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ABSTRACT: 
 
This study aims to integrate environmental data for drought monitoring to reduce uncertainty in urban drought characterization as part 
of the smart city framework. Currently, drought monitoring in urban areas is a challenge. This is due, in part, to a lack of knowledge 
on the subject of urban droughts and urban drought vulnerability. A critical part to assessing urban drought and implementing the 
necessary policies is determining drought conditions. Often the timing and severity of the drought can leave cities to enforce water 
restrictions, so accuracy of this determination has socioeconomic implications. To determine drought conditions, we need to know the 
water balance over the urban landscape, of which evapotranspiration (ET) is a key variable. However, ET data and models have high 
uncertainty when compared to other hydrological variables (i.e., precipitation). This is largely due to ill-defined empirical models for 
characterizing the urban surface resistance parameter (rs) that is used in ET calculations.  We propose a method to estimate rs values 
using a combination of the Surface Temperature Initiated Closure (STIC) method that calculates regional evapotranspiration data and 
an inverted version of the Penman-Monteith equation. We use this approach across the region surrounding Indianapolis, IN (USA) 
from 2010-2014. We discuss the potential for this method to be integrated in to smart city framework to improve urban drought 
assessment.  
 
 

1.   INTRODUCTION 

In the United States, urban drought policies are based off the US 
Drought Monitor (USDM) classification. For example, when the 
USDM declares a region to be experiencing a severe drought, a 
city located in that region may respond by implementing 
voluntary or mandatory water use restrictions. However, the 
USDM classification is largely tailored to the surrounding 
agricultural land, and a city following such a classification could 
implement restrictions too late, or keep them on too long. By 
using the USDM classification system alone, a city could be 
using too much water, thus making the drought worse for 
surrounding areas, or placing unnecessary restrictions on the 
citizens, leading to potential economic damages. A solution to 
this challenge of declaring drought versus non-drought 
conditions in an urban area could be found within the smart city 
framework.  
 
Smart cities build on the paradigm of using technology and 
connectivity to monitor critical infrastructure and improve 
efficiency (Chourabi et al. 2012). Usually the focus is on the 
physical state of the infrastructure; however, the framework can 
also be used to monitor environmental states for hydrological 
extremes, such as drought, within the city itself.  
 
A city that has implemented environmental monitoring 
technology would be able to collect and analyse data that would 
provide insight into their drought vulnerability, and allow for a 
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more customized urban drought policy. Cities would be able to 
implement restrictions based on the conditions in the city and its 
watershed, instead of relying solely on the USDM to declare their 
region to be experiencing a drought. By integrating drought 
assessment into smart city framework, we expect to be able to 
improve the robustness of water governance within the city.  
 
Additionally, cities are becoming increasingly large in both area 
and population. It is predicted that by 2050, over two-thirds of 
the world population will be living in cities, most of that growth 
taking place in the developing world (The World Bank 2010). 
Meanwhile, the intensive urbanization can lead to changes in the 
hydro-meteorology of a region, largely due to their ability to 
change the spatial and temporal patterns of rainfall (Kishtawal et 
al. 2010; Niyogi et al. 2011). These precipitation changes would 
likely lead to increased drought vulnerability for the city itself 
and the surrounding watershed.  
 
As urban populations continue to grow, cities will need to both 
access and manage increasing volumes of water, which could 
place more stress on urban watersheds. When a drought occurs, 
it amplifies this stress and leads to serious societal and economic 
damages, as seen recently in Los Angeles, USA and San Juan, 
PR.  
 
Due to the challenges of water governance during drought as well 
as the increasing role of urbanization on regional hydro-climates, 
it is imperative that we improve the mode through which we 
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assess urban droughts. The smart city framework offers a rich 
opportunity to not only improve drought assessment, but also 
positively impact the lives of the people living in cities.  
 
That being said, drought assessment in cities is a difficult task, 
due to the complex nature of urban climate and the unique 
socioeconomic characteristics of cities. This study seeks to 
improve the calculation of evapotranspiration (ET) and surface 
resistance over urban areas.  
 
ET is a central hydrological input to any drought assessment 
technique, however, urban ET calculations often have 
inaccuracies that stem from parameterized biophysical state 
variables in the widely-used Penman-Monteith (PM) equation, 
specifically, the surface resistance parameter.   
 
This study uses a method that overcomes the parameterization 
uncertainties in the PM equation and directly estimates ET. This 
gridded ET is more regionally representative than traditional 
calculations and can be used in drought vulnerability assessment. 
Although this study only focuses on testing the accuracy of the 
model and determining the viability for future urban drought 
research, it is our goal to implement the method in a smart city 
framework to determine drought vulnerability in real-time.  
 

2.   METHODS 

The premise of this study as well as future research, is that if we 
know surface resistance over urban areas as a function of the 
Local Climate Zone (LCZ), then we will be able to import that 
surface resistance data into models, such as WRF or Noah, and 
retrieve accurate ET values. This will in turn help to improve 
urban drought vulnerability assessments and characterization. In 
order to get to the point where we are running models with 
improved surface resistance values, we need to first find what 
these urban surface resistance values are and how they can be 
attributed to LCZs. The first step was to take a case study and 
find the surface resistance values based on estimated ET data. For 
this case study, we chose to study Indianapolis, IN. The following 
sections provide details on the method we used to find the surface 
resistance over Indianapolis.  

 
2.1   Research Domain  

For the purpose of this study, we chose to work in the 
Indianapolis region. Indianapolis is the capital city of the state of 
Indiana located in the Midwest region of the United States. This 
region encompasses the city proper as well as the surrounding 
suburban regions. The region, home to nearly two-million 
people, experienced a variety of hydro-meteorological conditions 
in recent years—including a record wet year in 2011 and a record 
dry year in 2012. In order to capture these two extremes, we 
chose to study the evapotranspiration over the region from 2010 
to 2014. In addition to being known to have experienced a 
drought in the last five years, Indianapolis is also a city that 
several authors are familiar with, making it easy to obtain 
environmental data and city layout information. An LCZ map of 
Indianapolis can be seen in figure 1.  
  
2.2   Data 

The main data source for this study was the NCEP North 
American Regional Reanalysis (NARR). This reanalysis model 
uses the NCEP Eta Model in combination with the Regional Data 
Assimilation System (RDAS). The data is available at daily and 
monthly temporal scales, and the spatial resolution is 32 
kilometres (Mesinger et al. 2003). For urban studies, a finer 
resolution is ideal, so we chose to use a statistical downscaling 
approach, which is discussed later. The data collected from 
NARR was used in two different steps: 1. Input data into STIC; 
and, 2. Input data into the Penman-Monteith equation. More 
details on these steps are in the following sections. We chose to 
use the reanalysis data because it was both complete and 
accessible, however, the method could be used with in-situ or 
satellite data.  
 
We also used flux tower data collected by the INFLUX team in 
Indianapolis. The INFLUX team has several eddy covariance 
towers around Indianapolis from which they record atmospheric 
data (Dr. Ken Davis, Penn State University). We used data from 
January to July 2013 as a control for testing the performance of 
the STIC method. 
 
2.3   Implementing the STIC Method 

The Surface Temperature Initiated Closure (STIC) method is a 
recently-developed technique for calculating ET (Mallick et al. 
2014;  2015). This method focuses on finding an analytical 
solution of the resistances and finding a ‘closure’ of the PM 
equation for estimating ET. Inputs to this method include the air 
and radiometric surface temperatures, relative humidity, net 
radiation and ground heat flux. As mentioned earlier, this data 
was obtained from NARR. The output from STIC is a gridded ET 
dataset. Our input data from NARR was at 32-kilometer grid-
spacing, therefore our ET dataset had the same. Unfortunately, 
this resolution is too coarse for the purpose of urban studies. In 
order to improve this resolution, we used a bilinear interpolation 
technique to reduce the pixel size to 4 kilometres. This grid-
spacing, although not ideal, is significantly better than the 
original resolution. Additionally, we used the monthly mean data 
from NARR as input to both STIC and the Penman-Monteith 
equation. 
 
2.4   Determining the Surface Resistance 

The main contribution of this study was to formulate a new 
algorithm for finding the surface resistance over urban areas. 
Traditionally, the surface resistance is determined by using an 

Figure 1: Land use map of Indianapolis and the surrounding 
area using LCZ framework. The orange represents 
urban/suburban areas and the green represents rural/forested 
areas. Map Credit: Oscar Brousse and Anamika Shreevastava, 
Purdue University.  
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empirical equation that has been parameterized for vegetated land 
using the “big leaf” assumption. This surface resistance (also 
called canopy resistance) is a term used in a number of formulas, 
including the Penman-Monteith equation (eq. 1) when solving for 
evapotranspiration: 
 

 𝛌𝐄 =
∆ 𝐑𝐧'𝐆 )𝛒𝐚𝐜𝐩

𝐞𝐬0𝐞𝐚
𝐫𝐚

∆)𝛄 𝟏)𝐫𝐬𝐫𝐚
   (1) 

    
   
Where 𝑟𝑎 is the aerodynamic resistance (s m-1),	  𝑟𝑠 is the surface 
resistance (s m-1),  ∆ is the slope of the saturation vapour 
pressure-air temperature curve (kPa °C-1), 𝑅𝑛 is the net radiation 
(W m-2), 𝐺 is the ground heat flux (W m-2), 𝜌𝑎 is the air density 

(kg m-3), 𝑐𝑝 is the specific heat (J kg-1 °C-1), 𝑒𝑠 is the saturation 

vapour pressure (kPa), 𝑒𝑎 is the actual vapour pressure (kPa), 𝜆𝐸 
is the ET from the STIC method (W m-2), and 𝛾 is the 
psychometric constant (kPa °C-1). 
 
Given the ET data obtained from STIC, we were able to invert 
the Penman-Monteith equation and solve for surface resistance. 
This inverted Penman-Monteith equation can be stated as:  
 

         𝐫𝐬 = 𝐫𝐚

∆ 𝐑𝐧0𝐆 B𝛒𝐚𝐜𝐩
𝐞𝐬0𝐞𝐚
𝐫𝐚

𝛌𝐄 '∆

𝛄
− 𝟏  (2) 

 
 
We used the FAO definition of aerodynamic resistance (Allen et 
al. 1998): 
 

 𝐫𝐚 =
𝐥𝐧 𝐳𝐦0𝐝

𝐳𝐨𝐦
𝐥𝐧 𝐳𝐡0𝐝

𝐳𝐨𝐡
𝐤𝟐𝐮𝐳

    (3) 
      
Where 𝑧𝑚 is the height of the wind measurement (m), 𝑑 is the 
displacement height (m), 𝑧𝑜𝑚 is the roughness length governing 
momentum transfer (m), 𝑧ℎ is the height of the humidity 
measurement (m), 𝑧𝑜ℎ is the roughness length governing heat 

transfer (m), 𝑘 is von Karman’s constant, and 𝑢𝑧 is the wind 
speed (m s-1). It is important to note that for the purpose of this 
study, we used a displacement height of one meter. The 
roughness lengths were calculated, again, using the FAO 
definition.  
 
The process flow for determining the urban surface resistance 
over Indianapolis is shown in figure 2.   
 

3.   RESULTS 

This study is one of the first in a quest to increase understanding 
of the effects urbanization has on droughts and the overall 
hydrological cycle. The purpose was to investigate a new method 
and determine its accuracy over an urban area. This new 
approach uses the STIC method to determine the 
evapotranspiration and then use that data to back-calculate the 
surface resistance value. Analyses were done to ascertain the 
spatiotemporal changes in ET and rs as well as the accuracy of 
the method when compared to flux data. Finally, we analysed the 
precipitation deficit over time, looking for visual patterns of 
drought evolution. The following discusses the results of the 
method and the analyses performed.   
 
3.1   Evapotranspiration Calculation 

As mentioned earlier, we used the STIC method to find ET over 
the study domain. We found this method to be fairly accurate, 
with an r2 value of .84 when compared to the flux tower data (see 
figure 3). We used the STIC data from a 4x4 kilometre area 
surrounding the flux tower site. Given that there is such a strong 
correlation between observations and the STIC data, we are 
confident that the method is accurate over urban areas, although 
we would like to run the method with a higher resolution in the 
future as part of our ongoing analysis.  
 
As urban areas become larger and more populous, it is important 
that we understand how they effect the regional climate, 
especially the hydrological aspect. Our research revolves around 
the effects on the hydrological cycle, specifically drought in the 
city and its watershed. Evapotranspiration is an important aspect 
of the cycle and it can play a major part in determining the 
drought vulnerability of a city. In figure 4, we show the changes 

Figure 2: Flow chart depicting the algorithm used to calculate the 
surface resistance values. The green shapes represent input, the yellow 
shapes represent processes, and the red shapes represent outputs. Also, 
the arrows range from light blue to dark blue, each colour representing 
a new group of steps in the process (dark blue shows the final steps).   

Figure 3: This figure shows the correlation between the ET data 
collected by INFLUX and the ET data calculated by STIC. The flux 
tower is located on the West side of Indianapolis, and data was used 
from January to July 2013. 
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in ET over the spring and summer of 2012. In 2012, there was a 
severe flash drought over much of our research domain. A flash 
drought is a drought that occurs over a small temporal scale, often 
for the length of a season. Interestingly, the spring of 2012 was 
characterized by better-than-normal conditions from a farming 

perspective, but that quickly changed around May when the 
entire region entered into a severe drought, as recorded in the 
USDM. The ET temporal variance (figure 4) shows low ET 
values in April with a steady increase until July, where ET is 
maximized in the region. This is an expected seasonal change, 
but the sharpness of the contrast indicates a need for additional 
studies, especially since it is known that a severe drought 
occurred during that time. Further information, such as the 
precipitation, would be needed to make additional assessment of 
drought, as shown later in this paper.  
 
It is interesting to note that the area dominated by Indianapolis 
(denoted by the black dot) is consistently experiencing less ET 
than neighbouring areas, especially those areas just southeast of 
the city. This is likely due to the amount of impervious surfaces 
in the city compared to the amount of pervious surfaces (soils, 
forests, etc.) throughout much of the area. Without much 
potential for plant transpiration, it is expected that ET will be 
lower. Additionally, without precipitation, it is unlikely that there 
will be any water on the surface to evaporate from the urban area, 
as there is little irrigation.  
 
The main reason for using the STIC method is to reduce the 
uncertainties introduced by using a parameterized surface 
resistance (rs) value. So by using STIC to find ET, we can then 
use that ET to back-calculate rs. The results of this part of the 
study are discussed next. 
 
3.2   Surface Resistance Calculation 

To find the surface resistance over the research domain, we used 
an inverted Penman-Monteith equation (eq. 2). The surface 
resistance is often a major source of inaccuracy in ET 
calculations because it has been parameterized for landscapes 
with a large amount of plant cover. This leads to uncertainties in 
urban ET data, which can propagate throughout the models and 
drought assessments. Our goal is to create an index of urban rs 
values that are based on building type and vegetative percentage, 
so that urban model accuracy is increased. Unfortunately, the 
resolution for the data used in this study was not high enough to 
perceive any patterns based on LCZs, although efforts are 
currently underway to get to this point. That being said, the data 
can still provide insight about the urban surface resistance.  
 
Figure 5 shows the temporal analyses of surface resistance during 
two contrasting years. The top plot is for 2011, a record wet year 
in Indiana, while the lower plot is for 2012, a record dry year. 
During 2011, surface resistance remained fairly constant 
throughout the spring and summer. But during 2012, the surface 
resistance was highly variable. Interestingly, the minimum 
surface resistance in 2012 (June) was higher than then maximum 
surface resistance in 2011 (May). This suggests that high surface 
resistance to evapotranspiration may be an indicator of drought 
conditions in urban areas, however more research needs to be 
done. It is important to note that for this part of the study, the 
research domain was just Indianapolis, as opposed to the ET 
calculations that encompass most of Indiana. This distinction was 
made because we were interested in seeing the regional effects 
on ET and the local effects on surface resistance. 
 
As this study is focusing on finding a potential method to 
improve drought recognition over urban areas, we performed a 
basic precipitation deficit analysis with our ET data and 
precipitation data from NARR.  
 

Figure 4: Spatiotemporal changes in ET over the spring and summer 
of 2012. The black dot represents the location of Indianapolis, IN. 

Figure 5: Box plots showing the temporal changes over the spring and 
summer months of 2011 (upper) and 2012 (lower). Scales are different in the 
two panels to show the details.  
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3.3   Precipitation Deficit Analysis 

A net precipitation deficit occurs when ET is greater than 
precipitation, or, in other words, there is more water leaving the 
surface via ET than is being replaced by precipitation. The 
Budyko framework uses this fact to determine drought conditions 
(Budyko 1974). For the purpose of this study we did not use the 
complete Budyko framework, only the deficit analysis. A deficit 
was considered when the ET was greater than the precipitation.  
In order to perform this analysis, we needed to convert the ET 
from T

UV to WX
UV, which were the units of our precipitation data. The 

precipitation data was retrieved from NARR as accumulated 
monthly mean, and we used the bilinear interpolation once again 
to downscale the data from 32-kilometre to 4-kilometre 
resolution. The results of this analysis can be seen in figure 6.  
 
This figure shows the changes in the precipitation deficit over the 
spring and summer of 2012. The cooler colours represent a deficit 
in precipitation, while the warmer colours represent a surplus in 
precipitation. The deficit was at its highest during June and 
slowly decreased through the summer. This pattern of surplus-
deficit-surplus through the season is similar to that of the 2012 
surface resistance plot (figure 5b). This suggests that a high 
precipitation deficit is correlated with lower surface resistance 
values (and vice versa).  

 
4.   CONCLUSIONS 

Overall, this study demonstrated that the STIC method for 
calculating ET over urban areas is a viable alternative to 
traditional calculations. Our results show that this method is 
comparable to urban flux tower data, and therefore encourage its 
implementation in more areas than the research domain. Our 
results also show potential correlations between urban drought 
conditions and urban surface resistance values, although more 
research is still needed.  
 
Our ultimate goal is to create a method that can be implemented 
into smart city framework to recognize and assess drought 
vulnerability. Smart city technology represents an opportunity to 
link technology with drought monitoring to improve the lives of 
the citizens. It is our hope that if city water managers have an 
early warning of drought risk they can plan water policies 
accordingly. In order to create this method, we need atmospheric 
data at a much higher resolution than we currently have through 
NARR. Remote sensing products, such as VIIRS, are a potential 
source for some of the necessary variables, but not all. For these 
variables, we need observations at a 100 to 500-meter resolution. 
The next steps in our research will be focused on this task. 

 
We are currently looking into two different solutions to the 
resolution issue. The first is using dynamical downscaling to take 
the NARR data from 32-kilometer to 500-meter. This process has 
been demonstrated by Bechtel et al. (2012), and we hope to 
follow a similar process. The second solution is the Array of 
Things (AoT) framework that is being implemented in several 
cities, such as Chicago, USA. This project will get atmospheric 
and flux data at each street corner in downtown Chicago. We 
hope to be able to use this data to further investigate the role of 
ET and surface resistance in predicting and recognizing urban 
droughts. 
 
The methodology presented is the first step towards improving 
urban drought recognition and vulnerability assessment.  The 
method is both feasible and accurate to implement in urban areas. 
Given the data collected and the analyses performed in this study, 
we are confident that the method outlined can be an alternative to 
conventional evapotranspiration calculations, which in turn can 
be a step towards improved urban drought assessment.  
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