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ABSTRACT:

Acquisition of large scale scenes, frequently, involves the storage of large amount of data, and also, the placement of several scan
positions to obtain a complete object. This leads to a situation with a different coordinate system in each scan position. Thus, a
preprocessing of it to obtain a common reference frame is usually needed before analysing it. Automatic point cloud registration
without locating artificial markers is a challenging field of study. The registration of millions or billions of points is a demanding task.
Subsampling the original data usually solves the situation, at the cost of reducing the precision of the final registration. In this work,
a study of the subsampling via the detection of keypoints and its capability to apply in coarse alignment is performed. The keypoints
obtained are based on geometric features of each individual point, and are extracted using the Difference of Gaussians approach over
3D data. The descriptors include features as eigenentropy, change of curvature and planarity. Experiments demonstrate that the coarse
alignment, obtained through these keypoints outperforms the coarse registration root mean squared error of an operator by 3 - 5 cm.
The applicability of these keypoints is tested and verified in five different case studies.

1. INTRODUCTION

Data acquisition via static terrestrial laser scanners provides im-
portant advantages. State of the art devices are easy to manipulate
and move from one position into another. The obtained LiDAR
point clouds are, usually, ready to use, allowing regular users to
work immediately with the devices and the data. The main draw-
back presented by this kind of technology is that the scanning
device needs to be placed in different locations in order to ob-
tain the complete scene. This fact is certain not only for outdoor
scenes, but also for large and multiple rooms indoor buildings.

Consequently, further preprocessing is needed to work over these
scanned datasets. For example, the complete 3D reconstruction
of the scene or the semantic classification and identification of
objects in the point clouds, requires that all the scans are referred
to a common reference frame. The automation of such task, usu-
ally, relies on the use of artificial targets placed along the scene
(Franaszek et al., 2009, Akca, 2003). These markers are coded
and easily identifiable inside the scanned data, allowing specific
software to be able to register all the point clouds into the same
coordinate frame.

The last described procedure, even if it not necessary, requires
that the operator possesses some expertise or trainee to be able to
place the targets efficiently. Additionally, some situations present
a difficulty to place the markers, like structures impossible to ac-
cess by the operators. In these cases, manual alignment is the
standard procedure. Another approach, that still requires work, is
the use of natural targets that already are presented in the struc-
tures, like corners, signs, salient characteristics, etc. Some of
these characteristics can lead to the generation of keypoints, which
is one of the main aims of this manuscript.
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This manuscript tries to demonstrate the use of a series of key-
points, which are obtained from point features information, in
order to generate satisfactory results in coarse registration, and to
outperform the results obtained by a human operator.

The manuscript covers a brief review of the state of the art on
point description and feature, and keypoint extraction of related
techniques in Section 2, focused on the coarse registration ap-
plication. Section 3 presents the proposed methodology to ob-
tain those keypoints and perform the coarse registration. Subse-
quently, Section 4 provides the experimental procedure and re-
sults obtained using the proposed methodology. Finally, Section
5 shows the conclusions obtained from the performed work.

2. STATE OF THE ART

One of the most extended strategies used for the coarse regis-
tration of point clouds without the use of any kind of artificial
markers is defined in (Rusu, 2010, Theiler et al., 2014b, Gressin
et al., 2013). First of all, the scanned point clouds are prepro-
cessed to obtain salient features, compute point descriptors that
are strongly related to these features, or even keep some points
that are descriptive by themselves. Then, the point cloud is re-
duced to a sparse set of points representing the keypoints of the
mentioned features. The last step of this particular procedure,
relies on the matching of the keypoints in the overlapping area,
mostly via their descriptors or their geometric properties, to ob-
tain a rigid transformation matrix. This operation allows to align
to one reference coordinate system that is roughly aligned for all
the point clouds in the dataset. The results of this coarse regis-
tration, typically serves as the input to the standard fine registra-
tion algorithm which is represented by the Iterative Closest Point
(ICP) algorithm (Besl and McKay, 1992). Although there exist
others approaches proposed to solve this topic, like (Brenner et
al., 2008, Von Hansen, 2006) where the use of planar surfaces
is exploited to obtain the registration, this manuscript is focused
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on the keypoints and point features. This work covers the key-
points extraction and keypoint-based coarse registration from 3D
geometries. Thus, the rest of this section reflects the different and
most popular approaches to describe and detect the keypoints that
represent the sparse subsample of the original point clouds.

2.1 Point Features

The ability of a system to obtain certain characteristics of the
points that belong to a point cloud is an important field of study.
Nowadays, there exist several systems that try to understand and
give an interpretation of the scene and the surroundings where it
is being used. The majority of the points in a point cloud repre-
sent an object, a part of the room or the environment. Most of the
relevant used techniques work computing the information from a
neighbourhood around each point obtaining a value which repre-
sents the geometric type where it belongs. There are several point
descriptors and features that help to give an interpretation of the
scanned data.

Rusu et al. (Rusu et al., 2008) developed a point descriptor that
helps to identify if a point belongs to a planar, round, linear sur-
face, etc. The Point Feature Histogram (PFH) was, also, intended
to be used to determinate the correspondence between the points
in different scanned data, helping to the automation of the point
cloud alignment. The descriptor is obtained computing the rela-
tionship between the points in a given radius and storing in his-
tograms the angular and distance relationships. In this way, points
that belong to different primitives show characteristic histograms.
There exists a faster version of the same algorithm, also devel-
oped by Rusu (Rusu, 2010), called Fast Point Feature Histogram
(FPFH), that reduces the point descriptor computation time as-
suming a certain loss in accuracy.

Signature of Histograms of Orientations (SHOT) (Salti et al., 2014),
proposed by Salti et al. is another point descriptor based on his-
tograms. It relies on the definition of a new coordinate system
from the neighbouring points and its covariance matrix. The
eigenvectors from this covariance matrix result in this new co-
ordinate system, therefore, each point and its surrounding neigh-
bourhood are divided by an isotropic sphere mesh. From this new
division, the angle between the local point normal and the inter-
est point normal is computed and stored for each cell. The final
descriptor is the combination of the histogram of each angle dis-
tribution around for each bin and cell. There is also a version that
includes the colour information of each point.

Previously mentioned point descriptors have the important char-
acteristic that they are obtained from histograms, thus, for each
point, the descriptor is a combination of several values. This
could represent an important drawback, considering the compu-
tation time and the used storage capacity. In the series of articles
(Gressin et al., 2013, Weinmann et al., 2014, Weinmann et al.,
2015b, Weinmann et al., 2015a) the authors defined several point
descriptors and features that can be used individually or in a com-
bination of them. The authors also demonstrated the use of these
point features in different scenarios, such as point classification,
point cloud registration, etc. These point features are straight re-
lated to the geometry of the surrounding neighbourhood of each
point, and are also obtained from the covariance matrix using
Principal Component Analysis. One important characteristic of
the point features, is that all of them are obtained from a so called
optimal radius, which, in some occasions is obtained from pre-
defined values or it is computed from one of the characteristics.
In this case, the entropy of the eigenvalues of a series of differ-
ent neighbourhood radius sizes is considered. So, for example,
when the point belongs to a planar surface, the entropy should

be small enough for the larger radius, while for a point that be-
longs to a corner, the entropy should be high enough for a small
radius. The point features can represent the linearity, planarity,
scattering, omnivariance, anisotropy, eigenentropy, and change
of curvature.

This work is focused on the application of these point features in
order to obtain a subsampled point cloud that can be used to per-
form coarse point cloud registration. Among the previous men-
tioned characteristic, these point features are easy to implement,
and do not require a huge amount of time to compute. Also, the
storage capacity is relatively small. In Section 3. a description of
the used point features is given in more detail. For the rest of the
point features, authors would like to refer to the original works.

2.2 Keypoints Detection

The keypoints detection and, furthermore, their point descriptors
and features is a subject strongly related to image processing and
computer vision of 2D images and video. The keypoints are usu-
ally associated to some salient characteristic of the images, such
as colour or contrast changes, or border and corner detection.
There are several keypoints detectors, most of them also include
a descriptor that helps to find the correspondence between each
other. The most popular keypoints detectors in image process-
ing are Harris detector (Harris and Stephens, 1988), SIFT (Lowe,
1999, Lowe, 2004), SURF (Bay et al., 2006), FAST (Rosten and
Drummond, 2006), and SUSAN (Smith and Brady, 1997). Since
the introduction of a more accessible technology, like Microsoft
Kinect, or portable LiDAR, detecting and analysing 3D objects
gained importance. During the last decade, there is an important
number of works that focused on developing and improving the
3D keypoints detectors. Most of the techniques used are adapta-
tions of the well known 2D keypoints detectors to work with 3D
data, and some of the state of the art presents modifications of
them. Two of the most popular 3D keypoints detectors are the 3D
Harris detector and an adaptation of the SIFT detector.

The 3D Harris detector was introduced by Rusu and Cousins in
(Rusu and Cousins, 2011). In contrast to the original 2D idea,
where the keypoints are detected by looking for changes in the
gradients of the images, the 3D approach is based on the analysis
of the normal vectors of the points. This detector only works with
the geometric information and properties of the point clouds, and
does not need any information related to the laser intensity or
similar. The algorithm works analysing the normal vectors of the
neighbourhood of each point and searches for changes in their
direction and orientation.

In the case of the adaptation of the SIFT keypoint detector, the
3D version (Theiler et al., 2014a, Theiler et al., 2014b) only uses
the first part of the original 2D algorithm, the Difference of Gaus-
sians (DoG). Thus, this detector is usually known by this name.
This is a remarkable difference, since the detector does not re-
trieve the descriptor information, and only determines where the
keypoint is located. The detector is an efficient approximation
of the scale-normalized Laplacian. The 2D version can be ob-
tained by applying repeatedly a blurring to the image using Gaus-
sian filters of different scales. The difference between the scale-
adjacent blurred images leads to a Difference of Gaussians re-
sponse, where the local maxima and minima are detected. The
3D version uses the same principle using the LiDAR return in-
tensities instead of the colour of the images. Also, the implemen-
tation needs to work with 3D Gaussian filters and a surrounding
neighbourhood of each point in the point cloud.
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3. PROPOSED METHODOLOGY

The work described in this manuscript is focused on the com-
putation of keypoints that can be used to obtain a subsampled
version of the original point cloud and that can be useful to per-
form a point cloud coarse registration. In addition, it is important
to generate keypoints and descriptors that are suitable to segment
and represent the objects in the dataset for future work.

As mentioned in Section 2.1, Gressin et al. presented a series of
point features based on the geometry that the surrounding neigh-
bourhood represent for each point (Gressin et al., 2013). The
authors performed an analysis of the quality of those features,
and also, they verified the suitability of obtaining a good coarse
registration and subsampling of the original point clouds. Fur-
thermore, the authors presented an approach to obtain the opti-
mal value of the descriptor based on the dimensionality features
such as planarity, linearity, and scatter. The authors increased
the radius search at each iteration, computing the Shannon en-
tropy of those descriptors and find the best radii for each point
where the entropy gives more information. In this way, it can be
claimed that the features contain the optimal information for each
point. However, computing all the features can take a consider-
able amount of time, mostly because it is required that all of the
radii are analysed, not all the them are necessary at the time, just
the eigenvalues for the eigenentropy.

Not only Theiler et al. presented the implementation of the DoG
for the keypoint extraction, but they also showed the application
of these keypoints into the coarse registration of point clouds
(Theiler et al., 2014a). Their approach uses a modification of
the original 4-Point Congruent Set algorithm (Aiger et al., 2008).
Their results are very promising and they achieve good results
in indoor point clouds where there is not a high symmetry and
the overlap between scans is sufficient. In this manuscript, the
authors propose a combination of both mentioned methods to ob-
tain new suitable keypoints for the same purposes.

First of all, it is needed to establish the features that are going
to represent the point cloud geometric information. In this case
the entropy/eigenentropy, the planarity and the curvature/change
of curvature are selected as they provide a good representation
in both, visual and mathematical value, of the point clouds. The
features are computed from the eigenvalues and eigenvectors of
the PCA approach around the neighbourhood of radius r;, which
varies between 0.03; 0.05; 0.062; 0.075; 0.09; 0.1; 0.125; 0.15;
0.175; 0.2 and 0.3 m. These values were empirically chosen cov-
ering the scale from 3 c¢cm to 30 cm as the most possible well
distributed.

Since the eigenvalues A correspond to the principal components
of the 3D covariance ellipsoid of the neighbourhood, the eige-
nentropy F, can be measured according to the Shannon entropy
as:

Ex = —e1ln(e1) — ez ln(e2) — e3In(es) €))

where e; is the normalized eigenvalue \A; by their sum. Figure 1
shows the eigenentropy of one point cloud. As it can be expected
the areas where the normal vectors change in direction, the higher
values that the eigenentropy represents.

The planarity P, is defined by equation:
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Figure 1. Classroom point cloud coloured with the eigenentropy
values.

where \; represents the eigenvalues in decreasing order A1 >
A2 > Az > 0. This feature represents 2D characteristics in the
neighbourhood. In Figure 2 it can be appreciated the point cloud
with the obtained planarity. The areas where the point density is
not good enough the feature fails to obtain an appropriate value,
even considering the higher radius.

265 Planarity
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Figure 2. Classroom point cloud coloured with the planarity val-
ues.

The change of curvature can be interpreted as the surface varia-
tion from the 3D structure tensor as:

A3

Cy= —-"2—
A AL+ A2+ A3

3)

This feature can be seen in Figure 3. At first sight, it can be
assumed that the curvature is similar to the eigenentropy in terms
of border and corner detectors.

It is important to notice that all these geometric properties can
represent at first sight where the borders and corners are placed,
with some differences, in the point cloud. They can be suitable
candidates to obtain the keypoints needed to perform the coarse
registration.

The second step is to obtain the keypoints. The LiDAR return
intensities applied to the point cloud is a way to obtain a coloured
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Curvature

265

Figure 3. Classroom point cloud coloured with the change of
curvature values.

version of the data. In this case, the colour is given by the physic
properties of the instrumentation. Since the DoG only needs an
extra field in addition to the geometric coordinates, which repre-
sents the intensity/colour of each point, this field can be set as any
distinctive property, or colour that the user is able to apply. The
authors propose in this manuscript to use the geometric properties
represented by the eigenentropy, the planarity, and the change of
curvature.

Once the point clouds are coloured by the point features values,
the keypoints are obtained by the application of the same Dif-
ference of Gaussians algorithm used in the state of the art. This
part is vital in the whole process, since instead of subsampling
the point clouds by a threshold value as done in (Gressin et al.,
2013), a more robust procedure like the DoG keypoint extraction
is implemented to reduce the number of significant points. With
the DoG not only the number of keypoints can be reduced, but
also noise robustness can be achieved. This last statement can be
illustrated in Figures 4 and 5.

LiDAR intensity

-5

Figure 4. Keypoints (red) from LiDAR return intensities detail.

In the case of the intensities, there are several points around the
original position of the laser scanner that are mainly noise, and
do not represent a distinctive characteristic of the data. The dif-
ference can be appreciated at the same place in the case of the
eigenentropy. The only points obtained around the original laser
position are the ones that represent the borders. Even if it is a sim-
ple idea, it, also, can be seen as a domain change, where the ge-
ometries are converted to a space represented as colours scalars.
The application of this procedure has the potential to bring new
possibilities in the computation of sparse representation via dis-
criminative 3D keypoints.

Eignentropy N _

Figure 5. Keypoints (red) from Eigenentropy detail.

An example of the keypoints obtained by this procedure using the
coloured point clouds with the new point features values can be
seen in Figure 6, 7, and 8.

Eigenentropy

z (m)

0
y(m)

Figure 6. Classroom point cloud keypoints (red) from the entropy
values.

Once all the keypoints are obtained from the different point clouds
that need to be registered, the coarse registration can be per-
formed. In this case, the coarse registration is performed by ap-
plying ICP to the first three case studies, and setting the manual
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Figure 7. Classroom point cloud keypoints (red) from the pla-
narity values.

Curvature
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Figure 8. Classroom point cloud keypoints (red) from the curva-
ture values.

correspondences between the keypoints in the last two case stud-
ies. Animportant improvement in this step is discussed in Section
4.3 and 5. After the point clouds are coarsely registered, the fine
registration is performed with the ICP algorithm.

4. EXPERIMENTAL RESULTS
4.1 Dataset

The datasets acquisition has been performed with the Faro Focus
3D X 330, which is a phase-shift LIDAR laser scanner. It has a
range of acquisition of 0.6 - 330 m, with an error of + 2 mm. It
includes an integrated colour camera that is able to obtain up to
70 mega-pixels. The scanner can measure at a maximum speed of
976,000 points per second. The device incorporates sensors like
the global positioning satellite system (GNSS), barometric sensor
for altitude measurement, compass, and dual axis compensator.

The obtained datasets consist of 4 different scenes of interior
buildings and an exterior scene. The scenes cover a classroom
with a rectangular shape, a laboratory with an L shape, a hall, a
university corridor and the foundation pillars of a building. Each
scene is scanned twice, from different scan-positions, leading to
ten point clouds of around 5-27 million points. The point clouds

are subsampled with an octree filter in order to reduce computa-
tion time and obtain a more homogeneous point density (Table
1). The first three datasets are taken from scan-positions close to
each other in order to use them as control dataset, the last two
are obtained from separate scan-positions as performed in real
surveying. Figure 9 shows the five datasets scenes.

Point Cloud Original After subsampling
Classroom 10,600,000 366,800
Hall 27,000,000 562,000
Corridor 27,000,000 885,000
Laboratory 10,600,000 350,000
Pillars 10,600,000 700,000

Table 1. Dataset number of points
4.2 Experimental procedure

The experiments conducted to test the accuracy of the keypoints
and the suitability to perform the coarse registration with subsam-
pled point clouds, were performed with the five different datasets.
The main goal is to coarsely register the source and target point
clouds, in a way where the solution obtained falls in the range
suitable to perform fine registration. In this moment the keypoints
detected can be catalogued as appropriate to the final purpose. In
order to be able to obtain a comparable metric, the root mean
squared error (RMSE) is used in the overlapping aligned points
from the full octree subsampled point cloud:

@

where n is the number overlapped aligned points, p; are the points
from the source point cloud and ¢; the points from the aligned
target point cloud. The RMSE is computed from the points with
correspondences in both point clouds, allowing the process to be
fair and more descriptive of the final registration and distance val-
ues between both point clouds.

In addition to the keypoints obtained from the eigenentropy, pla-
narity and change of curvature, the keypoints from the 3D Harris
detector and the DoG from the LiDAR return intensities are also
computed and used in the experiments. This allows the methodol-
ogy to be tested with a contrasted reference from previous works.
The mean number of keypoints obtained in each case study is
summarised in Table 2, which in most cases represents the 1%
of the number of points after octree subsampling. The thresh-
olds values used in both 3D Harris detector and the DoG were set
iteratively searching for that particular 1% number of keypoints.

Dataset | Harris | DoG | Entropy | Planarity | Curvature
Class. 3,700 | 4,000 | 2,600 2,000 2,600
Hall 4,000 | 6,140 | 2,500 3,500 4,300
Corridor | 7,000 | 7,100 | 6,500 3,600 2,600
Lab. 3,000 | 4,000 | 4,500 4,300 4,000
Pillars 4,900 | 2,600 | 2,200 6,000 7,000

Table 2. Mean number of keypoints detected

Also, a manual coarse registration of the subsampled point clouds
is performed to be used as a reference ground truth in the experi-
ments. It would represent the accuracy obtained by a regular user,
that hand-picked enough points to obtain the rigid transformation
from one point cloud to the other. This ground truth accuracy is
the one that this work is intended to outperform with the help of
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Scan
position 1

Scan
position 2

Classroom

Corridor Laboratory Pillars

Figure 9. Datasets used during the experiments. Ceilings and walls are erased for visualization purposes. Scan stations positions are

represented as yellow circles.

the keypoints. Once the coarse registration is performed over the
keypoints, the RM S Ecoarse of the subsampled point clouds is
extracted and compared to the ground truth. At last, fine regis-
tration with point to point ICP is applied to the full subsampled
point clouds and the RM SE¢;pe is computed.

4.3 Results

The experimental procedure conducted in the five different case
studies leads to the results presented in Table 3 and Table 4.

Classroom | Hall | Corridor | Lab. | Pillars
G.T. 40.7 48.5 85.5 33.5 88.3
Harris 15.5 36.6 38.2 68.9 | 130.2
DoG 15.8 29.3 37.3 62.0 | 312.1
Entropy 11.9 224 37.5 41.0 | 93.0
Planarity 18.3 134.6 39.0 642 | 1573
Curvature 11.2 21.6 37.2 39.9 | 270.1

Table 3. RMSE values (in mm) obtained from coarse registration

Classroom | Hall | Corridor | Lab. | Pillars
G.T. 1.5 14.9 35.7 294 58.8
Harris 1.4 15.0 35.6 28.7 53.8
DoG 1.4 149 35.6 29.3 52.9
Entropy 1.6 14.9 35.5 29.3 54.2
Planarity 1.1 59.1 35.7 29.0 58.7
Curvature 1.3 14.9 35.7 29.3 53.2

Table 4. RMSE values (in mm) obtained from fine registration

In the first table, it can be seen that in the first three case studies,
the ones considered as control datasets, most of the RMSE ob-
tained from the automatic coarse registration with the keypoints
are lower than the ground truth. Only the planarity seems to devi-
ate from the values obtained. Discarding this feature, the change
of curvature and the eigenentropy outperforms, or at least match,
the results obtained from the 3D Harris detector and the return
intensity keypoints. In Figure 10 it can be seen an example of a
coarse registration with the eigenentropy and its quality. The ac-
curacy of the coarse registration is close enough to one obtained
by fine registration. In addition, it can be appreciated that this
coarse registration can be used as the input of the fine registra-
tion.

The last two case studies present different results. For most of the
cases, the RMSE obtained is not lower than the one obtained in

Eigenentropy Coarse Registration

4 35 3,
2m) 25 2

Figure 10. Coarse registration performed from the eigenentropy
on the Hall dataset.

the ground truth. This does not mean that the coarse registration,
or the keypoints obtained are not suitable, but it does mean that
the automatic registration in these cases requires further work.
Figure 11 shows the result over the change of curvature in one of
this incorrect coarse registration, since the result obtained are far
away to give the fine registration a proper input. In this case, the
error committed is not suitable to be considered as a successful
coarse registration. However, when looking at Table 4, the final
RMSE of the fine registration that corresponds to the detail, it
does not differ significantly from the ground truth.

Change of Curvature Coarse Registration

z(m)

Figure 11. Coarse registration performed from the change in cur-
vature on the Pillars dataset.

Fine registration RMSE values are in most cases constrained to
the ground truth value obtained. The difference, in almost all
the cases, is reduced to a range of only 1 - 6 millimetres. The
only case that deviates from the ground truth is with the planarity
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keypoints in the Hall dataset.

Analysing the coarse registration of each keypoint individually,
the eigenentropy tends to obtain the best results, where in most
cases it successfully reduces the ground truth coarse registration.
Even in the cases where the registration is not performed prop-
erly, the RMSE obtained from the eigenentropy is one of the low-
est. Change in curvature is also a proper feature to perform the
coarse registration. Planarity in most cases does not fulfil the re-
quirements to apply the coarse registration. This can be due to
the scan marks produced by the scanning device, that appears to
decrease the feature value. Thus, the DoG performed over this
feature is not able to obtain good keypoints.

The geometry and the overlapping of the point clouds seems to
have an important effect too. When the geometry represents a
more complex shape than rectangular rooms, the aligning tends
to not be able to converge to a solution lower than the centimetre.
The amount of the overlap is also crucial, since the fine registra-
tion tries to minimise the distance error over the majority of the
points coordinates.

5. CONCLUSIONS

In this work, the capability of the geometric features and descrip-
tors to be used to obtain keypoints is tested. The features pre-
sented the potential to replace the return intensities of LiDAR
data, applying different colour information to the point cloud.
The new domain of coloured data contain, in its intensity range,
geometric information representing the different features. Thus,
this allows to use the standard technique of Difference of Gaus-
sians to compute representative keypoints all over the point cloud.
These keypoints, in most cases, are meaningful enough to obtain
a subsample of the point cloud, and perform automatic coarse
registration. In addition, the keypoints present a more robust rep-
resentation of the neighbourhood, reducing the number of noise
and preventing the overestimate of sparse representation.

The quality of the coarse registration obtained from the keypoints
can be good enough to work in surface reconstruction or average
precision applications. In most of the cases the RMSE values
obtained from these keypoints outperforms the ones obtained by
the ground truth and the 3D Harris detector and the DoG over the
return intensities.

The experiments carried out over the change of curvature and
eigenentropy features demonstrate that are suitable candidates to
perform both, the coarse registration, and the point cloud subsam-

pling.

The automation of the coarse alignment is not sufficient to build
an autonomous registration system. Future work will involve
working on this matter. The authors will focus on the imple-
mentation and the test of the 4-points congruent sets (Aiger et
al., 2008) and its improvement with the use of only keypoints
(Theiler et al., 2014a), since both methods show a good potential
in the subject, and are easy to implement and obtain reference re-
sults for comparison. Future work will, also, involve the use of
complicated geometries and occluded point clouds, and the study
of different point features.
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