
 AN OBJECT-RELATIONAL IFC STORAGE MODEL BASED ON ORACLE DATABASE

Hang Li*, Hua Liu, Yong Liu, Yuan Wang

School of Urban Design, Wuhan University, Wuchang District, Wuhan, Hubei Province, P.R.C – (2014202090009, liu.hua, liuyong,
wangyuan0827)@whu.edu.cn

Commission II, ThS14 - Recent Developments in Open Data

KEY WORDS: IFC, Object-Relational, ORDBMS, Oracle, Storage

ABSTRACT:
With the building models are getting increasingly complicated, the levels of collaboration across professionals attract more attention
in the architecture, engineering and construction (AEC) industry. In order to adapt the change, buildingSMART developed Industry
Foundation Classes (IFC) to facilitate the interoperability between software platforms. However, IFC data are currently shared in the
form of text file, which is defective. In this paper, considering the object-based inheritance hierarchy of IFC and the storage features
of different database management systems (DBMS), we propose a novel object-relational storage model that uses Oracle database to
store IFC data. Firstly, establish the mapping rules between data types in IFC specification and Oracle database. Secondly, design the
IFC database according to the relationships among IFC entities. Thirdly, parse the IFC file and extract IFC data. And lastly, store IFC
data into corresponding tables in IFC database. In experiment, three different building models are selected to demonstrate the
effectiveness of our storage model. The comparison of experimental statistics proves that IFC data are lossless during data exchange.

1．INTRODUCTION
Construction projects are comprehensive and multistage
activities which involve design, construction, operation
management, supervision and even demolition. Participants in
different stages may use different professional applications to
facilitate their work. Yet the seamless share of different models
is a problem that has long vexed the architects. It is estimated
that inefficient interoperability results in a total cost of $15.8
billion per year in US alone (Gallaher, 2004). To solve this
problem, buildingSMART alliance® (formerly IAI, Industry
Alliance for Interoperability), an international non-profit
organization, developed IFC data model to facilitate the
exchange of information among software applications used in
the construction industry. IFC is a platform neutral and open
file format specification. It defines an EXPRESS based
entity-relationship model consisting of hundreds of entities
organized into an object-based inheritance hierarchy. These
entities cover information of every aspect of a building
lifecycle. Examples of the entities include building elements
such as IfcColumn, geometry such as IfcBoundingBox, and
basic constructs such as IfcCartesianPoint.

Currently, IFC data are managed by file system, including ifc
(Zhao Y, 2008) and ifcXML (Nour M, 2009) format files. On
one hand, although IFC specification covers all the information
required in project lifecycle, the architectural professional
software are specialized in just one construction stage, loss of
information may be occurred during the format conversion
among different applications (A. Kiviniemi, 2005). On the
other hand, file1 system does not support the creating, reading,
updating and deleting (CRUD) operations on IFC data.
Therefore, the current file-based management method weakens
the exchangeability of IFC to some extent.

In recent years, studies on database-based storage of IFC data
have been continuously carried out. Generally, the researchers
* Corresponding author

take advantage of relational database management systems
(RDBMS) to overcome the deficiencies in file-based storage
and have made some achievements. But since RDBMS doesn’t
support the storage of object type data, the conflicts between
RDBMS and OO features in IFC are still not resolved (see
section 2).

The widespread use of multimedia data and other complex
structure data forces DBMS to support features associated with
object-orientation, which developed into object-relational
database management system (ORDBMS). It is able to store
objects as columns of a relation table. Typically, Oracle
database had been able to support object-oriented development
since 1997. The Procedural Language/Structured Query
Language (PL/SQL) acting as an extension of SQL enables
developers to declare variable, write loop statement and create
procedures, functions, and types. The core concepts of OOP,
including inheritance, overloading and polymorphism are also
supported by Oracle, which is suitable to reserve the
inheritance and containment relationships among IFC entities.
Therefore, in this paper, we propose an object-relational IFC
storage model based on Oracle database.

In object-oriented programming (OOP) like C++, an object of a
subclass type is permitted to be treated as an object of any
superclass type, which is called upcasting. It enables
developers to build complicated programs using simple syntax.
Similarly, in ORDBMS, a column of base type is able to store
the instances of all its derived types. In this way, by designing
the database, we can just use a few tables to store all IFC
instances and no more need to create a table for each entity in
IFC, which not only significantly reduces the complexity of the
database, but also improves the data management efficiency.

The rest part of this paper is organized as follows. Firstly, the
previous work is briefly introduced in Section 2. Secondly, the
details of object-relational IFC storage model are discussed in
section 3. In section 4, an experiment is presented to verify the
feasibility of the model. And in section 5, we extend the storage

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-625-2016

625

prototype in practical application situations. Finally, we
conclude this work in section 6.

 2．RELATED WORK
Researches on improving the storage performance of IFC data
had been carried out a long time before. Generally, these
studies proposed using databases to substitute the current
file-based data management. According to the underlying
databases they applied, previous researches can be basically
derived into three classes: relational-based, object-based and
object-relational based.

Majority of the work store IFC data into traditional RDBMS.
Early exploration was carried out by researchers in Technical
Research Centre of Finland (VTT, 2002). They developed an
IFC-based server called IFC Model Server (IMSVR), which
enables IFC compatible applications communicate mutually
through the internet. It utilizes EXPRESS XML Schema
Converter (EXC) to automatically convert IFC EXPRESS
schema to Database Schema (SQL) and thereby store IFC
model data into RDB. You et al (You, 2004) use GTCIS2SQL,
a relational database implementation of CIS/2, to translate
EXPRESS into RDB SQL. Similarly, Eurostep Model Server
(EMS) developed by Eurostep (Karstila, 2002) uses Product
Model Query Language (PMQL) as a substitute for the XML
Parser to convert an IFC file into SQL code.

Although RDBMS has advantage in performance, stability and
usability, it has limited supports for object oriented features.
First, tremendous efforts are needed to map every entity in IFC
into a relational table in RDB. Second, a database with
hundreds of tables is unmaintainable and inefficient in data
management. So, there is a huge barrier between the Object
Relational Mapping (ORM).

To avoid ORM, researchers start trying to store IFC data in
object-oriented databases management system (OODBMS).
Tanyer and Aouad proposed a 4D CAD system (A.M. Tanyer,
2005), in which the lowest layer is OODB called ‘EXPRESS
Data Manager’ (EDM). Po-Han Chen et al implement an
IFC-based information server to facilitate the interoperability
among multidisciplinary AEC software applications. The
building components are encapsulated in Java Beans (Chen,
2005).

Data in OODB are stored in the form of objects as used in OOP.
So it has a natural advantage to express entities in IFC.
However, OOBD is far less prevalent than RDB. The
application of OODB is just in limited areas, typically
geographic information system (GIS). Besides, the standards
(e.g. Object Database Standard ODM, Object Query Language)
and tools (e.g. DB4O, MyOODB) of OODB are also less
popular than those in RDB. Therefore, OODB can hardly meets
the requirements of developers.

Object-relational database management system (ORDBMS) is
a preferable solution for the storage of IFC data. H. Kang and

G. Lee (H. Kang, 2009) develop a set of rules to map the IFC
model to an object-relational database. However, no
experiments are conducted to verify the feasibility of the idea.
Therefore, the high performance storage of IFC data has yet to
be satisfactorily solved.

3．OBJECT-RELATIONAL IFC STORAGE SCHEMA
3.1 Mapping Rules
IFC specification is defined with EXPRESS language, in which
data types contain primitive, enumeration, selected and entity
type. Primitive Data Type are simple and atomic, the other
complicated composite types can be recursively constructed
starting from primitive type. As shown in Table 1, primitive
data types can be directly corresponded to built-in types in
Oracle.

IFC Data Type Oracle Data Type
REAL NUMBER
INTEGER INTEGER
NUMBER INTEGER
STRING/STRING(n) VARCHAR2(n)
BOOLEAN NUMBER(1)
LOGICAL NUMBER(1)
BINARY BLOB

Table 1. Mapping of primitive data type
Enumeration is similar in concept to “enum” in common
programming languages, which allows an attribute value to be
one of multiple enumeration values identified by name. As the
enumeration values in IFC are predefined strings, we use
VARCHAR to substitute enumeration.

Entity is similar to the term "class" in common programming
languages, which most embodies the OO features of IFC. The
difference is that entity describes data structure only, but not
behaviour such as methods. Every entity in IFC is redefined in
Oracle with PL/SQL according the mapping rules. The
mapping order of entity matters. If the entity A contains an
attribute whose type is entity B, then entity B has to be defined
in advance. Table 2 displays the mapping of IfcRoot from IFC
to Oracle.

Select is the enumeration of entities, which means that the
types of Select instances can be any one of candidate entities. It
is similar to the concept of multiple inheritance in C++.
Therefore, Select type is essentially entity type.

Beside, reference is widely used in IFC files. Many instances
may refer to the same instance, which has only single copy in
file. Reference not only reduces the redundancy, but also
improves data consistency. To support this property, as shown
below, we define a new class ‘Reference’ to simulate the
function of reference in OOP. Just as memory physical address
in computer, with table name and ID, we can locate any
instance in database.

IfcRoot in IFC Specification IfcRoot in Oracle database ENTITY IfcRoot ENTITY IfcRoot GlobalId : IfcGloballyUniqueId; OwnerHistory : OPTIONAL IfcOwnerHistory; Name : OPTIONAL IfcLabel; Description : OPTIONAL IfcText; END_ENTITY;

CREATE OR REPLACE TYPE IfcRoot AS OBJECT (GlobalId VARCHAR2(100), OwnerHistory IfcOwnerHistory, Name IfcLabel, Description VARCHAR2(40000));
Table 2. Mapping of IfcRoot from IFC to Oracle ORDBMS

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-625-2016

626

According to the above mapping rules, types defined in IFC
specification can be redefined in Oracle database. First, parsing
the computer interpretable IFC official release to identity the
type definitions. Here, we finish this work with the help of
IfcGearExtender an open source implementation of IFC
standard. Second, based on mapping rules, rewriting the type
definition with PL/SQL. Finally, generating the types in Oracle
by executing the script.
3.2 IFC Database Design
The design of IFC database is supposed to base on relationships
of IFC entities, so the amount of the tables and data access
efficiency can be balanced. The data schema architecture of
IFC defines four conceptual layers, respectively are Resource
layer, Core layer, Interoperability layer and Domain layer.
Entities defined in the last three layers are all derived from
‘IfcRoot’, which is the most abstract and root class for all IFC
entity definitions. The rest entities belonging to Resource layer
are not the subtypes of ‘IfcRoot’. They cannot exist
independently, but can only exist if referenced (directly or
indirectly) by one or more entities deriving from “IfcRoot”.
Figure 1 shows how a building is described by IFC entities.

As show in the figure, the first level of IFC tree structure
contains three nodes: IfcObjectDefinition, IfcRelationship and
IfcPropertyDefinition. They define the most essential three
concepts in IFC schema. IfcObjectDefinition is the
generalization of any semantically treated thing or process. All

the physical products (e.g. wall, beam and furniture) that we
can see and touch can be classified as IfcObjectDefinition.
IfcRelationship abstracts all the relationships among objects.
For instance, building are “aggregated” by each storey.
IfcPropertyDefinition defines of all characteristics that may be
assigned to objects. Important information like size and
material are expressed by this type.
Therefore, tables should be created for the three entities to store
the core information in IFC. Object Table can created as
follows.

Notice that the type of column ‘Instance’ is a base class, so all
the instances of all its subtypes. Similarly, Relationship Table
and Property Table have the same table structure with Object
Table. The three tables can store all the instances derived from
IfcRoot. However, the rest entities in Resources layer have no
common superclass, so their instances can’t be stored in the one
table. Here, we create a new class ‘IfcResource’ as the common
base class of entities in Resource layer. And then, the Resource
Table can be created like the former three ones to store the rest
non-IfcRoot instances.

Theoretically, these four tables are sufficient to store any
instances in IFC files. However, the records in Resource Table
is much more than the other three tables. The reason is that the
instances associated to geometry take up a greater proportion in
IFC files and are stored in Resources Table. Geometric
information is the most important features to a building model,

Figure 1. Expressing a building in IFC instances

CREATE OR REPACLACE TYPE Reference AS OBJECT
(

TableName VARCHAR2(100),
ID INTEGER)

CREATE OR REPLACE TABLE OBJECT
(

OID INTEGER PRIMARY KEY,
Instance IfcObjectDefinition NOT NULL
EntityName VARCHAR2(100) NOT NULL)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-625-2016

627

 Figure 2. Generation of IFC database and IFC data access
especially for the models with rich details. Geometric elements
in IFC include lines, surfaces and bodies and are finally
expressed through sets of Cartesian points. To optimize
database schema, we create another two tables Representation
Table and Point Table to store geometric information and
Cartesian points. They are defined as shown below.

3.3 IFC Data Extraction from IFC Files
The building modellers commonly do not deal directly with
IFC files. But with IFC-compatible modelling software,
building models can be easily exported as IFC files and vice
versa. IFC certified software 2 are listed in buildingSmart
official website. The data in IFC files are organized according
to IFC specification, which is not understandable to database.
Thus, we must parse the IFC file and then extracted the IFC
data before storage. The parsing work can be easier with the
help of third-party libraries. IFC Engine DLL3 is a powerful
and stable IFC parser, with which we extract the all data
contained in IFC files.

2 www.buildingsmart.org/compliance/certified-software
3 http://rdf.bg/ifc-engine-dll.php?page=products

3.4 IFC Data Access in Oracle Database
In database, data is stored with Database Access Interfaces,
which provide a set of standard Application Programming
Interfaces (APIs) for service callers. Open Database
Connectivity (ODBC) and Java Database Connectivity (JDBC)
are two most frequently used database APIs. However, they do
not properly support Oracle object-oriented features. To solve
this problem, Oracle developed a specialized data access
interface called Oracle Call Interface (OCI), which acts as an
"interpreter" between applications and the low-level database
network protocol. It offers a procedural API for using PL/SQL
or SQL to query, access, and manipulate data. The OCI library,
implemented in C-language, is fast in data access speed but
complicated to use, especially for data of object type.

OCILIB4, an OCI-based library, is an open source and cross
platform Oracle driver that delivers efficient access to Oracle
databases. OCILIB is suitable to access IFC data in Oracle for
it encapsulates OCI with C++ language and screens many
details. With the provided APIs in OCILIB, object data of IFC
can be easily manipulated in Oracle database.

4．EXPRIMENT
4.1 Experiment Content
In this section, we construct an IFC database based on the
proposed object-relational IFC storage model and further, try to
store the test objects into the database. The test objects are
three building models with different size and complexity. The
first model is simple and are just consisted of four walls. The
other two models, selected from the built-in samples in Revit
2013, are complex. The experiment is conducted on a PC with
Windows 10 operating system, 2.2GHz CPU and 4GB
memory.

Specifically, as show in the figure 2, the experiment is divided
into five steps. First, parse the IFC official specification and
extract data types defined in IFC, and then generate the IFC
database based on the mapping rules (①). Second, export the
4 https://vrogier.github.io/ocilib/

CREATE OR REPLACE TABLE REPRESENTATION
(

RID INTEGER PRIMARY KEY,
Instance IfcRepresentationItem NOT NULL,
EntityName VARCHAR2(100) NOT NULL)

CREATE OR REPLACE TABLE POINT
(

PID INTEGER PRIMARY KEY,
X INTEGER,
Y INTEGER,
Z INTEGER)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-625-2016

628

Building Models File Size(KB) Instance Amount Storage Time(s) Access Time(s)

31/33

425/425

3’

2’

5298/5378

102285/102285

166’

143’

37568/37726

660952/660952

669’

602’

Table 3. Comparison of statistics of different models

building model as IFC file with IFC-compatible software (②).
Third, parse the IFC file and extract building data with the
APIs provides by IFC Engine DLL (③). Forth, use OCILIB to
store the extracted data into IFC database (④). Fifth, after
completion of storage, read IFC data from IFC database and
restore the data to building model (⑤⑥⑦). These three steps
are the inverse operations of previous steps. Finally, compare
the generated model with the original one to verify if
information errors or loss of data occurs during the data
exchange (⑧). In addition, the time of data transferred between
IFC file and database is recorded to measure the efficiency of
our storage model(⑨).

4.2 Experiment Results
Statistics of experiment are listed in the Table 3. The first three
columns contain two sub-columns. The left columns are
information related to original model and the right columns are
generated ones. The snapshots of two models are listed in the
first column. They are identical in appearance and no
differences are found even highly enlarged. However, from the
second column, there is a little difference in file size. The
reason is that the file exported from IFC database is generated
by IFC Engine DLL, which has different file organizational
rules with Revit. The amount of entities instances are
completely the same as shown in the third column, because
every instance in IFC file are stored into tables in IFC database.
The experiment results indicate that the IFC database support
lossless import and export of building models and further prove

the feasibility of our proposed object-relational IFC storage
model.

From the consuming time listed in last two columns, the
storage performance of IFC database is not very satisfactory.
That is due to two reasons. First, Oracle database is intrinsic
low-efficiency in managing object data. Second, time is spent
to ensure lossless storage of IFC data.

5．APPLICATION
The object-relational IFC storage model realizes the
database-based management of IFC data. By extending the
proposed storage prototype, users are able to develop various
IFC-based applications. In this section, we design two
applications based on the IFC database. The two applications,
include high-level query and construction process simulation
are common functional requirements in real construction
project. They demonstrate the powerful potential of the new
IFC storage model in architectural industry.

5.1 High-level Query
Information of a specific building component, for example the
size of the door, can be easily achieved through the traditional
SQL. However, architects always concern more about
macroscopic information, for example the entire first storey of
a building. The high-level query is used to address the issue.

Figure 3. Construction process simulation

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-625-2016

629

In IFC file, a building model is deconstructed into an entity tree,
in which nodes represent building elements and links represent
the relationships between them. All the relationships between
building elements are stored in ‘Relationship’ table in IFC
database. Among all kinds of relationship, decomposition
relationship records the including and included implication
between building elements. The high-level query to a building
element means recursively query the child nodes it contained.
To accelerate the speed of high-level query, a new field
‘Parent’ is added to ‘Object’ table to record the ID of father
node.

For example, in the three-storeyed cottage model, the second
floor is named ‘Level 2’. Information of the whole floor can be
achieved by querying ‘Level 2’ in IFC database. Figure 4
visualizes the query result of the second floor.

Figure 4. Query for the second floor

Besides, based on high-level query, we can easily implement
multi-projects management. One IFC file corresponds to a
project. Storing multiple IFC files into the IFC database, the
corresponding projects data are generated. We can achieve the
information of a specific project by querying the project name.
Therefore, with high-level query, architects are able to check
any information they wanted.
5.2 Construction Process Simulation
In many cases, the progress of construction site is delayed by
unexpected mistakes, for example the collision between walls
and pipes. This will result in wasting of resources, time and
costs. To avoid this happens, dynamic construction simulation
is applied in modern architectural project. To avoid this
happens, dynamic construction simulation is applied in modern
architectural project.

To implement this functionality, a new table ‘Schedule’ is
needed to store the construction schedules and a new field
‘schedule’ is added to ‘Object’ table to establish an
association with ‘Schedule’ table. And then, traversing from
start data to the completion data of the project, dynamically
rendering the building elements whose finish time is later than
the current date. The following pseudo code represents the
implementation process.

Several scenes are intercepted from the simulation process and
are shown in figure 3.

Not limited to the above two applications, developers are able
to implement their own applications based on IFC database.

6．CONCLUSION
In view of the existence of problems in file-based storage of
IFC data, in this paper, we propose an object-relational storage
model of IFC that realizes the database-based management of
IFC data without losing any information. The IFC database acts
as a shared building data centre, through which models of any
format can be easily exchanged among different software
platforms. Therefore, it’s a new solution to improve the levels
of collaboration in architecture industry. Besides, developers
are able to customize their own applications by extend the
prototype of the storage model

In the future, we will try to optimize the current storage model
for fast data access efficiency. And we also plan to develop a
project management system which uses IFC database as its
underlying database.

7．REFERENCES
M Z, Zhao Y. Model of next generation energy-efficient design
software for buildings [J]. Tsinghua Science and Technology,
2008, 13(S1):298-304.
Nour M. Performance of different (BIM/IFC) exchange formats
within a private collaborative workspace for collaborative
work [J].Electronic Journal of Information Technology in
Construction, 2009(14):736-752.
A. Kiviniemi, M. Fischer, V. Bazjanac. Integration of multiple
product models: IFC model servers as a potential solution, in:
22nd CIB-W78 Conference on Information Technology in
Construction, 2005.
VTT Building and Transport, SECOM CO. IFC Model Server
Development Project [EB/OL]. http://cic.vtt.fi/projects/ifcsvr/.
You, S.-J., D. Yang, and C.M. Eastman. (2004) Relational DB
Implementation of STEP based product model, in CIB World
Building Congress, Toronto, Ontario, Canada
Karstila, K. and Hermio, T. "WebSTEP IFC Model Server
project Official webpage", Eurostep, 2002.
http://www.eurostep.com/prodserv/ems/ems.html
GALLAHER, M. P., O'CONNOR, A. C., DETTBARN, J. L. &
GILDAY, L. T. (2004). Cost Analysis of Inadequate
Interoperability in the U.S. Capital Facilities Industry. NIST.
van den Helm, Böhms, van Berlo, “IFC-based clash detection
for the open-source BIMserver”. In Computing in Civil and
Building Engineering, Proceedings of the International
Conference, W. TIZANI (Editor), 30 June-2 July, 2010m,
Nottingham, UK, Nottingham University Press, Paper 91, p.
181, ISBN 978-1-907284-60-1
Ya-Hong Lin, Yu-Shen Liu, Ge Gao, Xiao-Guang Han,
Cheng-Yuan Lai, Ming Gu. The IFC-based path planning for
3D indoor spaces, Advanced Engineering Informatics 27 (2)
(2013) 189–205. doi:10.1016/j.aei.2012.10.001.

Set StartDate = "2015-5-10" Set CompletionDate = "2015-9-31"; Set TimeSpan = 1; For Date = StartDate : CompletionDate Render(SELECT Object.Instace From Object, Schedule Where Object.Schedle = Schedule.SID And FinishTime > Date); Time.AddDays(TimeSpan); End

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-625-2016

630

BIMserver, The Building Information Model server (short:
BIMserver) projects. <http://bimserver.org/>, 2012.
Staub, F.S., Fischer, M.: Practical and research issues in using
Industry Foundation Classes for construction cost estimating,
CIFE Working Paper (2000).
A.M. Tanyer, G. Aouad, Moving beyond the fourth dimension
with an IFC based single project database, Automation in
Construction 14 (1) (2005) 15–32.
H. Kang and G. Lee, “Development of an Object-Relational
IFC Server”, ICCEM/ICCPM 2009, Jeju, Korea.
Chen, P.H., Cui, L., Wan, C., Yang, Q., Ting, S.K. and Tiong,
R.L.K., 2005,‘Implementation of IFC based web server for
collaborative building design between architects and structural
engineers’, in Automation in Construction, 14(1), 115–1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-625-2016

631

