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ABSTRACT: 

 

A cloud masking approach based on multi-temporal satellite images is proposed. The basic idea of this approach is to detect cloud 

and cloud shadow by using the difference reflectance values between clear pixels and cloud and cloud shadow contaminated pixels. 

Several bands of satellite image which have big difference values are selected for developing Multi-temporal Cloud Masking (MCM) 

algorithm. Some experimental analyses are conducted by using Landsat-8 images. Band 3 and band 4 are selected because they can 

distinguish between cloud and non cloud. Afterwards, band 5 and band 6 are used to distinguish  between cloud shadow and clear. 

The results show that the MCM algorithm can detect cloud and cloud shadow appropriately. Moreover, qualitative and quantitative 

assessments are conducted using visual inspections and confusion matrix, respectively, to evaluate the reliability of this algorithm. 

Comparison between this algorithm and QA band are conducted to prove the reliability of the approach. The results show that MCM 

better than QA band and the accuracy of the results are very high.  

 

 

1. INTRODUCTION 

Remote sensing satellite images have been widely used to 

monitor phenomena on earth, such as land use change (Zhang, 

et. al, 2010; Demirel, et. al., 2011; Suribabu, et. al, 2012), 

climate change (Qu, et. al., 2013), floods (Proud, et. al., 2011; 

Arnesen, et. al., 2013), droughts (Berhan, et. al., 2011; Song, 

2013), earthquakes (Yang and Chen 2010; Dong et. al., 2011; 

Park, et. al., 2013), and landslides (Tang et. al., 2011). These 

remote sensing applications are very important for human 

beings. Unfortunately, as Wang et. al. (1999) mention, two-

thirds of the earth’s surface is always covered by cloud every 

year. This leads to limitations in remote sensing applications by 

optical satellite. For instance, we can see clearly in Figure 1 that 

cloud cover is very large on Terra/MODIS images in the world 

on October 23, 2015. Moreover, Ju and Roy (2008) mentioned 

that Landsat-7 ETM+, one of the optical satellite images, on 

average, had about 35% cloud coverage in general. This 

problem increases the difficulty to support remote sensing 

applications. 

 

There are many varieties of cloud properties based on the 

distance from the equator. Tropical environments are the 

cloudiest regions whereas the subtropics and the polar 

environments have 10-20% less cloud cover. According to the 

height, cloud tops in tropical regions are higher than those in 

other regions. It is approximately one to two kilometres higher 

than cloud over the mid-latitudes and more than two kilometres 

higher than the cloud tops in the subtropics and the North Pole 

(NASA).  These are the reason to choose tropical countries such 

as Indonesia for study are in this study. 

 

Several approaches have been conducted for cloud and cloud 

shadow detection. We can classify into two categories: single 

image based and multitemporal image based.  In the first 

approach, the algorithm uses the information of single satellite 

image such as reflectance values, incident angle, and so on to 

detect cloud and cloud shadow. There are many studies use this 

approach such as Automated Cloud-Cover Assessment (ACCA) 

and Fmask. ACCA algorithm has been used to mask cloud in 

Landsat-7 images. This algorithm uses visible, near infrared 

(NIR), shortwave infrared (SWIR) and thermal infrared to mask 

cloud (Irish, 2000; Irish et. al., 2006). Although this algorithm 

can be applied to the most areas of the Earth, it fails to detect 

cloud at extreme latitudes and high illumination angles, as it 

tends to involve snow on that area (Irish, 2000). ACCA also has 

a drawback in terms of thin cirrus detection as it lacks a high 

thermal response. The greatest drawback of this algorithm is 

that ACCA can only be used for cloud detection. It cannot be 

used for cloud shadow detection. Zhu and Woodcock (2012) 

proposed a novel method called Fmask (Function of mask) for 

cloud and cloud shadow detection on Landsat images. This 

approach uses object-based to detect cloud and cloud shadow. 

In this approach, cloud physical properties are used to 

distinguish between Potential Cloud Pixels (PCPs) and cloud 

free area. Cloud probability mask is generated by combining a 

normalized temperature probability, spectral variability 

probability, and brightness probability. Both PCPs and cloud 

probability are used to generate the layer of potential cloud. By 

using the flood-fill transformation, NIR band is used to obtain a 

layer of potential shadow. The interesting point of Fmask is that 

we can estimate the location of cloud shadow by using the view 

angle of the satellite sensor, the solar zenith angle, the solar 

azimuth angle, and the relative height of the cloud. This stage 

can help us ensure the object, whether it is cloud or not. It can 

also generate potential shadow layer. The new version of Fmask 

takes advantage of the new cirrus band in Landsat-8 for better 

detecting thin cirrus cloud (Zhu et. al., 2015). Fmask is better 

than ACCA in terms of accuracy of masking cloud, especially 

in the first pass, with cloud overall accuracy of 96.41% (84.8% 

in ACCA). However, there are several drawbacks of Fmask. 

Firstly, Fmask tends to fail to detect cloud which is warm and 
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thin. Secondly, Fmask tends to classify very bright and cold 

land such as cold snow as cloud. Lastly, Fmask may fail to 

detect cloud and cloud shadow for images which have 

heterogeneous surface reflectance because it uses a scene-based 

threshold and applies the same threshold to whole pixels in the 

image.  

 

On the other hand, there are several previous studies for cloud 

and cloud shadow masking using multitemporal image based 

such as Multi-temporal Cloud Detection (MTCD) and 

multiTemporal mask (Tmask). Hagolle et al., (2010) presented a 

MTCD algorithm. This approach detects cloud and cloud 

shadow on a pixel by pixel basis by using threshold from blue 

band and acquisition date from the data. The authors compared 

the percentage of cloud cover on image between MTCD and 

ACCA. The results show that MTCD has higher accuracy in 

some case studies. However, MTCD may detect more snow 

than ACCA in complex cases with snow beneath cloud. The 

advantage of this method is that it only uses blue band which all 

optical satellite data have. Thus, this approach can be used for 

all optical satellite data. To improve Fmask algorithm for cloud 

and cloud shadow detection, Zhu and Woodcock (2014) 

developed a novel approach called Tmask (multiTemporal 

mask) for automated detection of cloud, cloud shadow and snow 

using multitemporal Landsat images. The fundamental idea of 

Tmask approach is to compare “predicted” Top of Atmosphere 

(TOA) reflectance which comes from a time series model to 

detect cloud, cloud shadow and snow. Tmask has the most 

improvement in terms of cloud shadow detection. Zhu and 

Woodcock (2012) mentioned that cloud shadow in Fmask is 

less accurate than cloud detection. Cloud shadow in Tmask is 

quite different from cloud shadow in Fmask as it is not 

influenced by geometric-based between clouds and cloud 

shadow. Tmask algorithm fixed a lot of errors in cloud, cloud 

shadow and snow detection in Fmask. The results of snow and 

cloud detection in Tmask are better than Fmask as well (Zhu 

and Woodcock, 2014). Goodwin et al (2013) presented a new 

automated cloud and cloud shadow screening across 

Queensland for Landsat TM/ETM+ time series. This approach 

takes advantage of spectral, temporal and contextual 

information to detect cloud and cloud shadow. Firstly, they used 

multi-temporal image differencing. In this stage, they smooth 

the data by using minimum and median filters. Pixel buffering 

filters were also used to map a bigger spatial extend of cloud 

and cloud shadow. Calibration and validation data are generated 

by using Landsat datasets to obtain spectral and contextual 

rules. This approach has improvement compared to Fmask 

especially in cloud detection. The drawbacks of this approach 

are that the approach may not be able to detect cloud shadow 

over cropping regions and is difficult to be applied in near real-

time. Moreover, the calibration of the method had only been 

done in Queensland. Therefore, the method is restricted to 

Queensland. However, the idea of this method can be adopted 

for other areas. 

 

This study aims to develop a cloud and cloud shadow masking 

algorithm which can be applied automatically and handy. The 

algorithm is expected to be usable for many kinds of satellite 

images. Therefore, the common bands such as visible bands, 

near infrared and short wave infrared are selected in the band 

selection step. Based on previous studies, multitemporal image 

based is used in the proposed approach in this study.  

 

2. DATA AND STUDY AREA 

2.1 Study Area 

We selected Indonesia, a tropical country, as a study area. This 

study area is 512x512 pixels of path/row 122/064. We chose 

this area as a tropical environmental which has heterogeneous 

land cover such as settlement, vegetation, and water bodies. The 

detection of cloud is difficult to be applied to pixels that include 

both settlement and cloud. It is also hard to detect cloud shadow 

from pixels that include both water bodies and cloud shadow.  

 

2.2 Data 

In this study, we used Landsat-8 images which are widely used, 

sought and collected by many scientists and researchers 

(NASA). Landsat-8 has two sensors which are Operational 

Land Imager (OLI) and Thermal Infrared Sensor (TIRS). The 

OLI has nine spectral bands and the spatial resolution of each 

band is 30 metres except band 8 (15 metres). In Landsat 

generation, band 1 (ultra-blue) in the OLI is a new band, which 

is useful for coastal and aerosol studies. On the other hand, the 

TIRS has two bands that are band 10 and band 11.  

 

Multi-temporal Landsat-8 images are used to apply cloud and 

cloud shadow masking in this study. Landsat-8 images from a 

sequence date acquisition are used to avoid the significant land 

cover change. We used Landsat-8 with the acquisition date on 

13 September 2014 for reference image and 11 July 2014 for 

target image. We use band 1 until band 7 for experiments. 

Thermal band is usually used for cloud detection as it can 

distinguish between cold object and warm object. However, we 

do not use bands from TIRS because several satellite images do 

not have these bands.  

 

 

3. METHODS 

3.1 Image pre-processing 

Multi-temporal approach uses more than one image and 

frequently each image has different atmospheric conditions, 

solar illumination and view angles. So, it is required removal of  

radiometric distortions is required to make those images 

comparable. One of the absolute radiometric corrections is Top 

of Atmosphere (TOA) (Hajj et. al., 2008). The digital number of 

Landsat-8 bands 1 until 7 were converted to TOA reflectance.  

 

TOA reflectance for Landsat-8 image is (USGS, pp. 61): 

                                          
   

    ( )
                                            (1) 

 

where   =  top of atmosphere planetary reflectance (unitless) 

θ = solar elevation angle (from the metadata, or  

calculated) 

 

TOA planetary reflectance can be calculated by: 

 

                                                                                 (2) 

where      = top of atmosphere planetary reflectance, without 

correction for solar angle (unitless) 

    = reflectance multiplicative scaling factor for the  

band  

    = reflectance additive scaling factor for the band 

                = level 1 pixel value in digital number (DN) 
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3.2 Bands Selection 

We use the difference of reflectance values between clear pixels 

and cloud contaminated pixels, and clear pixels and cloud 

shadow contaminated pixels to select bands which will be used 

for developing MCM algorithm. The band that has the biggest 

difference of reflectance values between clear pixels and cloud 

contaminated pixels, and clear pixels and cloud shadow 

contaminated pixels indicates that the band can be used to 

distinguish between cloud and clear, and cloud shadow and 

clear appropriately. Thus, this band can be used to develop 

MCM algorithm.  

 

Presented in the following figures are the difference of 

reflectance values between clear pixels and cloud contaminated 

pixels on vegetation, settlement and water bodies. 

 

 
Figure 1. The difference of reflectance values between clear 

pixels and cloud contaminated pixels on vegetation. 

 

 
Figure 2. The difference of reflectance values between clear 

pixels and cloud contaminated pixels on settlement. 

 

 
Figure 3. The difference of reflectance values between clear 

pixels and cloud contaminated pixels on water bodies. 

 

The followings are the difference of reflectance values between 

clear pixels and cloud shadow contaminated pixels on 

vegetation, settlement and water bodies. 

 

 
Figure 4. The difference of reflectance values between clear 

pixels and cloud shadow contaminated pixels on vegetation. 

 

 

 
Figure 5. The difference of reflectance values between clear 

pixels and cloud shadow contaminated pixels on settlement. 

 

 
Figure 6. The difference of reflectance values between clear 

pixels and cloud shadow contaminated pixels on water bodies. 

 

It can be seen clearly that band 3 and band 4 have the biggest 

difference in average between clear pixels and cloud 

contaminated pixels. We also found that that band 5 and band 6 

have the biggest difference in average between clear pixels and 

cloud shadow contaminated pixels. Therefore, we will use band 

3 and band 4 to distinguish between cloud and non-cloud pixels, 

and will use band 5 and band 6 to distinguish between clear 

pixels and cloud shadow pixels.  

 

3.3 Algorithm of Cloud and Cloud Shadow Masking 

Based on the bands selection, we have band 3, band 4, band 5 

and band 6 for cloud and cloud shadow masking. We use the 

difference between reflectance values from clear image and 

reflectance values from cloud contaminated image to detect 

cloud. We also use the difference between reflectance values 

from clear image and reflectance values from cloud shadow 

contaminated image to detect cloud shadow. We apply each 

band for both cloud and cloud shadow detection. Afterwards, 
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we select the proper threshold to them. The results of this step 

are cloud region, cloud shadow region and clear region.  

 
Reference Image (RI)

Band 3,4,5,6

TOA Reflectance

Target Image (TI)

Band 3,4,5,6 

TOA reflectance

D(B3)=TI(B3)-RI(B3)

D(B4)=TI(B4)-RI(B4)

D(B5)=TI(B5)-RI(B5)

D(B6)=TI(B6)-RI(B6)

D(B3)>0.04 YES

Delta(B5)<-0.04

Delta(B6)<-0.04

Clear
Cloud 

Shadow

NO YES

Cloud shadow

or Clear

Cloud

or Clear

D(B4)>0.04

Clear Cloud

NO
YES

 
Figure 7.  Flow chart of MCM method 

 

3.4 Confussion Matrix 

Confusion matrix is used to assess the quality of the results. 

This assessment can calculate how big the failure of cloud and 

cloud shadow detection is. In the confusion matrix, the diagonal 

elements represent the pixel correctly classified, while off-

diagonal elements represent errors, either of commission or 

omission (Congalton, 1991).  

   

Table 1.  The sample of onfusion matrix 

Classified Data Reference Data 

Class A Class B 

Class A         

Class B         

 

In confusion matrix, it is possible to derive two class specific 

indices i.e., Commission Error (CE) and Omission Error (OE). 

The formula of CE and OE as follows (Congalton and Green, 

1999): 

In confusion matrix, it is possible to derive two class specific 

indices i.e., CE and OE. The formula of CE and OE as follows 

(Congalton and Green, 1999): 

    
   

       
 

           

       
   

   

       
        (1) 

   
   

       
 

           

       
   

   

       
                  (2) 

where 

   = Commission Error 

   = Omission Error 

   = User’s Accuracy 

   = Producer’s Accuracy 

 

The CE of a class A is the percentage of pixels classified as 

class A which does not belong to that class according to the 

reference data (commission). The OE is the percentage of the 

pixels, belonging to class A in the reference data, which have 

not been classified as such (omission). CE and OE make 

excellent candidate indices to represent the situation of reducing 

omission and commission errors as conflicting objectives.  

 

3.5 Assessment using Comparison of Results 

In order to prove the reliability of MCM, we will compare 

MCM with other methods of cloud masking. However, we 

should have the software of the other methods if we want to run 

them and get some results. This is the main obstacle if we want 

to compare CSM and other methods, because most authors of 

the other methods do not publish their software to public.  

 

 
Figure 8.  16-bit Landsat-8 QA Band (USGS) 

 

Fortunately, Landsat-8 has a Landsat quality assessment band 

(QA band). This band can be used for cloud detection, cirrus 

detection, snow/ice detection, vegetation detection, etc. We can 

choose and take one or more of them for our purposes by 

isolating the range of the 16-bit Landsat-8 QA band. For 

example, we can isolate bit 14 to bit 15 for cloud detection. 

Afterwards, we can apply this result to the Landsat-8 image 

which has this band as well. The final result will be an cloud 

masking image. 

 

4. RESULTS 

The result of cloud masking can be seen in Figure 9. The cloud 

masking result shows that cloud can be identified correctly 

almost 100%. The MCM can distinguish between cloud and 

vegetation, cloud and settlement, and cloud and water bodies 

properly. The difficult part is to distinguish between cloud and 

settlement. However, MCM can address this issue correctly. We 

can see clearly that there is no settlement classified to be cloud. 

 

  
(a) (b) 

Figure 9.  The result of cloud masking. Red colour indicates 

cloud region. 

 

Figure 10 shows the result of cloud shadow masking. The cloud 

shadow masking result shows that cloud can be identified 

correctly almost 100%. The MCM can distinguish between 

cloud shadow and vegetation, cloud shadow and settlement, and 

cloud shadow and water bodies properly. The difficult part is to 

distinguish between cloud shadow and water bodies and MCM 

can address this issue correctly. It can be seen clearly that there 

are no water bodies classified to be cloud shadow. 
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(a) (b) 

Figure 10.  The result of cloud shadow masking. Red colour 

indicates cloud shadow region. 

 

We compare MCM to another method to demonstrate the 

reliabilty of MCM. In this case, we apply cloud masking using 

QA band from Landsat-8. The result of cloud masking using 

QA band can be seen in Figure 12. Moreover, the detail of the 

result can be seen clearly in figure 13. 

 

  
(a) (b) 

Figure 11.  The result of cloud masking using QA band. Red 

colour indicates cloud region. 

 

MCM Original Image QA Band 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 12. The detail result of cloud masking using QA band. 

Red colour indicates cloud region. 

 

We can see in Figure 13c that the large area of settlement is 

detected as cloud in the experiment using QA band. Moreover, 

several pixels of cloud fail to be detected as cloud as well. On 

the other hand, we can see in Figure 13a that all of cloud cover 

is detected using MCM, but a bit area of settlement is detected 

as cloud. In this case, we tend to reduce omission error to zero 

because we can use the result to produce cloud free image using 

mosaicking in a further work.  

 

It can also be seen in Figure 13f that small area of cloud fails to 

be detected as cloud using QA band in vegetation area. On the 

other hand, we can see that all of cloud area is detected as cloud 

using MCM.  

 

In addition, the results of cloud detection using QA band are not 

smooth enough. We can see this in the border of the polygon of 

cloud regions. On the other hand, the border of the polygon of 

cloud regions in the MCM results is quite smooth. 

 

  Table 2.  Confusion matrix of the cloud and cloud shadow 

masking using MCM algorithm 

Classified Data Reference Data 

Cloud Cloud 

Shadow 

Clear 

Cloud 53750 173 601 

Cloud Shadow 0 50995 863 

Clear 140 2257 153365 

 

Table 3. Commission error and omission error of cloud and 

cloud shadow masking using MCM algorithm 

 Cloud Masking Cloud Shadow 

Masking 

Commission Error 0.014 0.017 

Omission Error 0.003 0.045 

 

We can see in Table 3 that the commission error of cloud and 

cloud shadow masking using MCM algorithm is very small. It 

means that this algorithm has ability to avoid the wrong 

detection of cloud and cloud shadow. On the other hands, the 

omission error is very small as well. It means that the algorithm 

can detect cloud and cloud shadow very well. 

 

5. DISCUSSION AND CONCLUSIONS 

In this paper, we proposed MCM algorithm to detect cloud and 

cloud shadow in a tropical environment. This algorithm uses 

band 3, band 4 to distinguish between cloud and non-cloud 

region. Afterwards, band 5 and band 6 are used to distinguish 

between cloud shadow and clear region. The results show that 

MCM can detect cloud and cloud shadow properly and the 

accuracy is very high. However, we only detect thick cloud. 

Therefore, in the future, we plan to develop algorithm for cloud 

and cloud shadow masking using the image which has thick and 

thin cloud.  

 

ACKNOWLEDGEMENTS  

The authors would like to thank and appreciate the anonymous 

reviewers for their comments. The authors would also like to 

thank the U.S. Geological Survey (USGS) for providing 

Landsat-8 images as well.  

 

REFERENCES 

A. S. Arnesen, T. S. F. Silva, L. L. Hess, E. M. L. M. Novo, C. 

M. Rudoff, B. D. Chapman, K. C. McDonald., Monitoring flood 

extent in the lower Amazon River floodplain using 

ALOS/PALSAR ScanSAR images. Remote Sensing of 

Environment, Vol. 130, pp. 51–61. 

 

C. R. Suribabu, J. Bhaskar, and T. R. Neelakantan., Land 

Use/Cover Change Detection of Tiruchirapalli City, India, 

Using Integrated Remote Sensing and GIS Tools. J Indian 

Society Remote Sensing 40(4), pp. 699–708. 

 

C. Tang, J. Zhu, X. Qi, and J. Ding., 2013. Landslides induced 

by the Wenchuan earthquake and the subsequent strong rainfall 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-95-2016

 
99



 

event: A case study in the Beichuan area of China. using MCM 

algorithm, Vol. 122, pp. 22–33. 

 

G. Berhan, S. Hill, T. Tadesse, and S. Atnafu., 2011. Using 

Satellite Images for Drought Monitoring: A Knowledge 

Discovery Approach. Journal of Strategic Innovation and 

Sustainability, Vol. 7(1). 

 

J. J. Qu, A. M. Powell, Jr., M . V. K. Sivakumar., 2013. 

Satellite-based Applications on Climate Change. Springer 

Atmospheric Sciences. 

 

J. Ju and D. P. Roy., 2008. The availability of cloud-free 

Landsat ETM Plus data over the conterminous United States 

and globally. Remote Sensing of  Environmental. Vol. 112(3), 

pp. 1196–1211. 

 

M. E. Hajj, A. Begue, B. Lafrance, O. Hagolle, G. Dedieu, M. 

Rumeau., 2008. Relative Radiometric Normalization and 

Atmospheric Correction of a SPOT 5 Time Series. Sensors, 

Vol. 8, pp. 2774-2791. 

 

NASA, International Satellite Cloud Climatology Project, 

http://isccp.giss.nasa.gov/role.html, Accessed on 12 September 

2015. 

 

N. Demirel, S. Duzgun, and M. K. Emil., 2011. Landuse change 

detection in a surface coal mine area using multi-temporal high-

resolution satellite images. International Journal of Mining, 

Reclamation and Environment, Vol. 25(4), pp. 342–349. 

 

N. R. Godwin, L. J. Collett, R. J. Denham, N. Flood., 2013. 

Cloud and cloud shadow screening across Queensland, 

Australia: An automated method for Landsat TM/ETM+ time 

Series, Remote Sensing of Environment, 2013, Vol. 134, pp. 50-

65. 

 

O. Hagolle, M. Huc, D. V. Pascual, G. Dedieu., 2010. A multi-

temporal method for cloud detection, applied to FORMOSAT-

2, VENµS, LANDSAT and SENTINEL-2 images, Remote 

Sensing of Environment, Vol. 114, pp. 1747-1755. 

 

R. G. Congalton., 1991. A review of assessing the accuracy of 

classifications of remotely sensed data, Remote Sensing of 

Environment, Vol. 37, pp. 35 – 46. 

 

R.R. Irish., 2000. Landsat 7 Automatic Cloud Cover 

Assessment. Proceedings of SPIE, Vol. 4049, pp. 438-355. 

 

R. R. Irish, J. L. Baker, S. N. Forward and T. Qrvidson., 2006.  

Characterization of the Landsat-7 ETM Automated Cloud-

Cover Assessment (ACCA) Algorithm. Vol. 72, (10), pp. 1179–

1188. 

 

S. E. Park, Y. Yamaguchi, and D. J. Kim., 2013. Polarimetric 

SAR remote sensing of the 2011 Tohoku earthquake using 

ALOS/PALSAR. Remote Sensing of Environment, Vol 132, pp. 

212–220. 

 

S. R. Proud, R. Fensholt, L. V. Rasmussen, I. Sandholt., Rapid 

response flood detection using the MSG geostationary satellite.  

International Journal of Applied Earth Observation and 

Geoinformation, Vol. 13(4), pp. 536–544. 

 

Wang, B., Ono, A., Muramatsu, K. and Fujiwara, N., 1999. 

Automated detection and removal of cloud and their shadow 

from Landsat TM images. IEICE Transactions on Information 

and Systems. Vol. E82-D, pp. 453-460. 

 

X. Yang and L. Chen., 2010. Using multi-temporal remote 

sensor imagery to detect earthquake-triggered landslides. 

International Journal of Applied Earth Observation and 

Geoinformation, Vol 12, pp. 487–495. 

 

X. Zhang, T. Kang, H. Wang, and Y. Sun., 2010. Analysis on 

spatial structure of landuse change based on remote sensing and 

geographical information system. Volume 12, Supplement 2, 

pp. S145–S150. 

 

Y. Dong, Q. Li, A. Dou, and X. Wang., 2011. Extracting 

damages caused by the 2008 Ms 8.0 Wenchuan earthquake from 

SAR remote sensing data. Journal of Asian Earth Sciences Vol. 

40, pp. 907–914. 

 

Y. Song, J. B. Njoroge, and Y. Morimoto, 2013. Drought 

impact assessment from monitoring the seasonality of 

vegetation condition using long-term time-series satellite 

images: a case study of Mt. Kenya region. Environ Monit. 

Assess, Vol 185, pp. 4117–4124. 

 

Z. Zhu, C. E. Woodcock., 2012. Object-based cloud and cloud 

shadow detection in Landsat imagery. Remote Sensing 

Environment, Vol. 118, pp. 83-94. 

 

Z. Zhu, C. E. Woodcock., 2014. Automated cloud, cloud 

shadow, and snow detection in multitemporal Landsat data: An 

algorithm designed specifically for monitoring land cover 

change, Remote Sensing of Environment, Vol. 152, pp. 217-234. 

 

Z. Zhu, S. Wang, C. E. Woodcock., 2015. Improvement and 

expension of the Fmask algorithm: cloud, cloud shadow, and 

snow detection for Landat 4-7, 8, and Sentinel 2 images, 

Remote Sensing and Environment, Vol. 159, pp. 269-277. 

 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-95-2016

 
100

http://isccp.giss.nasa.gov/role.html



