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ABSTRACT:

Indoor localization is important for a variety of applications such as location-based services, mobile social networks, and emergency
response. Fusing spatial information is an effective way to achieve accurate indoor localization with little or with no need for extra
hardware. However, existing indoor localization methods that make use of spatial information are either too computationally expensive
or too sensitive to the completeness of landmark detection. In this paper, we solve this problem by using the proposed landmark
graph. The landmark graph is a directed graph where nodes are landmarks (e.g., doors, staircases, and turns) and edges are accessible
paths with heading information. We compared the proposed method with two common Dead Reckoning (DR)-based methods (namely,
Compass + Accelerometer + Landmarks and Gyroscope + Accelerometer + Landmarks) by a series of experiments. Experimental
results show that the proposed method can achieve 73% accuracy with a positioning error less than 2.5 meters, which outperforms the
other two DR-based methods.

1. INTRODUCTION

The advent of sensor-equipped smartphones has enabled a wide
range of applications such as museum and shopping guides (Bih-
ler et al., 2011; Shang et al., 2011), emergency response (Renau
et al., 2007), personal task reminder (Lin & Hung, 2014), asset
tracking (Boustani et al., 2011), search and rescue (Zorn et al.,
2010), advertising (Dhar & Varshney, 2011; Dao et al., 2012),
and location-enabled social networks (Cho et al., 2011). The fun-
damental task of these applications is determining the location of
mobile objects (e.g., a person or an asset). A number of solutions
for indoor positioning have been proposed and developed. They
differ from each other in terms of positioning techniques used,
coverage, accuracy, cost of deployment and maintenance.

WiFi-based indoor positioning is one of the most widely used
indoor localization techniques since it can make use of existing
WiFi infrastructure. However, it has the need to collect finger-
prints, which is time-consuming and labor-intensive, or to know
the exact locations of access points (APs), which is infeasible in
some cases. Also, WiFi technology is recognized as an energy-
hungry technology (Thiagarajan et al., 2011), resulting in a re-
markable reduction in battery life. In order to deal with these
problems, Dead Reckoning (DR) is often used, which can es-
timate the current location in real time given an initial location.
The popularity of smart devices equipped with inertial sensors en-
ables DR to be widely used. It is especially useful for localization
and tracking in the wireless signal denied areas. However, the ac-
cumulated error of DR grows over time, resulting in the long-term
DR practically being useless. Combining DR with other absolute
positioning techniques such as WiFi (Jin et al., 2013) and UWB
(De Angelis et al., 2010) can eliminate both the accumulated lo-
cation error of DR and the jumping estimations by absolute po-
sitioning techniques for a short time. However, these absolute
localization techniques are not always available and often need to
spend extra cost on the deployment and maintenance.

A promising solution to solve the accumulated error problem of
DR is the fusion of spatial information, which can achieve rela-

tively accurate indoor localization with little or with no need for
extra hardware. There are two commonly-used methods of fus-
ing spatial information to improve location accuracy, namely map
matching and spatial model-aided method (Shang et al., 2015). A
typical map matching method is landmark matching (Wang et al.,
2012). The advantages of landmark matching method are its sim-
plicity and high operation efficiency. However, it is sensitive to
the completeness of landmark detection, and inaccurate match-
ing may lead to a larger localization error. Other map match-
ing methods like trajectory matching and Bayesian approaches-
based matching can usually achieve higher accuracy, but they are
computationally expensive, making them impractical for appli-
cations running on resource-limited mobile devices like smart-
phones. Another method of fusing spatial information to enhance
localization accuracy is using spatial models. Compared with ba-
sic indoor maps, indoor spatial models include richer informa-
tion, not only static objects (e.g., rooms, doors, sensors, furni-
tures) and dynamic objects (e.g., people), but also their spatial
relationships. With more geometric, topological and semantic in-
formation, spatial models can be used to significantly improve lo-
cation accuracy as well as to achieve more reliable location-based
services (Becker & Durr, 2005; Stevenson et al., 2010). However,
automated methods for reconstructing indoor spatial models are
in their infancy and manual methods are labor-intensive and slow
(Diaz-Vilarino et al., 2015).

This study aims to achieve efficient and accurate indoor local-
ization by utilizing the proposed landmark graph. Although lots
of research work has been done in this field, some critical is-
sues still require to be explored. Existing research on fusing spa-
tial information is either computation-intensive or sensitive to the
completeness of landmark detection (for the landmark matching
method). We solve this problem by proposing the concept of the
landmark graph, which is a directed graph where nodes are land-
marks and edges are accessible paths with heading information.
Heading estimation is important for accurate indoor localization.
Prior work focuses on integrating different sensor data to obtain
accurate, specific heading estimation. However, we observe that
users do not move arbitrarily in some limited environments and
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they usually follow a relatively fixed motion pattern. For exam-
ple, users tend to walk along a straight line in the corridor envi-
ronments. Therefore, we argue that it is not necessary to obtain
specific heading readings in some cases. On the contrary, con-
straining users’ motion direction can help achieve higher location
accuracy when they are located in some limited environments like
corridors since the constrained direction is more robust than spe-
cific heading readings provided by the compass or gyroscope.

2. SYSTEM OVERVIEW

2.1 Architecture

The system architecture is shown in figure 1, including three main
components, namely motion model (which consists of step length
and heading estimation), landmark recognition and detection, lo-
cation estimator. The estimation of step length is based on the
accelerometer readings, which can be calibrated by the results of
the location estimator. Compass readings and gyroscope readings
are jointly used to compute the direction. All these sensor data
in figure 1 and WiFi measurements (which is optional) are used
to recognize and detect landmarks. While the locations of most
landmarks (e.g., stairs, doors, corners, elevators) can be derived
from floor maps, sensor data can provide extra landmarks like
magnetic landmarks. The overall process falls into two phases:
firstly, a landmark graph is constructed based on map information
and these sensor readings; then, the location estimator computes
users’ location according to the constructed landmark graph, out-
puts from the motion model component, and real-time landmark
detection results. The details about landmarks will be introduced
in Section 2.4.
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Figure 1: System architecture

2.2 Step Length Estimation

When users are walking, there is a repetitive and periodical pat-
tern in the accelerometer readings, as depicted in figure 2. By
utilizing the repetitiveness and periodicity of users’ walking, we
can compute how many steps users have traveled and further in-
fer the distance they have moved since the length of each step
for a particular user is relatively fixed. To avoid the influence of
smartphone’s orientation on the step detection method, we only
utilize the magnitude of the acceleration:

at =
√
axt

2 + ayt
2 + azt

2 (1)

where axt , ayt , azt are the accelerometer readings along the X-
axis, Y -axis and Z-axis at time t, respectively. Initially, the step
length is empirically set to a certain value (e.g., 0.65 meters for
this research), and then is adaptively adjusted to reach an optimal
value for the user according to landmark graph constraints and
sensor readings.
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Figure 2: Repetitiveness and periodicity of users’ walking (The
user walks with the phone in the hand without swinging).

2.3 Heading Estimation

Generally, the smartphone’s compass can provide the angle of its
orientation relative to the perceived north, but it is affected by
the ferromagnetic materials and phone’s poses. Therefore, some
researchers use only the gyroscope to compute the user’s head-
ing (Wang et al., 2012), which eliminates the magnetic effect on
the compass. However, the gyroscope has the drift problem. An
effective solution is using Kalman filter to combine the compass
readings and gyroscope readings, which can eliminate the mag-
netic effect on the compass and the drift problem of the gyroscope
(Shang et al., 2015). This combination can provide relatively ac-
curate heading estimation when the phone is held in the hand with
Y-axis consistent with users’ movement direction. However, it
is not always the case since users may put their phones in any
poses, making it difficult to retrieve the information related to
users’ turning from the gyroscope readings.

The main hypothesis of this research is that it is not necessary
to compute the exact movement direction in corridor-rich indoor
environments for indoor localization. This is because the user can
only move in two directions in a corridor. In this paper, we make
use of the landmark graph where the direction between two land-
marks is constrained and pre-set. The compass and gyroscope are
only used to provide coarse heading and detect whether there is
a turn or corner. However, we adopt the Kalman filter to fuse the
compass readings and gyroscope readings for providing heading
information when the user is located in a big open space where
there are few obstacles or no other constraints (e.g., a big room),
similar to the work of Shang et al. (2015).

2.4 Landmark Detection & Landmark Graph Construction

Landmarks in this research refer to location points where users
behave in a predictable and identifiable pattern or where sensor
data present a distinct change pattern. Corners or turns, for in-
stance, compel users to change their walking direction; a door
imposes users to switch their motion states from walking to still.
The locations of most landmarks like doors, elevators, stairs, cor-
ners and turns can be obtained from floor maps, which we as-
sume are available since indoor maps are a basic requirement for
location-based services and sensing applications. Figure 3 shows
those landmarks that can be inferred from maps. Other landmarks
like magnetic landmarks (e.g., the location of a metal equipment
where the magnetometer readings present a distinct change pat-
tern) and WiFi landmarks (e.g., the location of an AP where the
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smartphone has the strongest signal strength) can be gradually
learned from sensor readings, which can be used to assist subse-
quent localization.

The detection of landmarks is based on the distinct change pat-
tern in one or more types of sensor readings. Specifically, the
door landmarks are detected by utilizing accelerometer readings
and compass readings. A door opening operation is often asso-
ciated with a change in users’ motion state and a change in their
walking direction. The corner landmarks are detected by using
both compass readings and gyroscope readings. Only when both
the variation in compass readings over a certain time and that
in gyroscope readings over the same time period exceed an an-
gle threshold and an angular velocity threshold, respectively, we
think this point is likely a corner landmark. Magnetic landmarks
are detected according to whether the average value of a window
of magnetometer readings exceeds a pre-set threshold. The detec-
tion methods for corner landmarks and magnetic landmarks are
the same as those in the work of Shang et al. (2015). The barom-
eter data are used to detect both staircase landmarks and elevator
landmarks, which can be distinguished from each other using the
pressure derivatives (Gu et al., 2015).
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Figure 3: Landmarks derived from maps

Then, we can construct the corresponding landmark graph us-
ing map information and outputs from the landmark detection
component. A landmark graph consists of nodes (landmarks)
and edges (accessible paths). A node is represented by a tuple
of < ID,Property, Condition > where Property indicates
whether it is a staircase landmark or other types of landmark
and Condition denotes the detection condition of this landmark.
Similarly, an edge is represented by a tuple of < ID1, ID2,
Direction, Distance > where ID1 and ID2 are the identi-
fiers of two landmarks that the edge connects, Direction is the
direction of the path connecting these two landmarks relative to
the perceived north, and Distance is the distance between them.
Figure 4 gives an example of the landmark graph that consists of
part of landmarks in figure 3.
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Figure 4: An example of landmark graphs

2.5 Dead Reckoning-based Location Estimation with Land-
mark Graph Constraints

The basic idea of DR is to infer the current position according to
the moving direction, velocity and sampling interval, given the
initial position. Suppose that (xt, yt, zt) and (xt+1, yt+1, zt+1)
are the locations of a user at time t and t + 1, respectively. dSt

is the corresponding displacement and dθt+1 is the variation of
the direction θ, then the equation set for estimating his or her
real-time locations can be written as:

xt+1 = xt + dSt sin θt
yt+1 = yt + dSt cos θt
θt+1 = θt + dθt+1

zt+1 = zt + f(bt+1 − bt)

(2)

where f is a function determining the change in the height ac-
cording to barometer readings b. DR method suffers from the
problem of the accumulated error, which means that it needs to
be periodically calibrated. In this paper, we make use of the con-
straints from the proposed landmark graph to solve this problem.
Correspondingly, the equation set (2) can be rewritten as: xt+1 = xt + dSt sin(Ht(θcompass, θgyro, θgraph))

yt+1 = yt + dSt cos(Ht(θcompass, θgyro, θgraph))
zt+1 = zt + f(bt+1 − bt)

(3)

where Ht is a function that offers the constrained walking direc-
tion by fusing compass readings θcompass, gyroscope readings
θgyro and the direction θgraph provided by the landmark graph.
The compass and gyroscope are jointly used to provide the coarse
heading information in order to eliminate the influence of metal
devices on the compass. Then, this coarse heading is compared
with the direction stored in the landmark graph. When the varia-
tion between them is less than a heading threshold, the direction
from the landmark graph is adopted as the user’s heading. This
is especially useful in the corridor environments where the user
can only moves in two directions. When the variation exceeds
the pre-set threshold, the heading provided by the compass and
gyroscope is used as the user’s heading.

The accumulated error of DR can be periodically eliminated when
the user is detected to be at the location of a landmark, so as to
maintain a certain accuracy. When there are more than one land-
mark within the user’s reach, we can determine which one to be
used for calibrating his or her location according to the matching
degree between his or her historical walking trajectory and the
landmark graph.

3. EXPERIMENTS AND RESULTS

3.1 Experimental Setup

The proposed indoor localization solution was evaluated by a se-
ries of experiments conducted within the Infrastructure Engineer-
ing building located at the Parkville campus of the University
of Melbourne and the surroundings of this building. This office
building consists of five floors, which is a typical office environ-
ment, including elevators, staircases, corridors, office rooms and
electronic equipments. The length of pre-set test path is about
163 meters, going through two floors of this building.

The device we used is a Samsung Galaxy S III phone equipped
with the accelerometer, magnetometer, gyroscope, and barome-
ter. The tester walked along the pre-set path with the phone in
the hand. During the experiments, the tester was required to re-
port the pre-set markers they encountered to evaluate the location
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accuracy. The data recorded include outputs from the accelerom-
eter, gyroscope, compass, and barometer. All these data were
recorded with their corresponding timestamps so that we could
align data from different sensors to jointly infer ground truth lo-
cation points.

3.2 Accuracy Evaluation Method

The accuracy evaluation method in the research of Shang et al.
(2015) was used in this study to assess the location accuracy. The
basic idea of this method is shown in figure 5, in which the in-
terpolation method is used to obtain the actual locations between
two makers according to sampling interval and timestamps. The
distance between two markers was 2 meters in this study. After
computing the localization error at each location point, the over-
all error can be calculated using the following formula:

e =

N∑
i=1

ei =

N∑
i=1

∥∥∥L(pi)− L(p
′
i)
∥∥∥ (4)

where L(pi) is the location of the ith marker (including the vir-
tual markers generated by interpolating), and L(p

′
i) is the esti-

mated location corresponding to the ith marker.
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Figure 5: The accuracy evaluation method.

3.3 Results

It is a prerequisite for DR-based localization methods to know the
initial location, which can be done by manual input of users or by
using other localization systems like WiFi fingerprinting-based
systems. It is also feasible to infer the initial location by uti-
lizing the constructed landmark graph and sensor data collected.
However, the focus of this paper is not how to obtain the initial
location, and hence we simply assume that the initial location is
known.

Next, we analyze the performance of the proposed method, be-
ginning with the explanation of why we need to constrain users’
walking direction, then presenting the localization result of using
the landmark graph constraints.

Figures 6(a) and 6(b) show that the readings for both the com-
pass and the gyroscope fluctuate even if the user walks along
a straight path. This fluctuation is especially significant when
the user walks in electronic equipment-rich environments even
if he or she does not take a turn. The error in the heading esti-
mation would certainly result in an error in localization results.
This problem can be addressed by constraining users’ heading
when they are located in the limited environments. This is be-
cause with the constrained direction, the user’s heading remains
unchanged when he or she walks along a straight path, which
would not cause a localization error.
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Figure 6: The changes in the compass and gyroscope readings
when the user walks along a straight path with the phone in the
hand (without swinging)

The DR method suffers from the accumulated error problem, which
is illustrated in figure 7. In figure 7, the black line represents a
part of the ground-truth path that the user walks on. The blue
line with the dot marker is the corresponding result of DR using
the compass to provide the heading, while the green line with the
plus marker is that using the gyroscope reading for calculating the
heading where the initial heading value is given by the compass.
From this figure, we can see that the error of DR increases sig-
nificantly with time, which means that landmarks or other spatial
information are needed to bound the localization accuracy.
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Figure 7: The accumulated error of the DR method

Next, we compare the localization accuracy of the proposed method
with that of the commonly-used landmarks+DR methods. Fig-
ure 8 shows the results of different localization methods, from
which we can see that the proposed method outperforms the other
two methods. Specifically, our method can achieve 73% accuracy
with the error less than 2.5 meters, compared to 45% for the other
two methods. When the accuracy reaches up to 100%, the cor-
responding error for our method is less than 3.5 meters, but the
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errors for the other two methods reach to 7.2 meters (Gyro + Acc
+ Landmarks) and 10 meters (Compass + Acc + Landmarks), re-
spectively.
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Figure 8: Performance comparison of different methods

4. CONCLUSION & DISCUSSION

We present a novel localization algorithm using the landmark
graph. By constraining the heading between two landmarks and
using detected landmarks for calibrating the accumulated error of
DR, we achieve 73% accuracy with a positioning error less than
2.5 meters, which is good enough for a variety of indoor applica-
tions.

However, there are still some limitations of the proposed algo-
rithm to be solved in the near future. Firstly, we consider only the
situation that the user carries his or her smartphone in the hand
without significant swinging, which may not be always the case
in real world. Secondly, the extraction of landmarks from maps
is manually done in this research, which may introduce an er-
ror on determining the locations of landmarks. In addition, only
the walking state is considered when conducting localization. In
fact, users in different motion states have varying step lengths.
For example, the step length for running is different from that for
walking.

In the future, we will consider different smartphone poses and
users’ motions states, which will enable our algorithm more prac-
tical. We also explore how to automatically determine the lo-
cations of landmarks, including those that can be inferred from
maps and those that are not be reflected by maps. In addition,
the performance of our method can be further improved by de-
veloping more accurate step detection methods and step length
estimation methods.
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