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ABSTRACT: 

 

Fire and rescue service is one of the fundamental public services provided by government in order to protect people, properties and 

environment from fires and other disasters, and thus promote a safer living environment. Well understanding spatial-temporal 

dynamics of fire incidents can offer insights for potential determinants of various fire events and enable better fire risk estimation, 

assisting future allocation of prevention resources and strategic planning of mitigation programs. Using a 12-year (2002-2013) 

dataset containing the urban fire events in Nanjing, China, this research explores the spatial-temporal dynamics of urban fire 

incidents. A range of exploratory spatial data analysis (ESDA) approaches and tools, such as spatial kernel density and co-maps, are 

employed to examine the spatial, temporal and spatial-temporal variations of the fire events. Particular attention has been paid to two 

types of fire incidents: residential properties and local facilities, due to their relatively higher occurrence frequencies. The results 

demonstrated that the amount of urban fire has greatly increased in the last decade and spatial-temporal distribution of fire events 

vary among different incident types, which implies varying impact of potential influencing factors for further investigation. 
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1. INTRODUCTION 

Fire, either caused by humans or nature, can pose hazard to 

people, properties and environment, possibly resulting in 

psychological damage, physical injuries, even death and 

significant economic losses. For example, there are total about 

212,500 fires during 2013-2014 in UK, involving 322 deaths 

and more than 9,700 non-fatal casualties (DCLG, 2015). 

According to the National Fire Protection Association of the 

US, there are 3,240 deaths, 15,925 injuries and $11.5 billion 

economic costs of property damage caused by about 1.24 

million fires in total in 2013 (Karter, 2014). As a result, fire and 

rescue service is of great importance in terms of protecting lives 

and properties and thus promoting a safer living environment. 

In order to improve the efficiency and effectiveness of fire 

safety management, it is essential to well understand 

spatiotemporal dynamics of fire incidents, which can offer 

insights for potential determinants of fire events and enables 

better fire risk estimation, thereby assisting future allocation of 

prevention resources and strategic planning of mitigation 

programs.     

 

A lot of research efforts have been devoted to investigating the 

behaviour, spatial or spatial-temporal patterns, risks and 

underlying driving factors of wildfire/forest fires (Cova et al., 

2005; Yassemi et al., 2008; Gaither et al., 2011). 

Comparatively, less attention has been paid to urban fires. A 

few exceptions include recent work by Corcoran et al. (2007a, 

2007b, 2011a, 2011b), Asgary et al. (2010) and Špatenková and 

Virrantaus (2013). Compared to wildfire, urban fire is virtually 

a both physical and social process (Jennings, 2013), in the sense 

that it occurs in built environment and affects individuals and 

socioeconomic activities in the surrounding neighborhood or 

communities, usually involving both individual causalities and 

economic losses. Meanwhile, most of the existing work on 

urban fires has focused on the cases in developed countries, 

such as the US (Gaither et al., 2011), the UK (Corcoran et al., 

2007a, 2007b, 2011a, 2011b; Higgins et al., 2013), Canada 

(Asgary et al., 2010) and Australia (Corcoran et al., 2011a). So 

far, few studies have been carried out in developing countries 

and regions. 

 

The aim of this paper is to explore the spatial-temporal 

dynamics of urban fires in Nanjing, the capital of Jiangsu 

Province and also a major city in East China over the last 

decade. It is well known that China has experienced 

unprecedented urbanization since 1979 when the reform and 

opening-up policy started. While tremendous economic growth 

has been achieved, the extensive urban sprawl has profound 

influences on both the amount and spatial arrangement of 

various land-use activities (Deng et al., 2008). One prominent 

example is that the overall built-up area of major cities in China 

has expanded by more than 50% since 2000, largely for the 

purpose of economic development (Ren, 2013). Currently more 

than 50% of Chinese population lives in cities, with a high 

proportion of rural-to-urban migrants (NBSC, 2015). 

Meanwhile, excessively high growth of cities has caused a lot 

of serious issues, such as air pollution, traffic congestion, high-

rise and high-density residential districts with little open space. 

The unbalanced development and unsustainable urban form 

have greatly increased the risks of disasters in urban areas. For 

example, recent years have witnessed thousands of fire events 

in Chinese cities. For example, the residential fire in Shanghai 

in 2010 caused 58 deaths and 71 injuries (Xinhua News, 2010). 

Recently, a care home fire in Henan caused 38 deaths of elderly 

people (BBC News, 26 May, 2015). 
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The paper is structured as follows. The next section reviews the 

relevant work on fire management and services involving 

geographical information systems (GIS) based spatial analyses. 

This is followed by an introduction of the research methods, 

including the study area, the data and the research methods. 

Then, the results of the spatial-temporal dynamics of fire 

incidents are presented. The paper concludes with discussion of 

major findings as well as implications for future strategic 

planning of fire safety programs. 

 

2. RELATED WORK 

As fire events occur in geographic space, GIS-based spatial 

analyses are well suited for the needs of fire and rescue 

services. On one hand, GIS can provide effective management 

and process of fire incident data. On the other hand, spatial 

analyses are powerful tools for exploring spatial/temporal 

patterns of fire events, identifying potential influencing factors 

and estimating fire risks. With the increasing availability of 

high-resolution spatial-temporal data, GIS-based spatial 

analyses have been widely applied in the analyses of 

spatial/temporal patterns in fire events, causal relationship 

between fire events and potential driving factors, and fire 

behaviour simulation, among others. 

 

First, spatial, temporal, and spatial-temporal patterns of fire 

events can be explored by a range of spatial analytical 

approaches. The most straightforward way to depict spatial 

distribution of fire events is by desktop mapping (Špatenková 

and Virrantaus, 2013). Besides, more advanced geovisualization 

techniques can assist unveiling spatial-temporal patterns of fire 

incidents. For instance, continuous surfaces generated by kernel 

density estimation (KDE) can reflect spatial variations in fire 

risks (Corcoran et al., 2007a). Corcoran et al. (2007b) used 

comaps (Brunsdon, 2001) to explore spatial-temporal patterns 

of the fire events in South Wales, UK. Similar techniques have 

also been employed by Asgary et al. (2010) and Corcoran et al. 

(2011a). Further, coupled with various data collection sensors, 

web-based GIS platforms can support locating fire service 

resources and identifying high-risk areas in a real-time manner 

(Kalabokidis et al., 2013).  

 

Beyond the spatial/temporal distributions of fire incidents, of 

more interest is often the relationship between the occurrence of 

fire and the associated drivers. Extensive literature has 

examined the potential contribution of a set of physical 

environmental and socioeconomic factors to the fire events 

(Corcoran et al., 2007a; Yassemi et al., 2008; Corcoran et al., 

2011b; Jennings, 2013; Špatenková and Virrantaus, 2013), 

usually by multiple regression analyses. For instance, it has 

been found that the frequency of wildfire is closely related to 

forest fuel, local climate (e.g. temperature and precipitation) 

and topography (e.g. elevation and aspect) (Yassemi et al., 

2008). Regarding urban fires, socioeconomic variables such as 

population density, building conditions and household level 

generally have more influence compared to the physical 

environment (Corcoran et al., 2007a; Corcoran et al., 2011b; 

Jennings, 2013; Špatenková and Virrantaus, 2013). In addition, 

Corcoran et al. (2011b) examined the impact of calendar events 

(e.g. public holidays, school holidays and major sports events) 

and found that the fire incidents would significantly increase 

during school holidays. 

 

The identified determinants can be further utilized to predict 

fire behaviour, particularly the path of wildfire or forest fire, so 

that timely evacuation of threatened communities and targeting 

services can be arranged accordingly. For example, several 

GIS-based cellular automata (CA) models have been developed 

to simulate the forest fire behaviour (Yassemi et al., 2008). By 

integrating GIS and fire-spread models, Cova et al. (2005) 

identified the evacuation trigger points and delineated the 

trigger buffer with the shortest path algorithm.    

 

As discussed above, GIS-based spatial analyses have been 

extensively applied in many ways to understand and predict the 

occurrence of fires, enabling better decision-making for fire and 

rescue services. This research is to study the fire incidents in a 

developing country context, seeking the spatial-temporal 

dynamics over the last decade. 

  

3. METHODS 

3.1 Data and Study Area 

The study area of this research is located in the south of 

Yangtze River within Nanjing, China, covering seven main 

districts of the city: Xuanwu, Qinhuai, Jianye, Gulou, Yuhuatai, 

Qixia and Jiangning (Figure 1). The total area is about 598.1 

km2 (about 9.1% of total area of Nanjing), occupied by a total 

population of 5.06 million (2010) (about 54.4% of total 

population of Nanjing).  
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Figure 1. Fire incident rates for Jiedao 

 

Nanjing is the capital of Jiangsu Province and also a city of 

long history that can be traced back to 495 BCE. Nowadays, 

Nanjing is an important center of education, commerce, 

transportation and tourism in East China. Like many other 

Chinese cities, Nanjing has experienced rapid urbanization in 

the last three decades with the primary goal of promoting 

economic growth. An important outcome of fast urban growth 

is the rapid increase in urban population. For example, the total 

population in Nanjing has increased about 28.3% during 2000 – 

2010 (NBSC, 2011), which has resulted in comprehensive 
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urban transformation involving both the physical environment 

and socioeconomic activities. The changes of built environment 

in relation to urban-social structures as well as the increased 

population have brought new characteristics to urban fire risks, 

raising new problems and challenges to the fire and rescue 

services.  

 

The fire data used in this research are provided by Nanjing Fire 

Brigade, including 12-year (2002 – 2013) urban fire incidents 

for the seven districts in central Nanjing. Excluding the major 

events attended by more than 40 firemen, there are total 28,383 

fires. Using the Census data in 2010, the population-based fire 

risks are calculated as the total number of fires per 1,000 

population for each Jiedao (the smallest statistical geography in 

Chinese Census) within the study area. The results are shown in 

Figure 1 using the quintile classification with the background 

image from ArcGIS Online Map Service. It can be seen that the 

higher incident rates are largely located in the city center 

(mainly including Gulou, Xuanwu and Qinhuai) and the west of 

Qixia. It is not surprising as those areas have relatively higher 

population density and socioeconomic activities. 

 

All the incidents have been recorded by ten categories: vehicles 

(VH), non-residential buildings (NRB) (e.g. restaurants and 

hotels), industries (IN), retail stores (RS), refuse (RF), 

dwellings (DW), grassland (GL), facilities (FL) (e.g. street 

lights and high-tension power lines), false alarm (FA) and 

others (OT) (e.g. construction sites). The proportion of each fire 

type is depicted by Figure 2. During the study time period, 

almost half of the incidents are dwelling fires (34.1%) and fires 

involving facilities (15.5%). Due to limited space, the following 

descriptions and analyses will particularly focus on those two 

types of fires. 

 

 

Figure 2. Proportion of different fire categories 

 

3.2 Spatial-temporal Analyses 

In this research, several spatial, temporal and spatial-temporal 

analytical methods have been employed, including both basic 

descriptive statistics and more advanced ESDA techniques. 

First, spatial distribution of fire events are explored by spatial 

clustering analysis. Further, temporal patterns of fires are 

examined using circular statistics. Finally, spatial-temporal 

variations of fire incidents are investigated by comaps 

(Brunsdon, 2001). 

 

With regard to the spatial distribution, spatial clustering 

analysis is used to identify the places with significantly high 

concentrations of fire events, which is implemented on point 

and lattice data, respectively. First, using the point data 

representing discrete fire events, continuous surfaces of fire 

risks are generated by spatial KDE (Silverman, 1986), which is 

a spatial smoothing technique so that spatial variations of fire 

risks can be observed. Further, since the key small-area 

statistical geography in China, Jiedao, is quite large (for 

example, there are total 53 Jiedao within the study area and the 

largest one covers an area of 80.2 km2), the study area is 

discretized by a set of regular grid cells (1.0 km * 1.0 km) as 

the basic areal units. Based on the total fire events within each 

grid, the local clusters of high concentrations of fire incidents 

are identified by the local indicator of spatial association 

(LISA) (Anselin, 1995).  

 

The temporal variations of fire events are examined using rose 

diagrams on a daily, weekly and monthly basis, respectively. 

Rose diagrams are graphic tools originally designed to describe 

wind speed and direction, but also have been adapted for 

describing the temporal distribution of fire events, such as the 

work by Corcoran et al. (2007b) and Asgary et al. (2010). In 

addition, the Watson’s U2 test (Fisher, 1995) is employed to 

compare whether two circular plots representing fires of 

different categories have similar temporal patterns. 

 

Finally, spatial-temporal patterns of fire incidents are explored 

by comap (Brunsdon, 2001). The comap visualizes the spatial-

temporal processes in a 2-dimnesional manner. It is virtually a 

geographical extension of the coplot (Cleveland, 1993), a 

graphical technique examining the relationship between a pair 

of variables conditioned on a third variable. The distinct feature 

of the comap is that the pair of variables defines geographic 

location. For the comaps created in this research, the two 

dimensional spatial distribution of fire events is conditioned on 

the third variable – time, so the spatial-temporal variations can 

be observed in one visualization layout. 

 

The above analyses are implemented with several software 

tools. All the statistical analyses are carried out in R 

environment (https://www.r-project.org/), an open source 

software framework for statistical analysis. LISA is calculated 

by an open source software program for spatial data analysis – 

GeoDa (https://geodacenter.asu.edu/projects/opengeoda). 

Spatial data processing, manipulation and all the other spatial 

analyses are carried out in ArcGIS 10 (ESRI, Redlands, 

California). 

 

4. RESULTS 

4.1 Spatial Distribution 

First, the kernel density is estimated for dwelling and facility 

fires. The bandwidth employed here is 1.0 km which is selected 

by trial and error in order to achieve a good visual inspection of 

fire distribution over geographical space. Shown in Figure 3 are 

the surfaces of KDE for the years 2002 and 2013, representing 

the start and the end of the study time period, respectively. It 

can be seen that for both 2002 and 2013, DW and FL fires 

clustered around the city center and have expanded towards the 

northwest of the city. Meanwhile, there is an emerging growth 

of incidents in the south of the study area, particularly for the 

DW fires.  

 

Instead of the point data used in the KDE which represent the 

geographic location of fire events, the relative fire risks are 

employed in the LISA analyses. That is, the variable analysed is  
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Figure 3. KDE for DW and FL fires in 2002 and 2013 

 

defined as the proportion of a particular type of fire to all the 

fires. In this way, the fire of higher significance to a place can 

be identified and thus be emphasized in future fire prevention 

programs. Specifically, the study area is represented by a set of 

regular grid cells (1.0 km * 1.0 km), and the number of all fires 

as well as of each category is calculated for each cell. The LISA 

analysis results (p-value < 0.05) for DW and FL fires (years 

2002 and 2013) are presented in Figure 4, where four local 

clusters are defined: HH (high values surrounded by high 

values), LL (low values surrounded by low values), LH (low 

values surrounded by high values) and HL (high values 

surrounded by low values). It can be observed that, for the years 

2002 and 2013, although both DW and FL fires are clustered 

around the city center as indicated by Figure 3, their 

contribution to the total amount of the fires at each location 

varies across space. For example, in 2002, both DW and FL 

fires mainly concentrated at the central three districts (Gulou, 

Xuanwu and Qinhuai) and also have relatively higher 

proportions compared to their contribution to that in the other 

places. However, in 2013, although both types of fires still 

largely occurred around the city center (see Figure 3), their 

contribution to all the fires at each location has changed. For  

 

 

Figure 4. LISA cluster maps for DW and FL fires  

example, the higher risk of DW fires is emerging particularly in 

central Qixia and Jiangning districts. Meanwhile, the risk of 

DW fires has significantly decreased at part of the central areas. 

Regarding FL fires, while the higher risk still exists at the city 

center as before, it is also growing towards the east and the 

northeast of the study area. Finally, it is worth noting that the 

LL clusters of both DW and FL fires are found in 2013 but not 

in 2002, indicating a larger difference in their contribution to 

the local overall fires. 

 

4.2 Temporal Variations 

First, Figure 5 shows the percentage of annual variations of 

total, dwelling and facility fires, respectively, compared to that 

in year 2002. It can be seen that in general the three lines 

demonstrate similar temporal patterns. That is, the annual 

variations in fires are within 50% until 2008 and have 

experienced rapid growth since then, except a slight drop in 

2012 (for all types and FL) and 2011 (DW). Also, the temporal 

pattern of dwelling fires is more similar to that of all fires, 

especially during 2002 – 2008 when the absolute average 

variation rates are about 16.8% (all types) and 15.8% (DW), 

while the value for FL during the same time period is about 

29.5%. The difference after 2008 becomes more prominent, 

with the absolute average variation rates are about 103.4% (all 

types), 68.2% (DW) and 136.1% (FL), respectively.   

     

 

Figure 5. Annual variations of fire incidents 

 

The temporal variations of both DW and FL fires across the 

study time period are further examined on a monthly, weekly 

and daily basis using rose diagrams.  The results are shown in 

Figures 6 – 8. In Figures 6(a), 7(a) and 8(a), the values 

represent the proportion of fire incidents to the overall amount 

of that particular type of fire. In Figures 6(b), 7(b) and 8(b), the 

values are calculated as the percentage of each type of fire 

among all the fire incidents. 

 

In terms of monthly distribution, the highest proportions of DW 

and FL fires are both in July. But, there is much more variation 

in FL fires which has a standard deviation 2.9% (compared to 

0.7% for DW fires), largely due to the higher rates in July 

(15.8%) and August (12.4%). Similar pattern also can be 

observed in Figure 6(b) which accounts for the contributions of 

DW and FL fires to all the incidents. Also, the distribution of 

FL fires is similar to that in Figure 6(a), with higher proportions 

in July and August. For DW fires, the highest proportion is in 

September. Overall, DW fire has higher proportions than FL 

fire for all the months, and on average, the monthly fire 

incidents contain about 34.4% of DW fires and 15.5% FL fires. 
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    (a)                                        (b) 

Figure 6. Monthly variations: (a) proportion to each type of fire; 

(b) proportion to all fire incidents  

   

 

 
    (a)                                        (b) 

Figure 7. Weekly variations: (a) proportion to each type of fire; 

(b) proportion to all fire incidents  

 

     

 
    (a)                                        (b) 

Figure 8. Daily variations: (a) proportion to each type of fire; 

(b) proportion to all fire incidents  

 

With regard to the weekly distribution, although most of the 

DW and FL fires occurred on Sunday (14.9%) and Tuesday 

(15.1%), respectively, the average variations in the weekly 

distribution for both types are relatively small, with the standard 

deviations about 0.3% and 0.5%, respectively. The variations of 

contributions to all fires are a little higher, with the standard 

deviations about 0.5% and 0.6%, but still very small compared 

to that of FL fires in Figure 6(b) (about 5.14%). On average, the 

fires on each day of the week contain about 34.1% DW fires 

and 15.5% FL fires, which is similar to their proportions to 

monthly fires.     

 

Compared to Figures 6 and 7, Figure 8 shows fire distribution 

on a finer temporal scale. Figure 8(a) indicates that most of DW 

fires (about 80.5%) have occurred during 8am – 9pm. FL fires 

have largely occurred during 9am – 11pm, with a total 

proportion about 80.0% and actually more than half (43.6%) 

happened during 5pm – 10pm. In terms of their contribution to 

all the fires in one day, again the average hourly proportion of 

DW fires is about 32.2%. Particularly, the hourly rate of DW 

fires during 8am – 5pm is as high as 40.6%. As to FL fires, only 

for the time period 6am – 7am and 7pm – 11pm, it composed 

more than 20% (21.9% – 28.5%) of the total fires having 

occurred during that time. 

 

Finally, in order to compare the monthly, weekly and hourly 

distribution of DW and FL fires, the Watson’s U2 test is applied 

to the temporal variations presented in Figures 6(a), 7(a) and 

8(a). The test results indicate that the temporal patterns of DW 

and FL fires are significantly different (p-value < 0.05) from 

each other.  

 

4.3 Spatial-temporal Dynamics 

In order to generate comaps for the spatial-temporal dynamics 

of DW and FL fires, the incidents are grouped into several 

subsets that meet the rules suggested by Brunsdon (2001). That 

is, the adjoining subsets have certain overlap in terms of the 

values they cover; also, the number of fire incidents contained 

in each subset should be close to each other. In this way, any 

artificial pattern introduced by the classification processes can 

be avoided. 

 

Based on the above rules, the univariate comaps for DW and FL 

fires by hour are shown in Figure 9. It can be seen that both 

DW and FL fires have largely similar spatial distribution across 

all the four time slots, with higher intensities of events around 

the city center. This is consistent with the observed pattern from 

Figure 3. Also, both the intensities of DW and FL fires in early 

afternoon (the second time slot) are a slightly lower than those 

of other time. 

 

In addition, the comaps also can be created for two variables. 

For example, considering both weekly and daily variations, 

Figure 9 can be extended to bivariate comaps as shown in 

Figure 10. Compared to weekdays, DW fires on weekends 

largely clustered at the intersection of the central three districts: 

Gulou, Xuanwu and Qinhuai, with some incidents scattered in 

the surrounding areas. During the weekdays, DW fires tend to  

 

         

 
(a) 
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(b) 

Figure 9. Univariate comaps by hour: (a) DW; (b) FL  

 

cover more areas of those three districts, especially the area in 

the northwest Gulou. Again, similar patterns can be observed in 

Figure 10(b) for FL fires. 

 

5. DISCUSSION AND CONCLUSIONS 

Urban fire has long been a great threaten to properties, lives and 

the physical environment. Well understanding the occurrences 

of fire incidents can offer insights into driving factors and 

thereby assist decision-making for fire services and 

management. This research is primarily concerned with the 

spatial-temporal dynamics of urban fires in Nanjing, China, 

during 2002 – 2013. Using GIS-based spatial-temporal analysis 

techniques, distribution of fire events across space and time, 

particularly DW and FL fires, have been explored, which can 

help identify disadvantaged population and communities at 

higher fire risk. 

 

The variations of fire incidents have been investigated from 

three perspectives: space, time and space-time. For the study 

time period, considering population distribution, Qinhuai and 

the intersection of Gulou, Xuanwu and Qixia have relatively 

higher fire rates. In terms of temporal variation, the total 

number of fires has grown rapidly since 2008 and in 2011 it has 

increased almost 200% compared to that in 2002.  

 

As fire incidents can demonstrate different spatial-temporal 

characteristics due to different underlying causes, it is necessary 

to examine each type of incidents separately. Therefore, spatial-

temporal analyses are particularly carried out for DW and FL 

fires which constitute about 50% of all the incidents. It is found 

that they have similar spatial distribution to that of all the fire 

events, but their contribution to all the fires at particular 

locations vary across time. For example, higher risks of DW 

fires are also found in, besides the city center, the north and 

south of the study area. Also, the rose diagrams suggest that for 

every month, each day of the week and every hour during one 

day, about one third fires are related to dwellings. 

    

    
(a) 

    

    
(b) 

Figure 10. Bivariate comaps by week and hour: (a) DW; (b) FL  

 

The interaction of space and time is examined by comaps. 

Particularly, both univariate and bivariate comps have been 

created for DW and FL fires. Taking hourly distribution as an 

example, both types of fires are found consistently clustered at 

the central districts for the selected time slots. When 

considering the weekly and hourly distribution simultaneously, 

it is found that the incidents in the weekdays expand towards 

northwest and southeast from the city center.   

 

In addition to the above findings, this research has some 

limitation. For example, different definitions of subsets for the 

comaps might generate different results. Also, besides temporal 

variables, the comaps also can be extended to include other 

variables of interest like weather conditions and holidays. 

 

With regard to future research, there are several areas worth 

further investigation.  First, in addition to DW and FL fires, the 

other types of fires are also important to the urban safety 

although their proportions to all the fires are not that high. Also, 

based on the identified spatial-temporal patterns of urban fires, 

the impact of associated socioeconomic and environmental 

factor needs to be examined. Given the continuing urbanization 
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and urban sprawl in China, it is of great importance to 

understand urban fire and its risks, and GIS-based spatial-

temporal analyses can be powerful tools to help improve fire 

services and management. 
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