMSD) between a target and reference 3D data set by 
rigidly transforming one data set to match the other until the 
change in RMSD between iterations reaches a pre-defined 
tolerance. Many versions of ICP exist, the standard ICP 
approach from Zhang et al., 2015, is used here. As seen in 
equation 1, we represent a point matching function as f and 
compute the RMSD between a 3D point cloud P and a reference 
3D point cloud Q denoted by {pi}, i  = 1 …Np and {qi}, i = 1 
…Nq; 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑃𝑃,𝑄𝑄, 𝑓𝑓) = �1
𝑛𝑛
∑ ‖𝑝𝑝𝑖𝑖 − 𝑓𝑓(𝑝𝑝𝑖𝑖)‖2𝑝𝑝𝑖𝑖∈𝑃𝑃 . (1) 

 
The next objective is to minimize the RMSD. To do this, the 
point clouds are assumed to represent a rigid body and by 
applying a rigid transformation the point sets are moved to 
match each other. Using equation 2, a rigid transformation is 
estimated that minimizes the sum of the RMSD between the 
two point sets. In addition to equation 1 parameters, the rotation 
matrix is represented by R, the translation vectors by t, and 
SO(d) represents special orthogonal matrices in d dimensions.  
    

𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅,   𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅𝑅𝑅 − 𝑡𝑡, 𝑄𝑄, 𝑓𝑓)  =

𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓:𝑃𝑃→𝑄𝑄,   𝑡𝑡∈𝑅𝑅𝑑𝑑,   𝑅𝑅∈𝑆𝑆𝑆𝑆(𝑑𝑑) ∑ �𝑅𝑅𝑝𝑝𝑖𝑖 − 𝑡𝑡 − 𝑓𝑓(𝑝𝑝𝑖𝑖)�
2

𝑝𝑝𝑖𝑖��⃗ ∈𝑃𝑃  (2) 
 
The process is iterated to find a global minimum. Because of the 
matching and transformation steps, the error or distance 
between point sets is monotonically reduced with the passing 
iterations (Zhang, 2016). Thusly, the entire process can be 
broken down into three primary steps; matching closest points, 
a rigid transformation of data sets, and the iteration of the first 
two steps until the change in the global RMSD statistic is 
minimized to a value below a pre-set threshold. If that minimum 
is reached, cumulative transformation rotations and translations 
represent the change over a temporal period between the two 
point sets. The algorithm is not fool proof though, often finding 
a local minimum instead of a global minimum due to data noise, 
outliers, low overlap, and poor data density. The original 
algorithm derivation can be found in Besl and McKay, 1992.    

Table 1. ALS data collection parameters 
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The ICP algorithm used for our study utilizes several variations 
from the original algorithm including uniform weighting and 
minimization, a moving window style point cloud selection to 
properly sample the entire data set for change, KD-tree 
searching for nearest neighbor style matching, as well as a 
geodetic marker technique explained in more detail below. The 
translations from each iteration are cumulated for all three 
dimensions and represent the total temporal displacements 
between the data sets. Results of each window sample in the 
ICP analysis are vectorised to illustrate the displacement field. 
All three datasets are inter-compared in batches of two; 2003 to 
June 2014, 2003 to September 2014, and June 2014 to 
September 2014. 
 
The same dataset pairs are also analyzed using PIV, but this 
time only changes in the x and y direction can be displayed 
because PIV is a 2.5D method. PIV originated in the fluid 
mechanics field using pictures of a fluid flow and reflective 
particles in that fluid were analyzed with image to image 
matching to measure 2.5D change. The method has now 
advanced beyond those experiments to a modern digital image 
co-registration and correlation technique. As a sensitive change 
detection technique, it is effective in geotechnical studies using 
close range photography and with the growth of LiDAR has 
been used in the field to study deformation after earthquakes 
and from landslides (Aryal et al., 2015, 2012; Mukoyama, 
2011). However, using 3D point clouds presents its own 
problems. To interpret the point clouds with PIV, the image 
plane becomes the horizontal x-y plane with the z-axis 
analogous to the light intensity of a traditional particle in PIV, 
hence the 2.5D designation (Aryal et al., 2012). From here, 
various steps of image pre and post processing can be applied, 
but the kernel of the algorithm in a common digital PIV method 
calculates the particle displacement by calculating the cross-
correlation of many small sub-images taken from the study 
images to cumulatively yield the most probable displacement 
field between the two images. The cross correlation is applied 
with the direct cross correlation function (Eq. 3) that employs a 
statistical pattern matching technique to find the displacement 
pattern between a sub-image A and sub-image B. Original 
window indexes are represented by i and j with m and n 
representing displacement so that the location of the intensity 
peak in matrix C is the most probable displacement from A to B 
(Thielicke and Stamhuis, 2014). 
 

C(m, n)= ∑ 𝑖𝑖 ∑ 𝑗𝑗A(i, j)B�i-m, j-n� (3) 
 
The PIV method applied here turned the 3D point clouds into 
2D images via nearest neighbor interpolation of elevation to 
produce rasterized images. The PIV algorithm was applied with 
the Matlab toolbox PIVlab (Thielicke and Stamhuis, 2014). 
Pre-analysis image processing was carried out within the 
toolbox using Contrast Limited Adaptive Histogram 
Equalization (CLAHE), a Wiener denoising filter and highpass 
filter. During PIV evaluation, cross correlation was calculated in 
the frequency domain using fast fourier transforms (FFT). To 
reduce information loss, the images being compared were 
separately split up into iteratively smaller frames of 300, 100, 
and 20 pixel blocks from original 4401x4401 pixel images. In 
an iterative process to better interpret the displacements, the 
result of the correlation matrix from the first frames augmented 
the second iteration of frames using spline interpolation. This 
was repeated again for the third frame iteration. The peak of the 
correlation matrices was interpreted with a 2x3 Gaussian 

function until there was a sum displacement vector for each 20 
pixel image. The resulting data represented the displacement 
field of the earthquake. The final result of the PIV change 
detection was then vectorised for better illustration of the 
displacement field. Errors can occur using PIV due to user error, 
incorrect sizing of the image and sub-images, and small 
magnitude of the displacement (Aryal et al., 2012). Beyond 
those errors, the process should only introduce a bias smaller 
than 0.005 pixels and random noise below 0.02 pixels 
(Thielicke and Stamhuis, 2014). The pixel size in this study was 
0.5 meters. Further documentation on the PIV algorithm can be 
found in Thielicke and Stamhuis, 2014, or at 
pivlab.blogspot.com. 
 
Lastly, we attempted to include additional information in the 
point clouds to aid the change detection techniques used above. 
In previous differential LiDAR studies of earthquakes, change 
detection was performed with unaltered or bare earth point 
clouds representing only the ground so as to cut out vegetation 
and anthropogenic sources that cause noise in unaltered results 
(Nissen et al., 2012; Nissen et al., 2014; Zhang, 2016). In the 
same way, the Napa point clouds were classified using 
proprietary software packages and bare earth model point 
clouds were created. However, in addition to the bare earth 
returns, we created bare earth point clouds combined with 
manmade structures that we have termed geodetic markers. 
These easily identified objects are expected to be constant over 
the temporal gaps between point clouds and are analogous to the 
persistent scatterers of differential InSAR analyses where 
objects showing a strong, constant radar reflection over time are 
used to maintain phase coherence with InSAR (Crosetto et al., 
2015; Ferretti et al., 2001). Persistent scattering has aided 
earthquake deformation measurements with InSAR and can be 
used in a mix of urban and natural environments (Crosetto et al., 
2015; Kampes, 2006). Similarly, geodetic marker techniques for 
LiDAR point clouds have proven useful for point cloud change 
detection in urban environments (Kusari, 2015). Therefore, we 
used the roofs of structures in the point cloud as geodetic 
markers. The roofs are the most trustworthy sources for stable 
markers readily available to an ALS system’s viewpoint and 
due to the size of the earthquake indicate the earthquake 
displacement with any outliers representing possible structural 
damage. The same software packages used to retrieve bare earth 
points were used to retrieve and combine the geodetic markers 
with the bare earth points. Bare earth point clouds and point 
clouds enhanced with geodetic markers were then applied to 
both change detection algorithms.  
 
 

3. RESULTS 

Both techniques for determining earthquake deformation clearly 
delineate the main western fault trace and return a varying 
displacement field in the Browns Valley neigborhood. Due to 
the predominant north-south, strike-slip displacement of the 
right lateral earthquake the y dimension should return the most 
measureable movement with x and z offsets within the noise 
level of differential LiDAR. As expected, displacements 
measured using ICP and PIV techniques return inconclusive 
results in the x and the z direction with no discernible rupture 
patterns in the vectorised displacement fields. Therefore, only 
the y direction displacements are displayed and discussed 
herein. 
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The ICP results using bare earth point clouds are shown in 
Figure 2A and 2B. The 2003 to 2014 differencing is largely 
incoherent with average right lateral displacement of 5 cm east 
of the western fault trace and standard deviations as high as 19 
cm. However, the June to September 2014 differencing shows a 
clear delineation of the main fault segment from left to right. 

The right lateral displacement from June to September has an 
average of 23.6 cm with a 7.4 cm standard deviation. The PIV 
results of the bare earth model show a very different result in 
Figures 2C and 2D. The 2003 to 2014 dataset is incoherent with 
only a slightly more discernible pattern in the June to September 
2014 results. Average right lateral displacement is 18 cm for 
June to September and 24cm for 2003 to 2014. However, the 
standard deviations of the PIV results are far too large at 31 and 
27 cm respectively. 
 
A clear difference can be seen in the ICP results when including 
geodetic markers (Fig. 3), especially for the 2003 to 2014 
differences. The average displacements and standard deviations 
of the ICP results have improved with the geodetic markers. All 
standard deviations are below twenty centimeters with the 
largest deviation from the 2003 to 2014 dataset at 19 cm on the 
western side of the fault. Average displacements on the eastern 
side are 15 cm for 2003 to 2014 and 23.5 cm for June to 
September (Fig. 4). Given the cumulative displacement of 34 
cm at the bottom of the study area’s western trace, those results 
might be expected if the south to north decrease seen in the 
coseismic measurements is accounted for (Lienkaemper et al., 
2016; Morelan et al., 2015). Furthermore, the displacement 
fields clearly show how landscape change over time by both 
natural and anthropogenic causes can mask the displacement 
when determined by ground surface alone. The June to 
September 2014 displacement for terrain only and terrain plus 
geodetic markers show mostly subtle variances but the 2003 to 
2014 results show more obvious improvements with the 
inclusion of markers.  In all cases, the variance of the resulting 
displacements is significantly improved using the geodetic 
markers. 
 
The PIV results also showed some improvement when 
including geodetic markers to the point cloud. The June to 
September 2014 displacement field now shows a clear 
delineation of the fault trace and the displacement field shows 
far less noise. The June to September 2014 data shows average 
displacements with minimal displacement west of the fault and 
an average displacement of 39cm to the east, above the 
expected displacement compared to field measurements. 
Standard deviation is less now, with results east of the fault 
returning an acceptable 20 cm of deviation and west of the fault 
26 cm. However, the 2003 to 2014 results showed little to no 
improvement with an average displacement of 13 cm east of the 
fault and enduring noise having the deviation in the east 
decrease to 24 cm but western deviation increase to 30 cm.  
 
The statistics of the results, and their trends, can be seen in the 
box plots of figure 4. The maximum and minimum values along 
with the boxes reflecting the interquartile range (IQR) show the 
distribution of the results and reflect their noise. A pattern 
characteristic of right lateral displacements can be seen where 
results west of the main rupture are minimal, centered near zero 
displacement. Additionally, the statistics allow us to draw 
further conclusions when comparing the two algorithms. ICP 
consistently has lower ranges and smaller IQRs. Lastly, the 
effect of longer temporal spacing can also be seen in the box 
plots. The ICP and PIV results for June to September 2014, 
especially east of the fault, have smaller IQR and median values 
are closer to the measured displacements in the Browns Valley 
study area. 

Figure 2. Displacement fields in the Y direction from bare earth 
point clouds. Fault traces shown by black lines. (A) ICP results of 
differenced point clouds from 2003 to September 2014. (B) ICP 
results of differenced point clouds from June 2014 to September 
2014. (C) PIV results of differenced point clouds from 2003 to 

September 2014. (D) PIV results of differenced point clouds from 
June 2014 to September 2014. 

 

Figure 3. Displacement fields in the Y direction from geodetic 
marker point clouds. Fault traces shown by black lines. (A) ICP 

results of differenced point clouds from 2003 to September 
2014. (B) ICP results of differenced point clouds from June 

2014 to September 2014. (C) PIV results of differenced point 
clouds from 2003 to September 2014. (D) PIV results of 

differenced point clouds from June 2014 to September 2014. 
Location of profiles for Figure 5 shown by lines A, B, and C. 
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An analysis of Figure 5 shows interesting patterns in the 
profiles from both algorithms. Profiles B and C show distinct 
increase in absolute displacement, or slope change, as the 
profiles cross the fault traces. In large part, the changes at the 
west trace go from near zero west of the trace to near 30 cm of 
displacement east of trace, which we might expect given the 
surveys of slip along that rupture (Hudnut et al., 2014). As a 
whole though, the profiles show the distinct difference in results 
between the algorithms. The PIV results (as confirmed in Figure 
4) have much more noise, exemplified by the many peaks and

valleys across the profiles, whereas the ICP results are much 
smoother and seemingly more reliable. Further work could use 
these types of profiles to better understand the spatial 
distribution of slip in the near field for geophysical models as 
well as determine whether the irregular PIV profile or smooth 
ICP profile better fits the distribution of slip near the fault. 

4. CONCLUSION

Both change detection algorithms provided discernible results 
with varying levels of accuracy and adherence to the known 
displacement fields of the earthquake. Therefore, in conclusion, 
both change detection techniques are able to recover near field 
deformation where other geodetic techniques do not. The faults 
were clearly delineated in all but four results with average right 
lateral displacement estimates for all applications ranging 
between 5 and 39 cm. Compared to the coseismic and 
cumulative displacements listed above, these results cover that 
entire range from 5 to 34 cm in the study area especially 
considering spatial differences in measurement sites and 
assumed noise. Patterns in figures 2 and 3 as well as the average 
displacements also mirror the general decrease in displacement 
moving north along the western fault trace.  

Standard deviations of the best results were at or below an 
accepted ALS horizontal resolution limit of 20 cm. The ICP 
method returns the lowest standard deviations, most 
improvement between temporal gaps and as can be seen in 
figures 2 to 5, displacement fields with the least amount of noise 
and generally the most reliable results with best agreement to 
the independent survey measurements. PIV provides distinctive 
displacement fields and interesting results but the amount of 
error and noise is considerably higher. Reflecting on these 
results, it is clear that ICP is likely the best change detection 
algorithm for ALS near-field deformation estimation.  

The analysis also presents obvious evidence of degradation in 
estimation accuracy with increased temporal separation between 
the two point clouds. The smaller time gap provided more 
consistent results with a standard deviation on average 5cm 
better. This is partially due to the noise built up from natural 
variations in the point cloud, whether anthropogenic or natural. 

Figure 4. Box plots of ICP results and PIV results from geodetic marker point clouds, separated by points east and west of the 
main western fault trace over two temporal periods, 2003 to September 2014 and June 2014 to September 2014. 

Figure 5. Profiles A-C (locations given in Figure 3) showing the 
estimated displacement from left to right for the June 2014 
versus September 2014 point clouds with geodetic markers. 
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However, not all of this degradation is due to the time spacing 
between datasets; the most likely cause of the improvement is 
improved instrumentation and better survey parameters (i.e. 
point density) for the 2014 ALS acquisitions.  
 
Finally, the inclusion of the geodetic markers was shown to 
improve the results from both change detection algorithms. ICP 
showed improvement as a whole as well as noticeable 
improvement for the large temporal spacing datasets while PIV 
showed marginal improvement for one of the comparison 
datasets. This suggests that the geodetic markers help mitigate 
problems due to the point density fall off between old and new 
systems for large temporal gap analyses when conducting ICP. 
However, the lack of considerable improvement using geodetic 
markers with PIV is counter-intuitive considering how particles 
typically found in PIV methods are akin to geodetic markers. 
One possibility to improve PIV results may be to pay more 
attention to the pre-processing of the PIV images. The improved 
coherence from geodetic markers may be negated by the effects 
of pre-process sampling and filtering of the input images. 
Regardless, there is clear evidence that the geodetic marker 
results encourage the use of some classified point clouds in 
differential LiDAR analyses instead of bare earth or unaltered 
clouds. Our future work will continue analysing the PIV 
application for differential LiDAR as well as continue to 
experiment with other change detection methods. We also plan 
to expand the analysis to larger study sites in the Napa Valley. 
This will hopefully provide input observations for geophysical 
inversion models of the Napa earthquake. 
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