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ABSTRACT:  
Dense image matching is a basic and key point of photogrammetry and computer version. In this paper, we provide a method derived 
from the seed-and-grow method, whose basic procedure consists of the following: First, the seed and feature points are extracted, after 
which the feature points around every seed point are found in the first step of expansion. The corresponding information on these 
feature points needs to be determined. This is followed by the second step of expansion, in which the seed points around the feature 
point are found and used to estimate the possible matching patch. Finally, the matching results are refined through the traditional 
correlation-based method. Our proposed method operates on two frames without geometric constraints, specifically, epipolar 
constraints. It (1) can smoothly operate on frame, line array, natural scene, and even synthetic aperture radar (SAR) images and (2) at 
the same time guarantees computing efficiency as a result of the seed-and-grow concept and the computational efficiency of the 
correlation-based method. 
  
 

1. INTRODUCTION 
Dense image matching is an important step of 3D reconstruction 
and many other applications, with which the depth of or 
corresponding information on a pixel is determined. It has been 
one of the research hotspots in both photogrammetry and 
computer version for a long time. Dense image matching is 
challenging because of occlusions, blurred boundaries of objects, 
low or repetitive textures, and illumination changes. Moreover, 
the calculation speed is another obstacle, either because of the 
number of images or the size of images or because of the 
requirements of real-time applications. 
 
The goal of dense image matching is to rebuild a 3D scene model 
from 2D images. To achieve this goal, the corresponding 
relationship of two or more images captured from different 
viewpoints of a scene must be rebuilt. The key and inherent 
problem of dense image matching is the extraction of 
corresponding features or points from different images. To the 
best of our knowledge, the problem of mismatching in the area 
of low-texture and disparity discontinuities is far from being 
solved. Reasonable prior constraints are used in matching 
algorithms to obtain better match results. 
 
The existing algorithms can be divided into local and global 
methods, according to Scharstein and Szeliski (Scharstein and 
Szeliski, 2002). Local methods are based on the disparity 
consistency constraint, which requires determining a suitable 
window shape, window size, and weight of each pixel in the 
window. Image-segmentation information is also used as prior 
knowledge in some methods, but the matching results of those 
approaches heavily depend on the segmentation results of an 
image. To reduce the parallax search range, local methods 
frequently adopt various constraints, which results in a strong 
dependence on prior knowledge. At the same time, they are 
sensitive to the ambiguous areas caused by low texture and 
occlusion.  
                                                                 
*  Corresponding author 
 

Global methods are based on the piecewise continuous constraint 
and coherence constraint. These algorithms realize the global 
optimal matching by minimizing the energy function through 
different ways, such as, dynamic programming (Birchfield and 
Tomasi, 1999), belief propagation (Klaus et al., 2006), and graph 
cut (Hong and Chen, 2004; Kolmogorov and Zabih, 2001), 
MicMac (Pierrot-Deseilligny and Paparoditis, 2006). Some semi-
global methods also exist, such as semi-global matching (SGM) 
(Hirschmüller, 2005; Hirschmüller, 2008) and matching cost 
with a convolutional neural network (Žbontar and LeCun, 2015), 
which minimize the energy function through the cost aggregation 
of multi-directions. The common features of global and semi-
global methods are their adoption of various constraints in the 
procedure of cost matrix calculation and their usually time- or 
memory-consuming minimization of the energy function (e.g., 
graph cut based method and SGM, respectively). Thus, these 
methods are not capable of directly operating on large images, 
unless supplemented with additional procedures, such as 
partitioning, which leads to other problems, and cannot be used 
in practical surveying and mapping production. 
 
In particular, most of the existing approaches (1) depend on the 
geometric information of photography, especially, epipolar 
geometric information, (2) may be influenced when the camera 
has severe distortion, and (3) cannot automatically adapt to the 
variances in sensor types (from frame to line array) and imaging 
types (from optical to radar images). 
 
In this paper, we introduce a method based on two steps of 
expansion and inspired by the seed-and-grow method (Adams 
and Bischof, 1994; Sharma et al., 2011; Wang et al., 2013; Yin 
et al., 2014). It determines the corresponding information on all 
the feature points of an image through two steps of expansion 
over a small number of seed and feature points. It also exhibits 
good performance over the area of disparity discontinuities. 
Given the idea of expansion, our method can easily deal with two 
frames without epipolar constraints. In other words, our method 
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does not need exterior and interior parameters of images, which 
in turn makes our method operate smoothly on frame aerial, line 
array, synthetic aperture radar, and natural scene images (Haala, 
2013; Cavegn et al., 2014; Sharma et al., 2014). Our method also 
guarantees fast calculation speed. 
 

2. FORMULATION 
In this section, we describe the proposed integrated approach step 
by step and explain why we choose the Harris corner detector 
(Azad et al., 2009) as the feature extraction method, scale 
invariant feature transform (SIFT) matching (Lowe, 1999; Lowe, 
2004) as the seed points matching method and normalized cross-

correlation (NCC) (Tsai and Lin, 2003) as the matching cost used 
in the expansion step of our approach.  
 
Figure 1 illustrates the workflow of our two steps of expansion 
(TSE) method somewhat similar to patch-based multi-view 
stereo (PMVS) (Furukawa and Ponce, 2010). First, the seed 
points are extracted from separately extracted features of the base 
and the matching image using the feature matching method (e.g., 
SIFT matching) and are then used to estimate the location and 
size of the pre-matching patch (i.e., the first and the second step 
of expansion). Finally, the traditional correlation-based method 
is used to obtain the final refined matching. 
 

 
Figure 1. Pipeline of the proposed method 

 
2.1 Extraction of Seed and Feature Points 
Seed points are used to estimate the initial location and parallax 
search range of the possible matches. Although our method does 
not rely on the location accuracy of seed points (which is 
explained later), we still need to find a robust approach that can 
easily handle changes in illumination, rotation, zoom, and other 
such conditions. Furthermore, the efficiency of the approach is 
also required, which is important in considering the overall 
computing efficiency of our method. Only a small number of 
seed points are needed, so that the feature matching method is the 
first choice. 
 
The feature points, whose parallax needs to be determined, are 
extracted only from the base image. The Harris corner detector is 
a suitable choice for calculating feature points, given its capacity 
to extract feature points from windows of various sizes (e.g., 3×3, 
5×5, and 9×9), which is important because the final dense 
matching result is a subset of the feature points. In other words, 
the more the feature points, the denser the final matching result. 
 
Many popular and excellent feature matching methods are 
available, including SIFT matching, gradient location-orientation 
histogram matching (Mikolajczyk and Schmid, 2005), and 
speeded up robust feature matching (Bay et al., 2008), to name a 
few. SIFT (1) is invariant to rotation, scale changes, and affine 
transformations, (2) has good performance in handling occlusion 
and complex backgrounds, and (3) has near real-time 
performance (Juan and Gwun, 2009). Thus, this method is used 
to find seed points to ensure robustness in dealing with various 
types of images. 
 
In this part, SIFT matching is used to obtain the initial matching 
points, that is, the seed points (i.e., the triangle shown in Figure 
2, marked as ௦ܲ௘௘ௗ), which form the seed point setand the initial 
known-point set (i.e., the square shown in Figure 2, marked as 

௞ܲ௡௢௪௡). The feature points are extracted from the base image 
using the Harris corner detector at certain intervals (ܿݔ), and they 
form the feature point set that needs to be matched (i.e., the cross 
shown in Figure 2, marked as ௙ܲ). The number of seed points 

must exceed a given threshold (empirically set to 10 in our 
experiments); otherwise, our method may fail. The seed points 
should homogeneously distributed on the base image, otherwise 
the expansion speed will be affected. 
 

  
Figure 2. Example of the possible distribution of the feature, seed, 
and known points on an image. ܿݔ denotes the size of the Harris 
feature extracting window. 
 
2.2 The First Step of Expansion 
The first step of expansion is designed to find all the ௙ܲ around 
the ௞ܲ௡௢௪௡  in the known-point set. The expansion can be 
defined as in the dilation of morphology: 
     D X x B x x

X B
  
 

             (1) 
 
where  x = the ௞ܲ௡௢௪௡ in the first step of expansion or the ௙ܲ 

in the second step of expansion and belongs to X 
ሾܤ  ሿ= denotes the operation of the growth of eight 

neighbours 
(ܺ)ܦ  = refers to the ௙ܲ found in the first step of 

expansion or the ௞ܲ௡௢௪௡ found in the second step of 
expansion 
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Taking ௦ܲ௘௘ௗ(݅) (Figure 3) as an example, this procedure can be 
described as follows: 
Assuming that this is the first time to take the first step of 
expansion on ௦ܲ௘௘ௗ(݅), then, along the expansion route no. 1, we 
can find seven feature points that need to be matched, including 

௙ܲ(݆) and ௙ܲ(1), ௙ܲ(2), ௙ܲ(3), ௙ܲ(4), ௙ܲ(5), ௙ܲ(6)  .The 
expansion route no. 2 must be searched when ௦ܲ௘௘ௗ(݅)  is 
processed for the second time, the expansion route no. 3 for the 
third time, and so on. This procedure of a known point is stopped 
when (1) the search route encounters the border of a base image 
or (2) the search route of two neighbor known points run into 
each other. Note that the known-point set then changes in every 
iteration. 
 

  
Figure 3. First step of expansion. The size of the route indicates 
a different iteration. For example, the expansion route no.1 is 
used at the first time of iteration, the expansion route no.2 at the 
second, and so on. The known point in the figure happens to be a 
seed point and is therefore represented by a triangle. 
 
2.3 The Second Step of Expansion 
In the second step of expansion, several known points near the 
feature point are found and used to calculate the initial location 
and size of the possible matching area of the feature point through 
“means of power of distance,” which can be defined as follows: 
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where  N = the number of known points that are found around 

Pf and that form the set Q 
, ௣ݔ൫݌   ௣൯ = the coordinate of the feature point on theݕ

base image 
, ௣ᇱݔ൫′݌ ௣ᇱ൯ݕ  = the initial location of the possible 
match point of ௙ܲon the matching image 
௤೔ݔ௜൫ݍ)  , ,௤೔൯ݕ ௤ᇱ೔ݔ௜൫′ݍ  , (௤ᇱ೔൯ݕ = an element of Q 
specifically, the coordinate of a matching point pair (on 
the base and matching images) 

 
An example on ௙ܲ(݆) is given (as shown in Figure 4) to further 
explain the second step of expansion. We can find eleven known 
points along the expansion route shown in Figure 4, 

including,  ௦ܲ௘௘ௗ(1), ௦ܲ௘௘ௗ(2), ௦ܲ௘௘ௗ(3), ௦ܲ௘௘ௗ(4), ௦ܲ௘௘ௗ(5), 
௦ܲ௘௘ௗ(6);   ௞ܲ௡௢௪௡(1), ௞ܲ௡௢௪௡(2), ௞ܲ௡௢௪௡(3), ௞ܲ௡௢௪௡(4),  
௞ܲ௡௢௪௡(5), ௞ܲ௡௢௪௡(6) and ௦ܲ௘௘ௗ(݅) . The initial location 

(i.e.,݌′൫ݔ௣ᇱ , ௣ᇱ൯ݕ ) of the possible matching area of ௙ܲ(݆)  is 
calculated using the “means of power of distance.” The initial 
size (i.e.,ܴܽ݊݃(݆)) of the possible matching area is determined 
by the bounding rectangle of the coordinate of the matching point 
pair in Q. This procedure accounts for the relationships between 
the feature and known points and therefore enhances the 
robustness of the matching. N should exceed a particular 
threshold, which is empirically set to 10 in our experiments. 
 

  
Figure 4. Second step of expansion 

 
2.4 Refine Matching 
After the second step of expansion, we obtain the initial match 
that is refined in this step. We use the correlation-based local 
method to refine the match. A very significant reason behind this 
choice is the computational efficiency of local methods. We 
choose NCC as our matching cost because it (1) compensates for 
the differences of pixels (in the window) in gain and bias, (2) 
considers intensity changes, and (3) is statistically optimal in 
compensating for Gaussian noise (Einecke and Eggert, 2010), 
although it is not robust in the area of low or repeated texture.  
 
Pyramid matching is adopted in this procedure, which works as 
follows: First, the pyramid images of the base and matching 
images are built around the center of the initial match. Next, 
intensity correlation matching is then conducted from the top to 
the bottom of the pyramid image. Finally, the refined match on 
the origin layer of the base and matching images is found. In other 
words, we obtain the best match point (Qf (j)) of Pf (j) and the 
correlation coefficient (Cf (j)), which is used to evaluate the 
match. 
 
After every iteration of Pknown we conduct a statistical analysis of 
the correlation coefficient that is grouped by the known point. If 
the percentage of the matched feature points (i.e., those found 
around a known point) whose correlation coefficient is below a 
given threshold (Thresh_C, commonly set to 0.8) is greater than 
a given threshold (Thresh_P), then the known point is considered 
to be unreliable and should be removed from the known-point set. 
This process reduces the reliance on the accuracy of seed points 
but improves the robustness of our method. 
 
If a known point is considered to be unreliable, the group of 
matches expanded from this known point is also unreliable and 
should be abandoned. Otherwise, the matching pair whose 
correlation coefficient exceeds a given threshold (Thresh_C) is 
categorized in the known-point set. A new iteration of the two 
steps of expansion is then executed until the number of new 
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known points found in the last iteration is below a certain 
threshold (Thresh_N). 
 
When the main matching process ends, the density analysis 
method (Zhu et al., 2015) is used to eliminate large outliers, after 
which the final matching results are obtained. 
 
The choice of the method mainly depends on the application. In 
other words, other methods can be used to find seed points (e.g., 
correlation based method on thumbnails of base and matching 
image), as well as other matching costs in the procedure of 
refining the matching. 
 

3. EVALUATION 
To evaluate the proposed approach, five types of images are used 
in our experiments. The experimental results of our proposed 
method are given, after a brief introduction of the images used in 
our experiments. The size of the Harris feature extractor window 
is set to 3 × 3 to make the matching results as dense as possible. 
All the experiments are conducted on a portable computer with 
Intel Core i3-3110M CPU and 2.4GHz. And we empirically set 
the Thresh_C to 0.8, Thresh_P to 60%, and Thresh_N to 100.  
 
3.1 Description of the Test Images 
We use two pairs of aerial frame images from Vaihigen and San 
Francisco; one pair of images captured by ADS40; one pair of 
satellite images by GeoEye-1; one pair of single-polarization 
SAR images; and test images (specifically, teddy, cones, and 
venus) from the Middlebury benchmark (Scharstein and Szeliski, 
2002). The details of the frame images are shown in Table 1.  
 

Descriptions/ 
Stereo Pair 

Stereo Pair 1 Stereo Pair 2 
Location San Francisco 

(USA) 
Vaihigen 

(Germany) 
Camera UltraCam D DMC 
Image 

size(pixel) 
11,500 × 7500  7680 × 13,824 

Side and 
Forward Overlap 

30/60% 60/60% 
GSD 15 cm 8 cm 

Description of 
the image area 

Densely-
distributed 
buildings 

Small-sized and 
detached buildings 
surrounded with 
many trees 

Table 1. Overview of the two pairs of frame images 
 
The first pair of line array images is cut from the nadir and 
backward strip of the airborne ADS40, which is a common line 
array camera. The pair of images is captured from suburban areas. 
The second pair of line array images is cut from a panchromatic 
image of GeoEye-1. Many low-rise buildings are present in the 
second pair of images.  
 
The SAR image pair is a same-side stereo pair, with a GSD of 0.5 
m, and a central angle of incidence of 45°. The image area of this 
pair is a hilly area, and a small town exists in the area. 
 
3.2 Results 
3.2.1 Frame Image: The two pairs of images both have 
accurate exterior and interior parameters, and the stereo pair from 
Vaihigen (as short as S2) has LiDAR points. The dense 3D point 
cloud of the stereo pair from San Francisco (as short as S1) is 
generated using SGM. The result of SGM is down-sampled to a 

3 ×3 pixel. Our results are also transformed to the object space 
coordinate system through forward intersection. 
 
To compare the result of S1 with SGM and the result of S2 with 
LiDAR, checkpoints are selected randomly, and differences in 
elevation with the corresponding points in the SGM results (S1) 
or LiDAR (S2) of the check points are used as the assessment 
index.  
 
Figure 5 shows the result of S1, and Figure 6 shows the result of 
S2. Given that NCC is used to refine the match, our method fails 
or results in a blur in low-texture (as shown in Figure 5(e)), and 
repeated texture areas (as shown in Figure 6(f)). According to the 
profile, our result has a similar precision with SGM. The density 
of the point cloud obtained with our method is dramatically 
higher than that of LiDAR and at the same time has a near 
precision. Similar to the other matching methods, our method can 
obtain matching results on walls, which is difficult for LiDAR. 
 

(a) (b) (c) (d)

(e) (f)

(g) (h)   
Figure 5. Matching result of S1 and comparison with SGM, 
where (a) and (b) are the base and matching images of the stereo 
pair, respectively, and the areas within the dashed boxes 
represent the overlapping of the image pair; (c) is the result of 
SGM (coloring by elevation of the point, the higher the redder, 
otherwise, the lower the more blue); (d) is the result of our 
method (the coloring is the same as (c)); (e) is the enlarged view 
of the area in the red rectangle of (a) and is also the base image 
of the unmatched area in the red rectangle of (d); (f) is the 
enlarged view of the area in the white rectangle of (d); (g) is the 
enlarged view of the same area of (f), but the SGM result (the 
blue point) and our result (yellow point) are put together; (h) is a 
profile of the purple line in (g). 
 
The statistical results of the elevation differences of the check 
points are given in Table 2. The maximum absolute elevation 
difference of S1 and S2 are 9.5 and 10.3m, respectively. The 
percentages of the points whose absolute value of elevation 
difference is less than 0.5m in our results are more than 93% (95% 
in S1 and 93.5% in S2). Mismatching appears on (1) the roof of 
a building, which generally has a repeated texture, (2) the surface 
of the road, on which little information exists, and (3) the area 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-143-2016

 
146



 

with amorphous trees. Table 3 shows the matching time of S1 
using SGM and our method. Our method has a similar accuracy 
with SGM, costs less time than SGM, and is specifically 4.2 times 
faster than SGM. However, our result is not a pixel by pixel result. 
 

(a) (b) (c) (d)

(e) (f) (g)

(h) (i)   
Figure 6. Matching result of S2 and comparison with LiDAR, 
where (a) and (b) are the base and matching images of the stereo 
pair, respectively, and the areas within the dashed boxes 
represent the overlapping of the image pair; (c) is the point cloud 
of LiDAR (the coloring is the same as that in Figure 5(c)); (d) is 
the result of our method (the coloring is the same as that in Figure 
5(c)); (e) is the enlarged view of the area in the blue rectangle of 
(a), which has no LiDAR point (as shown in the blue rectangle in 
(c)); (f) is the enlarged view of the area in the red rectangle of (a) 
and is also the base image of the unmatched area in the red 
rectangle of (d); (g) is the enlarged view of the area in the white 
rectangle of (d); (h) is the enlarged view of the same area of (g), 
but the LiDAR point (the blue point) and our result (yellow point) 
are put together; (i) is a profile of the purple line in (h). (Note: 
The LiDAR is captured in strip, so that a strip change is evident 
in (c)). 
 

Stereo pair S1 S2 
Number of matching point 2,329,580 3,681,388 

Number of check point 1,165,524 2,046,240 
Absolute value of 
the elevation 
difference (m) 

[0, 0.5) 1,107,247 1,913,629 
[0.5,2) 36,154 71,853 
[2, ∞) 22,123 60,758 

Table 2. Statistic results of elevation difference of the frame 
images. 
 

Time/Method Our Method SGM 
Processing Time (s) 242.699 1,267.985 

Table 3. The processing time of S1 (Note: the time of SGM 
including the time of generating epipolar image) 
 
3.2.2 Line Array Image: Every single line of the line array 
image has different exterior parameters, which means it is 
troublesome for algorithms using epipolar constraints to match. 
Two pairs of line array images are used to test the ability of our 
method to match this type of image. The base image of the first 

pair is cut from the nadir strip image, and the matching image is 
cut from the backward strip image. The second pair is cut from a 
GeoStereo product of GeoEye-1. To visualize our results, we use 
the parallax as the Z value and the coordinate on base image as 
the X and Y values to form a point cloud. The color change 
indicates a parallax change. As shown in Figure 7(c), the points 
of the buildings are red, which means these points have a large 
parallax. By contrast, the points in flat areas are almost blue, 
which means these points have a small parallax. Information on 
the local details, specifically, the buildings, is lost in our results 
because low-rise buildings have a very small parallax change on 
the satellite image. However, our result evidently represents the 
terrain correctly. In other words, our method is capable of 
matching line array images. 
 

(a) (b) (c)

(d)

(d)

(e) (f) (g) (h)   
Figure 7. Matching result of the line array image, where (a) and 
(b) are the base and matching images of the stereo pair from 
ADS40; (c) is the result of (a) and (b) (coloring by parallax, red 
represents a large parallax, and blue represents a small parallax); 
(d) is the enlarged view of the area in the white rectangle of (c) 
shown in 3D; (e) and (f) are the base and matching images of the 
stereo pair from GeoEye-1; (g) is the result of (e) and (f) (the 
coloring is the same as (c)); (h) is the enlarged view of the area 
in the white rectangle of (g) shown in 3D. 
 
3.2.3 SAR Image: The imaging apparatuses of SAR differ 
from those of an optical image. Repeated texture appears 
frequently on SAR images (as shown in Figure 8(d)). The scale 
of a SAR image changes along with the distance between the 
target and the nadir point of the sensor. In other words, the size 
and the shape of an object differ on stereo (which can be shown 
by the different sizes of the dashed box in Figures 8(a) and (b)), 
and the corresponding information is therefore difficult to be 
found. Figure 8(c) shows the parallax changes from left to right, 
which are correct according to the imaging apparatuses of SAR. 
 

  
Figure 8. Matching result of S2 and comparison with LiDAR, 
where (a) and (b) are the base and matching images of the stereo 
pair, respectively, and the areas within the dashed boxes 
represent the overlapping of the image pair; (c) the result of our 
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method (coloring by parallax, red represents a large parallax, and 
blue represents a small parallax); (d) is the enlarged view of the 
area in the red rectangle of (a) and is also the base image of the 
unmatched area in the red rectangle of (c); (e) is the enlarged 
view of the area in the white rectangle of (c), but the coloring is 
by the grey value of the base image.  
 
3.2.4 Natural Scene Image: We also test our method on the 
Middlebury benchmark. To ensure the matching robustness, we 
use the Harris feature point as the feature point, which 
unfortunately is incapable of pixel-by-pixel extraction. In other 
words, our method cannot generate a dense depth map. The 
statistic for the depth differences of our matching point with the 
ground truth is used to evaluate our results, although it is not 
calculated pixel by pixel. The details are given in Table 4. 
 
We set a high threshold of correlation coefficient to ensure the 
accuracy of our method. The percentages of the wrong match in 
our results are less than 20%. The mismatch generally appears in 
the area of the repeated texture. Considering the processing time 
of our method, our results can be used to provide initial depth 
information on other pixel-by-pixel methods. 
 

Data Teddy Cones Venus 
Image size (pixel) 450 × 

375 
450 × 
375 

434 × 
383 

Processing time (s) 1.687 1.862 1.463 
Number of 

corresponding points 
10461 10844 9327 

Max. of difference of 
depth (MDD) (pixel) 

8 14 5 
Depth 

difference 
(pixel) 

0 8627 9057 8475 
1~2 1784 1727 605 
3~5 47 58 247 

6~MDD 3 2 / 
Table 4. Statistical results of processing time and depth 
difference of the natural scene images 
 

4. CONCLUSION 
A dense matching method with two steps of expansion, which 
can be categorized as a seed-and-grow method, is proposed in 
this paper. In this method, matching results of the feature-based 
method are used as seed points and as the initial known-point set. 
The first step of expansion is conducted on the known-point set 
iteratively to find the feature points. The second step of 
expansion is conducted on the feature points found in the first 
step of expansion, and the initial match area is found after two 
steps of expansion. Finally, the result is refined using the 
correlation-based method. This method needs no prior 
information, especially the geometric information of an image, 
which makes this method applicable to various types of images. 
The result of this method has high accuracy and can be used as 
the final dense matching result to some extent or the initial value 
for other dense matching methods that aim to generate pixel-by-
pixel point cloud. Moreover, this method saves time.  
 
However, the proposed method is not capable of dealing with 
large areas of low or repeated texture because of the matching 
cost we used in the refined matching step, NCC, is not robust 
enough in handling these ambiguous areas. This method also fails 
when no seed point is available. The following issues need to be 
explored in future works: 
1) A matching cost that is robust in large ambiguous areas of low 
or repeated texture 

2) More robust and efficient model used in estimating the initial 
location and size of possible matching areas, which can address 
large distortions and uneven distribution of seed points 
3) More efficient filtering algorithm for generating more accurate 
results 
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