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ABSTRACT: 

 

Traffic congestion and its associated environmental effects pose a significant problem for large cities. Consequently, promoting and 

investing in green travel modes such as cycling is high on the agenda for many transport authorities. In order to target investment in 

cycling infrastructure and improve the experience of cyclists on the road, it is important to know where they are. Unfortunately, 

investment in intelligent transportation systems over the years has mainly focussed on monitoring vehicular traffic, and 

comparatively little is known about where cyclists are on a day to day basis. In London, for example, there are a limited number of 

automatic cycle counters installed on the network, which provide only part of the picture. These are supplemented by surveys that are 

carried out infrequently. Activity tracking apps on smart phones and GPS devices such as Strava have become very popular over 

recent years. Their intended use is to track physical activity and monitor training. However, many people routinely use such apps to 

record their daily commutes by bicycle. At the aggregate level, these data provide a potentially rich source of information about the 

movement and behaviour of cyclists. Before such data can be relied upon, however, it is necessary to examine their 

representativeness and understand their potential biases. In this study, the flows obtained from Strava Metro (SM) are compared with 

those obtained during the 2013 London Cycle Census (LCC). A set of linear regression models are constructed to predict LCC flows 

using SM flows along with a number of dummy variables including road type, hour of day, day of week and presence/absence of 

cycle lane. Cross-validation is used to test the fitted models on unseen LCC sites. SM flows are found to be a statistically significant 

(p<0.0001) predictor of total flows as measured by the LCC and the models yield R squared statistics of ~0.7 before considering 

spatio-temporal variation. The initial results indicate that data collected using fitness tracking apps such as Strava are a promising 

data source for traffic managers. Future work will incorporate the spatio-temporal structure in the data to better account for the 

spatial and temporal variation in the ratio of SM flows to LCC flows. 
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1. INTRODUCTION 

1.1 Cycling in cities 

Traffic congestion and its associated environmental effects pose 

a significant problem for large cities. Consequently, promoting 

and investing in green travel modes such as cycling is high on 

the agenda of many transport authorities. In order to target 

investment in cycling infrastructure and improve the experience 

of cyclists on the road, it is important to know where they are. 

Unfortunately, investment in intelligent transportation systems 

over the years has mainly focussed on monitoring vehicular 

traffic, and comparatively little is known about where cyclists 

are on a day to day basis. In London, for example, there are a 

limited number of automatic cycle counters installed on the 

network, which do not have sufficient spatial coverage to 

provide an accurate picture. These are supplemented by surveys 

that have better spatial coverage, but are carried out too 

infrequently to be useful for day to day operations.  

 

1.2 The opportunity of Big Data 

In recent decades, advances in computing power, the internet 

(and internet of things), mobile technologies, and data storage 

have heralded the era of ‘Big Data’. From the transport 

engineering perspective, the emergence of the citizen as a 

sensor (Goodchild, 2007) has provided a rich source of human 

mobility data that can supplement the traditional data sources 

used in intelligent transportation systems. For example, it has 

been demonstrated empirically that GPS data collected from 

smart phones can provide accurate estimates of vehicular traffic 

velocities with a relatively modest penetration rate (Herrera et 

al., 2010). The most well-known operational example is Google 

traffic, which leverages mobility data from Android users and 

Waze subscribers to generate live traffic maps, which feed into 

its routing algorithms. 

 

In many cases, Big Data can be used in innovative ways to 

generate insights beyond their intended use. For example, 

internet search data can be used in recommender systems for 

targeted advertising (Lü et al., 2012), and to ‘nowcast’ 

economic trends (Varian, 2014); and social media data can be 

used to detect emergencies (Cheng and Wicks, 2014). It is 

through such work that the opportunities of Big Data can be 

fully realised.  

 

The potential of mobility tracking technology to reveal insights 

into cyclists’ behaviour has long been recognised in the 

academic community. Amongst others, (Broach et al., 2012) 

used GPS to track 164 cyclists in Portland, Oregon, USA, 

generating a route choice model, and (Hood et al., 2011) carried 

out a similar study in San Francisco. (El-Geneidy et al., 2007) 

used GPS to estimate bicycle travel speeds of different user 

groups in Minneapolis, Minnesota, USA. Such studies are 
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tremendously important in terms of understanding cyclists’ 

behaviour, but the data are not sufficient for use in day to day 

traffic operations.  

 

While authoritative sources of cycling data remain few, many 

cycle commuters now routinely record their activities using 

GPS enabled smart phones, bike computers, watches or other 

devices. These activities are uploaded to services such as 

Strava, Garmin Connect, Map My Ride, Bike Citizens and 

Endomondo, amongst others. At the aggregate level, such data 

provide a rich source of information that describes the daily 

activities of urban cycle commuters. Before such data can be 

relied upon, however, it is necessary to examine their 

representativeness and understand their potential biases. 

 

In this paper, the flows obtained from one activity tracking 

application, Strava, are compared with those obtained from a 

validation source, the 2013 London Cycle Census (CC). A set 

of linear regression models are constructed to predict CC flows 

using Strava flows along with a number of additional variables. 

The paper proceeds as follows; in section 2, the data are 

described. The methodology is outlined in section 3. The results 

are presented and discussed in section 4 before some 

conclusions are offered in section 5. 

 

2. DATA DESCRIPTION 

2.1 Strava Metro 

Strava is a popular mobile and web based application that stores 

GPS based personal tracking data and provides value added 

services. The selling point of Strava is the so called ‘segment’: 

when users upload GPS tracks they are automatically matched 

to user defined street segments and the time taken to traverse 

each segment is calculated. Segments have leader boards, and 

cyclists compete to become ‘king’ or ‘queen of the mountain’ 

on a particular segment. Although it is this competitive aspect 

that has made Strava popular, many cyclists now routinely 

upload their commuting activities to the app, and there is a 

‘commuter’ tag to indicate this. The dataset used here is an 

output of Strava’s Metro initiative (http://metro.strava.com/). It 

consists of flows and travel times/speeds generated from Strava 

activities matched on a minute by minute basis to individual 

road segments (termed links here) on Ordnance Survey’s 

MasterMap Integrated Transport Network (ITN), shown in 

Figure 1. Data are provided for the entirety of 2013.  

 

 
Figure 1. Map of the CC locations and ITN 

 

 

2.2 The London Cycle Census 

The London Cycle Census (CC) is a single day survey of cycle 

flows in Central London, taken over a four week period in April 

and May 2013. The survey was managed by the Traffic Analysis 

Centre at Transport for London (TfL). In total there are 164 

survey sites, with traffic flows counted in both directions where 

necessary. Survey locations were chosen to reflect a range of 

cycling conditions and geographic spread. The manual 

classified link counts cover 14 hours (06:00-20:00), and were 

reported in 15 minute time periods. Each site was surveyed on a 

single day only. A mix of manual counts and video surveys 

using temporary cameras were used. The location of the CC 

sites is shown in Figure 1. 

 

2.3 Matching CC counts to SM links 

In order or carry out the comparative analysis between Strava 

counts and the CC counts, the CC locations are matched to the 

ITN. The CC survey sites are geolocated using geographic 

coordinates, street name, direction and bearing. This is 

sufficient to automatically match the majority of the sites to ITN 

road links using the following steps: 

 

1. Assign each point to its nearest ITN link. 

2. Match the road name of the CC site with the road 

name of the matched ITN link, accounting for spelling 

differences. 

a. If not matched, manually check and reassign 

incorrectly matched CC sites to correct ITN 

link. 

3. Calculate bearing of ITN link based on location of its  

start and end node and assign Strava count to the 

correct direction 

4. Match the CC counts to the Strava counts based on 

site and direction. 

 

Some of the CC sites are cycle only and not located on the ITN, 

so they are not included in the analysis. In total, 298 sites are 

successfully matched (two directional sites are double counted). 

The CC counts and Strava counts are aggregated into 1 hour 

periods between 6 am and 8pm, leaving a total of 289*14=4172 

observations.  

 

3. METHODOLOGY 

3.1 Model description 

The purpose of this study is to assess the potential of Strava 

data to estimate total cycle flows on the road network. To do 

this, we construct an ordinary least squares (OLS) regression 

model, with CC flow as the dependent variable, and Strava flow 

as an independent variable along with a range of covariates that 

are shown in Table 1. We use OLS as it is one of the simplest 

and most widely understood statistical modelling techniques 

and provides a base level of performance.  

 

Dummy variables are binary, with n-1 coefficients being 

estimated for each variable, where n is the number of levels. 

The variables are added to the model sequentially to examine 

the effect on model performance. In total, 6 models are 

constructed, which are shown in Table 2. All models are trained 

using R statistical package. Cross-validation is carried out using 

the DAAG package (MAINDONALD AND BRAUN, 2010). 
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Table 1. Variable description 

 

Variable Description 

Str_Flow Strava Flow: The observed number of 

cyclists recorded in the Strava data 

Hr Hour of day: A dummy variable that encodes 

the hour of the day (0600:1900hrs) 

RT Road Type: A dummy variable containing 

road type from ITN attribute table with 

following categories: 

1. Local streets/ private roads 

2. Minor roads 

3. B Roads 

4. A Roads 

CL Cycle lanes: Dummy variable encoding 

presence (1) or absence (0) of cycle lane 

(2010 data). 

DC Dual Carriageway: Dummy variable 

encoding single (0) and dual (1) carriageway. 

SD Survey date: The cycle census was carried 

out over a number of days. This may have an 

effect due to differences in prevailing 

conditions on those days. This variable is 

used to assess the significance of the effect. 

 

Table 2. Model descriptions 

 

Model Variables 

1 CC~Str_Flow 

2 CC~Str_Flow + Hr 

3 CC~Str_Flow + Hr + RT 

4 CC~Str_Flow + Hr + RT + CL 

5 CC~Str_Flow + Hr + RT + CL + DC 

6 CC~Str_Flow + Hr + RT + CL + DC + SD 

 

4. RESULTS 

4.1 Predictive accuracy 

Table 3 shows the model fit (adjusted R squared) and cross 

validation error of each of the trained models. Cross validation 

error is measured in terms of root mean squared error. It can be 

seen that the Strava flow alone results in a model with an 

adjusted r squared of 0.616. Adding the Hr and RT variables 

raises this to 0.654 and 0.675 respectively. The addition of the 

CL and DC variables does not improve the model fit. It is worth 

noting that the CL data was produced in 2010, and does not 

contain improvements in cycling infrastructure made since then. 

Therefore, some ITN links may include cycle lanes that are not 

accounted for in the CL variable. An updated cycle lanes layer 

may increase the contribution of the CL variable. The SD 

variable does not increase model fit, but the CV RMSE reduces 

slightly. This indicates that the survey date has a small effect on 

the relationship between the CC flows and the independent 

variables.   

 

Table 3. Model errors 

 

Model Adj. Rsq CV RMSE 

1 0.616  79.2  

2 0.654 75.2 

3 0.675 73.0 

4 0.675 73.0 

5 0.675 73.0 

6 0.675 72.9 

4.2 Model coefficients 

Table 4 shows the coefficients of model 6. Although the 

principle of parsimony would indicate that model 3 should be 

preferred, we show model 6 here to illustrate the contribution of 

each of the parameters. Str_Flow is strongly significant, 

confirming that Strava flows correspond well to the CC flows. 

All of the Hr dummy variables are significant. The coefficients 

are positive in the peak hours of 8-9 AM and 5-6 PM, and 

negative in the intervening period. This indicates that cycle 

commuters have similar temporal patterns to vehicular 

commuters. The RT variables are all significant at the 99% 

confidence level. A-roads have the highest coefficient, 

indicating that cyclists tend to cycle more on busier roads. This 

may be partially attributed to the placement of London’s cycle 

superhighways on main arterial routes. It may also reflect the 

demographic of Strava users, the majority of whom were males 

aged 25-44 at the time the dataset was generated. It can be 

surmised that this demographic is more likely to prioritise speed 

over safety when planning a route. 

 

Table 4. Model 6 coefficeints 

 

Coefficient Estimate Std. 

Error 

t value p value 

Intercept -50.59 25.19 -2.01 0.044676 

Str_Flow 18.98 0.27 69.60 0 

Hr_6 -45.42 5.92 -7.67 2.11E-14 

Hr _7 -26.71 5.93 -4.50 6.94E-06 

Hr _8 41.82 5.99 6.98 3.31E-12 

Hr _9 17.89 5.92 3.02 0.002512 

Hr _10 -24.75 5.93 -4.17 3.06E-05 

Hr _11 -32.44 5.93 -5.47 4.83E-08 

Hr _12 -31.11 5.93 -5.24 1.64E-07 

Hr _13 -28.51 5.93 -4.81 1.60E-06 

Hr _14 -26.45 5.93 -4.46 8.57E-06 

Hr _15 -25.31 5.93 -4.27 2.02E-05 

Hr _16 -11.76 5.92 -1.99 0.047107 

Hr _17 24.27 5.92 4.10 4.29E-05 

Hr _18 37.61 5.95 6.32 2.86E-10 

RT_4 39.68 2.90 13.69 9.22E-42 

RT_3 25.50 5.08 5.02 5.49E-07 

RT_2 30.84 3.69 8.36 8.29E-17 

CL 4.92 2.92 1.68 0.092113 

DC 1.41 3.41 0.41 0.678344 

SD 0.73 0.22 3.30 0.000975 

 

 

The CL coefficient is only weakly significant at the 90% level 

for the reasons outlined in section 4.1. DC is non-significant. 

The SD variable is strongly significant at the 99% level, 

indicating that the day on which the survey was carried at each 

site is important. This suggests that there is a need to study the 

seasonal and weekend/weekday patterns in more detail, but this 

is not possible using the CC data alone.  
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4.3 Residual analysis 

Figure 2 shows a histogram of the residuals of model 6. The 

residuals have zero mean, and they appear to be approximately 

normally distributed. However, there are a large number of 

extreme outliers, both positive and negative. This indicates that 

the simple OLS model is not capable of fitting the links with 

extremely low flow and extremely high flow simultaneously. In 

particular, low flow links tend to be systematically over-

predicted.  

 

 
Figure 2. Histogram of residuals of model 6 

 

Furthermore, the simple model here cannot account for 

variations in the relationship between CC flow and hour of day 

caused by the inbound or outbound direction of a link. An 

example of this is shown in figure 3, which shows the same link 

in two directions. The inbound link has a higher flow in the AM 

peak, while the outbound link has a higher flow in the PM peak. 

In both cases, the non-peak flow is over-estimated while the 

peak flow is slightly under estimated. This could be accounted 

for by the incorporation of additional variables, or the use of 

nonlinear models.  

 

5. CONCLUSIONS 

This study presents an initial attempt at validating large scale 

activity tracking app data for the purpose of estimating cycle 

flows in a major city. A set of simple OLS models were 

constructed to estimate CC flow using Strava flow, along with a 

number of covariates. It was found that Strava flow is a good 

predictor of CC flow, even with a simple model specification. 

However, more work is required before such data can be used in 

the context of transport operations. First, the spatial and 

temporal variation in the model fit needs to be explored in order 

to uncover and account for potential biases in the data. Second, 

different model structures need to be explored that can cope 

with the large variations in flows between links of different 

types. Alternatively, different models may be used for different 

link types. In future work, we will extend our validation efforts 

to TfL’s network of automatic cycle counters (ACCs). 

 

 

 
Figure 3. Example of model performance on a single link; a) 

inbound, and b) outbound 
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