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ABSTRACT: 

 

Fine particulate matter with a diameter less than 2.5 μm (PM2.5) has harmful impacts on regional climate, economic development and 

public health. The high PM2.5 concentrations in China’s urban areas are mainly caused by the combustion of coal and gasoline, 

industrial pollution and unknown/uncertain sources. The Beijing-Tianjin-Hebei (BTH) region with a land area of 218,000 km2, which 

contains 13 cities, is the biggest urbanized region in northern China. The huge population (110 million, 8% of the China’s population), 

local heavy industries and vehicle emissions have resulted in severe air pollution. Traditional models have used 10 km Moderate-

resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) products and proved the statistical relationship between 

AOD and PM2.5. In 2014, the 3 km MODIS AOD product was released which made PM2.5 estimations with a higher resolution 

became possible. This study presents an estimation on PM2.5 distributions in the BTH region from September 2014 to August 2015 

by combining the MODIS satellite data, ground measurements of PM2.5, meteorological parameters and social-economic factors based 

on the geographically weighted regression model. The results demonstrated that the 10 km AOD product provided results with a 

slightly higher accuracy although the 3 km AOD product could provide more information about the spatial variations of PM2.5 

estimations. Additionally, compared with the global regression, the geographically weighed model was able to improve the estimation 

results.  

 

 

1. INTRODUCTION 

Air pollution is a recognized threat to public health and has been 

globally associated with increasing mortality and morbidity. 

Currently, the major pollutants include particulates, sulfur 

oxides, nitrogen oxides, carbon monoxide and ground level 

ozone. Particulate matter (PM) is a mixture of liquid and solid 

airborne particles with complex compositions and diameters 

(Gupta et al., 2006; Lin et al., 2015). PM2.5 is the fine particulate 

matter with a diameter less than 2.5 μm. The composition of 

PM2.5 varies due to its source: natural and anthropogenic source. 

Natural source include sea salt, dust, volcanic eruptions, forest 

and grassland fires (Beh et al., 2013; Emili et al., 2010), while 

anthropogenic source include fossil fuel combustion (coal, 

gasoline and diesel), industrial processes, transportation and 

uncertain sources (Emili et al., 2010; Wang et al., 2016).  Due to 

its size, PM2.5 can be breathed deeply into lungs and would 

never come out (Pope III et al., 2000). Long term and short term 

exposure to PM2.5 has been associated with lung cancer, heart 

disease and premature deaths (Jones et al., 2015; 

Kioumourtzoglou et al., 2016; Zanobetti et al, 2015). In addition 

to the influence on climate change and human health, PM2.5 also 

brings economic loss. It was also estimated that in the Yangtze 

River Delta, China, the total economic loss caused by the high 

concentration of PM2.5 was ¥22.10 billion CNY in 2010 (Wang 

et al., 2015). Gao and colleagues (2015) assessed that Beijing’s 

economic loss resulted from the haze in January 2013 was more 

than $250 million USD.  

 

*  Corresponding author 
 

In 2012, PM2.5 was firstly considered as a mandatory monitoring 

index in the 2012 Chinese Ambient Air Quality Standards 

(GB3095-2012). The yearly and daily standards are 15 µg/m3 and 

35 µg/m3, respectively. Along with implementing policies and 

standards, the Chinese government also spent significant expense 

in building more than 1500 ground monitoring stations (79 

stations in the Beijing-Tianjin-Hebei region).  

 

Generally, ground-based monitoring data is regarded as an 

accurate measurement, but it only represents the concentration in 

a relatively small region. Moreover, the number of ground level 

stations is limited and these stations’ distributions are often 

sparse and unbalanced, which makes continuous spatial 

monitoring difficult (Hu et al., 2013).  Apart from the spatial 

coverage and resolution, the temporal coverage of ground-level 

PM monitoring, relying on instrument operation period and 

functionality, also highly varies (Benas et al., 2013). Moreover, 

the construction and maintenance of ground-level stations are 

time-consuming and labor-consuming.  

 

The drawbacks of ground-level monitoring mentioned above 

have led to an ongoing exploration for PM estimation with 

remote sensing techniques (Benas et al., 2013), which has the 

following advantages. Firstly, the image derived from satellite 

could provide complete and general information air quality 

anywhere in the world (Hadjimitsis, 2009). Secondly, because 

satellite provides the opportunity to acquire global air quality, it 

also became possible to discover the source of urban air 

pollutants and even global transportation of air pollutants. What 
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is more, this method costs less to monitor air quality for 

developing countries or regions which are in lack of ground-level 

stations but have severe air pollution. Previous studies have 

shown the correlation between satellite-derived AOD and 

ground-level PM2.5 concentration by various models (Chu et al., 

2003; Wang, 2005). AOD is a parameter of the extinction of 

electromagnetic radiation at a given wavelength (Chudnovsky et 

al., 2014). AOD can describe how much sunlight is blocked by 

particles in the whole atmosphere. However, satellite techniques 

also have shortcomings. The major issue preventing a robust 

relationship between AOD and PM2.5 is that AOD presents the 

whole atmospheric aerosol distribution, while ground-level 

PM2.5 measurements are measured near the Earth’s surface 

(Benas et al., 2013).  Furthermore, due to cloud, snow and ice 

cover, AOD information cannot always be retrieved from remote 

sensing instruments, which makes researchers unable to estimate 

PM2.5 concentrations (Lee et al., 2012). 

 

A few satellite sensors are available for AOD observations such 

as AVHRR, TOMS, MODIS and MISR. Among these sensors, 

MODIS, boarded on Terra and Aqua satellite, was the most often 

used one. In addition, users can use 10km MODIS AOD products 

provided by NASA instead of retrieving AOD from satellite 

images themselves. This product has been provided since 2000 

and it is based on dark target and deep blue algorithms. In 2014, 

a new AOD product, with 3 km spatial resolution was released 

based on only the dark target algorithm and this product provides 

a chance to predict PM2.5 concentrations in a higher spatial 

resolution. However, because MODIS 3 km AOD product is still 

a new product, the performance of this product in estimating 

PM2.5 needs to be explored.  

 

Various statistical models used to estimate PM2.5 by AOD 

include the multiple linear regression model (Li et al., 2011), the 

land use regression model (Kloog et al., 2012), the 

geographically weighted regression model (Hu et al., 2013), and 

other models. GWR model is also applied to build a local 

relationship between AOD and PM2.5 (Hu et al., 2013).  Instead 

of assuming global geographic uniformity, GWR estimates 

PM2.5 in consideration of local variability.  

 

In addition to AOD, meteorological parameters and socio-

economic factors have been widely utilized as inputs to perfect 

models because meteorological factors affect the formation and 

dispersion of PM2.5, while human activities generate a 

considerable amount of PM2.5. The common used 

meteorological parameters and socio-economic factors include 

relative humidity (Kumar et al., 2007), wind speed (Lei et al., 

2015), population density (Wang et al., 2016) and other factors.  
 

This study aims to compare the 3 km and 10 km MODIS AOD 

products’ performances in estimating PM2.5 concentrations by 

using the GWR model in the Beijing-Tianjin-Hebei region from 

September 2014 to August 2015. 

 

 

2. STUDY AREA AND DATA 

 

2.1 Study Area 

The Beijing-Tianjin-Hebei (BTH) region (show in Figure 1), 

with a land area of 218,000 km2, is the biggest urbanized region 

in northern China. BTH consists of two municipalities (Beijing 

and Tianjin) and eleven prefecture-level cities in Hebei Province 

(Shijiazhuang, Baoding, Langfang, Tangshan, Zhangjiakou, 

Chengde, Qinhuangdao, Cangzhou, Hengshui, Xingtai and 

Handan).  

 

 
Figure 1. Study area 

 

The huge population (110 million, 8% of the China’s population), 

high-speed urbanization, industrial processes, transportation, and 

coal consumption for winter heating have resulted in severe air 

pollution in the BTH region. From Figure 2, it can be found that 

during the study period, none of the eleven cities reached the 

Chinese national annual standard (15 μg/m3) and some of their 

averaged PM2.5 were 500% higher than the national standard and 

800% higher than WHO guideline (10 μg/m3). 

 

 

Figure 2 ground level monitoring stations’ locations and the 

averaged PM2.5 of each city during the study period 

 

However, trapped by surrounding mountains and plateau, air 

pollutant in BTH accumulate easily. From Figure 1, it can be 

noticed that the BTH region has a complex topography with three 

geographic units: North China Plain, Yan Mountains and 

Taihang Mountains, and Bashang Plateau. As shown in Figure 1, 

most of the southeastern and central BTH region lie on the North 

China Plain.  Taihang Mountains run through the western BTH 

region while Yan Mountains range surround the BTH region 

from north. Bashan Plateau, located in the northern part of 

Zhangjiakou and Chengde, is the southeastern edge of the 

Mongolian Plateau. Therefore, only the northwest wind could 

dissipate air pollutant while the southeast wind helps to 

accumulate air pollutant in the BTH region.  
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Table 1. Data sets used in this study. 

2.2 Data 

The data sets used in this study include ground-level PM2.5 

measurements, remote sensing data, meteorological data and 

supplementary data, Table 1 presents all the data sets.  

 

2.2.1 Ground PM2.5 Measurements: Hourly PM 

concentrations measured at 14:00 in 79 ground stations in the 

BTH region were acquired from the Ministry of Environmental 

Protection of the People’s Republic of China (MEPCN) 

(http://www.zhb.gov.cn/). The locations of these 79 stations are 

shown in Figure 2 and most of them are located in the urban area. 

Ground-level PM2.5 concentrations were mainly measured by 

Tapered Element Oscillating Microbalance (TEOM) and Beta 

Attenuation Monitoring (BAM) instruments.  

 

2.2.2 Satellite Data: MODIS is carried on both Terra and 

Aqua satellites. In this study, in order to match MODIS AOD 

retrievals with the acquire time of meteorological data (acquired 

time: 14:00), only Aqua satellite MODIS data was employed. 

Aqua’s overpass time at equator is at local time 1:30 pm in 

ascending order, which suggests that the satellite normally flies 

over the study area during 1:30 pm to 2:00 pm.  

 

The 10 km MODIS AOD product works well in climate related 

application but it is insufficient in fine scale’s study (Leigh et al, 

2014).  Therefore, in 2014, 3 km MODIS AOD was released as 

a part of MODIS Collection 6 product. In this study, both 10 km 

and 3 km AOD products are utilized. MODIS AOD product files 

are stored in Hierarchical Data Format (HDF-EOS). 

 

2.2.3 Supplementary Data: Supplementary data include 

meteorological data, social-economic data and land use data. 

  

In this study, meteorological data was obtained from the 

European Centre for Medium-Range Weather Forecasts 

(ECMWF) reanalysis datasets (ERA-Interim). As one of the 

ECMWF’s reanalysis datasets, ERA-Interim is a global 

atmosphere reanalysis from 1979. The meteorological data 

included surface temperature (K), surface pressure (Pa), U wind 

and V wind speed (m/s), relative humidity (%) and boundary 

layer height (BLH) (m). As introduced in Subsection 2.1, the 

wind from different direction may have different effects on 

PM2.5’s dissipation. Thus, U wind and V wind speeds are both 

used in this study. U wind is the wind from west to east while V 

wind is the wind from south to north. 

 

The elevation, GDP, population, and land use data in 2010 were 

provided by the Data Centre for Resources and Environmental 

Sciences, Chinese Academy of Sciences (RESDC) 

(http://www.resdc.cn). The spatial resolutions of them are all of 

1 km.  

 

 

3. METHODOLOGY 

 

The methodology contains two modules: data pre-processing and 

model construction. The model construction module consist of 

the GWR model construction, spatial autocorrelation analysis 

and a 10-fold cross validation (CV). Figure 3 presents the 

workflow of this study.  

 

 
Figure 3. Workflow of the methodology 

Date Type Data Acquired Time Spatial Resolution Source 

Ground-level PM2.5 PM2.5 (µg/m3) 14:00 N/A MEPCE 

Remote Sensing Data 
Aqua MODIS AOD products 

(dimensionless) 
14:00 10 km; 3 km 

NASA, MODIS 

Team 

Meteorological Data 

Temperature (K) 

14:00 
0.125° 

ECMWF: ERA-

Interim 

Surface Pressure (Pa) 

 U Wind & V Wind speed(m/s) 

Relative humidity (%) 

Boundary Layer Height (m) 8:00; 12:00 

Supplementary Data 

Elevation (m) 

2010 Year 1 km RESDC 
Population (person) 

GDP (yuan) 

The percent of the urban area (%) 

  Ground-level PM2.5 

10-fold Cross-Validation 

Estimation of PM2.5 Concentrations 

(1)  Data Pre-processing 

(2)  Model Construction 

 
GWR Model 

Spatial Autocorrelation Analysis 

Process 

  Input Data 

Output Result 

Workflow Direction 

  Satellite AOD products  

  Supplementary Data 

PM2.5 Data Cleaning 

Outliers’ Removal 

Match PM2.5 with  

All the Variables 
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3.1 Data Pre-processing 

Firstly, all the data sets’ geographical coordinates are unified as 

China Lambert Conformal Conic. Then the meteorological 

datasets acquired from the ECMWF were resampled to 3 km 

resolution and 10 km respectively by using bilinear interpolation. 

The resolutions of GDP, population and elevation data were all 

less than 3 km. So these data sets were also aggregated to 3 km 

and 10 km resolution. This aggregation process was conducted 

by ArcGIS 10.3.1 and the aggregation techniques for GDP and 

population were “SUM” and that for DEM data was “MEAN”.  

For the PM2.5 concentrations acquired from MEP of China, the 

raw data was stored in text file. So text files were converted to 

features classes. Then, for those PM2.5 sites located in the same 

pixel of the MODIS AOD, their PM2.5 concentrations were 

averaged. This step was conducted for both the 10 km and 3 km 

AOD data, which is namely data cleaning.  

Then each day’s PM2.5 data at each site was matched with all the 

variables at the same time within the same pixel. Those PM2.5 

concentrations with no AOD data matched are considered invalid 

data. Then other variables and PM2.5’s outliers were removed. 

Finally, there were 1497 training samples for 3 km MODIS AOD 

model and 3132 training samples for 10 km MODIS AOD 

models. 

 

3.2 GWR model 

The GWR model generates a continuous surface of parameters 

by considering parameters’ spatial variations instead of assuming 

globally constant coefficient. The GWR model used in this study 

can be expressed as Eq. (1): 

 

𝑃𝑀2.5(𝑖,𝑗) = 𝛼1(𝑖,𝑗) + 𝛼𝐴𝑂𝐷(𝑖,𝑗) ∙ 𝐴𝑂𝐷(𝑖,𝑗) + 𝛼𝑇𝑒𝑚(𝑖,𝑗) ∙

𝑇𝐸𝑀(𝑖,𝑗) + 𝛼𝑅𝐻(𝑖,𝑗) ∙ 𝑅𝐻(𝑖,𝑗) + 𝛼𝐵𝐿𝐻8:00(𝑖,𝑗) ∙ 𝐵𝐿𝐻08(𝑖,𝑗) +

𝛼𝐵𝐿𝐻20:00(𝑖,𝑗) ∙ 𝐵𝐿𝐻20(𝑖,𝑗) + 𝛼𝑈𝑤𝑖𝑛𝑑(𝑖,𝑗) ∙ 𝑈𝑤𝑖𝑛𝑑(𝑖,𝑗) +

𝛼𝑉𝑤𝑖𝑛𝑑(𝑖,𝑗) ∙ 𝑉𝑤𝑖𝑛𝑑(𝑖,𝑗) + 𝛼𝑆𝑃(𝑖,𝑗) ∙ 𝑆𝑃(𝑖,𝑗) + 𝛼𝑃𝑂𝑃(𝑖,𝑗) ∙

𝑃𝑜𝑝(𝑖,𝑗) + 𝛼𝐺𝐷𝑃(𝑖,𝑗) ∙ 𝐺𝐷𝑃(𝑖,𝑗) + 𝛼𝑃𝑜𝑓𝑈(𝑖,𝑗) ∙ 𝑃𝑜𝑓𝑈(𝑖,𝑗) +

𝛼𝐷𝐸𝑀(𝑖,𝑗) ∙ 𝐷𝐸𝑀(𝑖,𝑗)                         (1) 

 

where 𝑃𝑀2.5(𝑖,𝑗) is ground-level PM2.5 at location (i, j); 𝛼1(𝑖,𝑗) is 

the intercept of this equation,  𝛼𝐴𝑂𝐷(𝑖,𝑗), 𝛼𝑇𝑒𝑚(𝑖,𝑗) and ... are the 

slopes of corresponding variables. ; 𝐴𝑂𝐷(𝑖,𝑗) is the MODIS AOD 

value at location (i, j); 𝑇𝐸𝑀(𝑖,𝑗)  is the temperature at location 

(i,j); 𝑅𝐻(𝑖,𝑗) is the relative humidity at location (i, j); 𝐵𝐿𝐻08(𝑖,𝑗) 

is the boundary layer height at 8:00 and 𝐵𝐿𝐻20(𝑖,𝑗)  is the 

boundary layer height at 20:00 at location (i, j); 𝑈𝑤𝑖𝑛𝑑(𝑖,𝑗)  is 

Uwind speed and 𝑉𝑤𝑖𝑛𝑑(𝑖,𝑗)  is Vwind speed at location (i, j); 

𝑆𝑃(𝑖,𝑗)  is the surface pressure at location (i, j); 𝑃𝑜𝑝(𝑖,𝑗)  is the 

population at location (i, j); 𝐺𝐷𝑃(𝑖,𝑗) is the GDP at location (i, j); 

𝑃𝑜𝑓𝑈(𝑖,𝑗) is the percent of Urban area at location (i, j); 𝐷𝐸𝑀(𝑖,𝑗) 

is the elevation at location (i, j).  

 

In this study, the GWR model was constructed using GWR4 

software, which is a Microsoft Windows-based application 

software developed and programmed by Professor Tomoki 

Nakaya from Ritsumeikan University in Japan. In this study, the 

Gaussian GWR model was chosen as the model type and the 

adaptive kernel type was chosen due to the uneven distribution 

of the PM2.5 monitoring sites. Furthermore, the “Golden Section 

Search” was used to automatically determine the best bandwidth 

size while “AIC” (Akaike Information Criterion) was used for 

bandwidth selection. In general, AIC can be used to determine 

the model which is closest to reality and the best model should 

have the lowest AIC value (Fotheringham et al., 2003; Hu et al., 

2013).At the same time, AIC can be used to assess whether the 

GWR model could generate a better result than global regression 

model. Therefore, a global regression model was also built with 

the same datasets: global regression model generates globally 

constant coefficient. More introduction of AIC can be found 

elsewhere (Bozdogan et al., 1987). 

 

3.3 Spatial Autocorrelation Analysis 

After the construction of the GWR model, the models’ residual 

was conducted with a spatial autocorrelation analysis. In this 

study, the spatial autocorrelation was analysed by calculating 

Moran’s I values in ArcGIS 10.3.1.  The detailed introduction of 

Moran’s I values can be found elsewhere (Hu et al., 2013). 

Generally, Moran’s I value ranges from -1 to +1 (Cliff et al., 

1981). When Moran’s I value is greater than zero, it is indicated 

the existence of positive spatial autocorrelations while the 

negative value of Moran’s denotes the negative autocorrelation. 

If Moran’s I value is near zero, it means there is no spatial 

autocorrelation (Hu et al., 2013).  The ideal GWR models should 

have residuals with no significant spatial autocorrelation (Wang 

et al., 2005; Zhao et al., 2010).  

 

3.4 Cross validation 

After the spatial autocorrelation analysis, a 10-fold cross 

validation (CV) was conducted to determine whether the models 

were over-fitted. The whole dataset was split into ten folds and 

each of them had approximately 10% of the total data points. 

Then each fold was used for validation while the rest nine folds 

were used for training. 

 

 

4. RESULTS AND DISCUSSION 

 

The statistical results of the GWR model, including AIC, local 

R2, RMSE, MAPE and Moran’s I value, are shown in Table 2. 

The same statistical results of CV are also shown in Table 2. At 

the same time, to assess whether the GWR model could improve 

estimation accuracy from the global regression model, the 

corresponding global regression model’s results are also listed in 

Table 2.  

 

In Table 2, N for the GWR model and the global regression model 

is the number of the training samples, while N for the 10-fold CV 

is the number of CV’s total testing samples. When determining 

whether the models’ residual had spatial autocorrelation, it 

should be noticed in Table 2 that no matter for the GWR model 

or the global regression model with the 3 km or 10 km product, 

Moran’s I were all near zero, which means there is no spatial 

autocorrelation in the model’s residuals.  

 

In terms of AIC, the 3 km AOD GWR model’s AIC is 539.40, 

lower than AIC of the 3 km AOD global regression model 

(552.65). For 10 km GWR model, AIC is 533.62, which is also 

lower than the 10 km AOD global regression model’s AIC 

(548.19). Therefore, it can be drew that, no matter for the 3 km 

or 10 km AOD GWR model, GWR model performed better in 

predicting PM2.5 concentrations than global regressions did.  

Meanwhile, AIC of the 3 km AOD GWR model was slightly 

higher than AIC of the 10 km AOD GWR model, which indicates 

when using the GWR model, the 10 km AOD model still has a 

higher accuracy than 3 km AOD models.  

 

From Table 2, it can be learnt local R2 of the 3 km AOD GWR 

model was from 0.82 to 0.96 and its CV’s local R2 had a similar 

range: 0.81 to 0.96. For the 3 km AOD product, the GWR model
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Table 2. Model results of the GWR model, 10-fold CV and the corresponding Global Regression model from the 3 km and 10 km 

AOD products 

 

 
Figure 4. Estimated PM2.5 generated by the GWR model from (a) the 3 km AOD product, (b) the 10 km AOD and (c) the average 

PM2.5 of each city from their ground-level monitoring stations 

had a local R2 ranged from 0.83 to 0.96 and its CV’s local R2 was 

also similar. Meanwhile, RMSE and MAPE of CV were both 

greater than those of the GWR models. Therefore, it can be 

carefully concluded that, the 10 km AOD GWR model was 

slighted over-fitted but this over-fitting was at an acceptable 

level.  

 

Then based on the 3 km and 10 km AOD WGR model, the 

estimations of annual PM2.5 distributions were mapped in Figure 

4. As a whole, the 3 km AOD GWR model (Figure 4 (a)) and the 

10 km AOD model (Figure 4 (b)) present similar spatial 

distributions of PM2.5 concentrations. In these two figures, red 

colour denotes high PM2.5 while blue colour indicates relatively 

clearer air. The estimated PM2.5 concentrations were ranged 

from 0 to 110 (μg/m3). Figure 4 (c) shows the each city’s average 

PM2.5 concentrations from their ground-level monitoring 

stations during the research period and this figure is as same as 

Figure 2. As shown in Figure 4(a) and (b), the mountainous area 

and the plateau region (Chengde and Zhangjiakou) had low 

concentrations of PM2.5 (10 to 45 μg/m3). Beijing, Tianjin, 

Qinhuangdao, Tangshan, Langfang and Cangzhou in Hebei 

Province had median levels of PM2.5 pollutions: 20-85 (μg/m3). 

It should be noticed that Tianjin harbour, marked with a red 

square in Figures (a) and (b), had a much higher value of PM2.5 

(85.36 μg/m3) than other areas in Tianjin (around 70-75 μg/m3). 

This also proved that the transportation was an important source 

of PM2.5. The rest cities, Baoding, Shijiazhuang, Xingtai, 

Handan, and Hengshui in Hebei Province were polluted with the 

highest level of PM2.5 (80-110 μg/m3) in the BTH region. This 

distribution agreed with the ground level monitoring data (Figure 

4 (c)).  

 

 

5. CONCLUSSION 

 

This study aims to estimate PM2.5 concentrations in the BTH 

region using MODIS AOD products, meteorological datasets and 

land use information based on the GWR model. 

 

The GWR model, estimating local coefficients and local R2, was 

able to improve the estimation accuracy than the corresponding 

global regression model. By comparing the MODIS 3km and 10 

km AOD products, it was found the 10 km AOD had a slighter 

better accuracy in PM2.5 estimation. On the contrast, the 3 km 

AOD product performed better in presenting spatial variations, 

which may help governments to identify the emission sources.   

 

However, limitations and uncertainties should be concerned. At 

the first, the vertical structure and components of aerosol was not 

considered and this would affect PM2.5’s estimation accuracy. 

This is because AOD presents the whole atmospheric aerosol 

distribution, while ground-level PM2.5 are measured near the 

Earth’s surface. Secondly, this study only utilized Aqua MODIS 

AOD product for time matching with meteorological data, but 

Terra MODIS AOD product was not explored. Thirdly, the lack 

of the AOD data in non-retrieved days and regions bring biases 

Model Type N AIC Local R2 RMSE (μg/m3) MAPE (%) Moran’s I 

3 km AOD 

 

GWR Model 79 539.40 0.82-0.96 5.83 0 0.08 

10-Fold CV for GWR 79  0.81-0.96 8.69 9.37 0.03 

Global Regression Model 79 552.65 0.90 7.24 8.12  

10 km AOD 

GWR Model 79 533.62 0.83-0.95 5.61 6.63 -0.03 

10-Fold CV for GWR 69  0.82-0.96 10.02 10.95 0.16 

Global Regression Model 79 548.19 0.91 7.17 10.47  
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in AOD validation and PM2.5 estimation.  Similar biases also 

existed when estimating PM2.5 in the whole BTH region because 

the ground level stations are limited in number and distributed 

unevenly. 

 

According to the limitations, some research directions are 

proposed as followed: firstly, aerosol’s vertical structure and 

components should be explored by more remote sensing 

techniques, such as Lidar. Secondly, by integrating other remote 

sensing’s datasets, such as Terra MODIS AOD product and 

Landsat 8 data, the non-retrieved days or pixels should be 

reduced. Then, more spatial regression models should be 

explored in this field, such as Spatial Lag, for spatial 

relationship’s research. Moreover, the research scale should be 

enlarged to a national or global level, so that the pollutants’ 

sources and transfer’s trend can be identified.  
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