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ABSTRACT:

We present a novel ground filter for remotely sensed height data. Our filter has two phases: the first phase segments the DSM with
a slope threshold and uses gradient direction to identify candidate ground segments; the second phase fits surfaces to the candidate
ground points and removes outliers. Digital terrain is obtained by a surface fit to the final set of ground points. We tested the new
algorithm on digital surface models (DSMs) for a 9600km? region around Perth, Australia. This region contains a large mix of land
uses (urban, grassland, native forest and plantation forest) and includes both a sandy coastal plain and a hillier region (elevations up
to 0.5km). The DSMs are captured annually at 0.2m resolution using aerial stereo photography, resulting in 1.2TB of input data per
annum. Overall accuracy of the filter was estimated to be 89.6% and on a small semi-rural subset our algorithm was found to have 40%

fewer errors compared to Inpho’s Match-T algorithm.

1. INTRODUCTION

Digital Elevation Models (DEMs) are important for studies of
earth surface processes such as geomorphology, hydrology (Wil-
son and Gallant, 2000) and vegetation (Moore et al., 1991). They
also have applications in wireless communication (Sawada et al.,
2006) and land cover map generation (Caccetta et al., 2015). It is
popular to generate DEMs using remote sensors including light
detection and ranging sensors (LiDAR), digital stereo (multiple
view)-photography, and interferometric synthetic aperture radar
(InSAR). Such sensors may be airborne or spaceborne and pro-
vide dense observations of the land surface. From the data ac-
quired, positional (e.g. x,y,z) and surface property (e.g. reflectance
from optical photogrammetry or backscatter from SAR) informa-
tion is directly available, or with some processing, may be de-
rived. The positional information is directly relevant to the gen-
eration of a Digital Surface Model (DSM), which records heights
of any feature relative to a reference (typically taken to be zero at
mean sea level). In this paper we focus on the generation of Dig-
ital Terrain Models (DTM), which provide estimates of ground
elevation, through filtering and then removing above ground ob-
jects from DSMs. We note that given a DSM and a DTM, then
we may derive a so called “normalised Digital Surface Model”
(nDSM) by simple subtraction of the DTM from the DSM. DTMs
are typically used for estimating ground properties such as deriva-
tives (slopes and curvatures) or flow path prediction in runoff
models. nDSMs are typically used for building and/or tree height
extraction.

The published literature is mostly focused on LiDAR data, how-
ever many of the concepts and results generalise to stereo pho-
tography derived point clouds due to the similarities of the sensed
objects. Meng et al. review and comment on the existing meth-
ods for ground filtering LiDAR point clouds (Meng et al., 2010).
They categorised algorithms into six classes, segmentation/clus-
tering, morphological, directional scanning, contour-based, TIN-
based and interpolation-based. We prefer a coarser classification:

algorithms either label individual points, or label clusters or seg-
ments of points. Furthermore this labelling is performed using
neighbourhood based comparisons (e.g. morphological and direc-
tion scanning) and/or surface-based comparisons (contour, TIN
and interpolation based). Alternative classifications are given by
(Shan and Aparajithan, 2005) and (Tévari and Pfeifer, 2005).

Neighbourhood comparisons typically use operators derived from
the morphological opening and closing operations to quickly la-
bel points as ground. In comparison, algorithms that label seg-
ments/clusters such as (Belkhouche et al., 2015) and (Tévari and
Pfeifer, 2005), divide the point cloud into homogeneous groups
of points and then use neighbourhoods, fitted surfaces or proper-
ties of the segments to discriminate ground segments from non-
ground segments.

To improve accuracies, neighbourhood methods have been sup-
plemented with other secondary filters such as repetitive sam-
pling by (Kobler et al., 2007), surface fitting robust to outliers
(Woestyne et al., 2004) and multiscale neighbourhoods (Abo Akel
et al., 2004). Kobler et al. (Kobler et al., 2007) first used a point-
based neighbourhood algorithm similar to Vosselman’s classic
slope-based filter (Vosselman, 2000) to remove most non-ground
points and then applied a point-based surface filter to obtain a
good DTM approximation. This latter filter repeatedly fitted sur-
faces to random samples of the point cloud and relied on the point
cloud containing very few non-ground measurements. The final
DTM was found using the distribution of all the surfaces. Wang
and Tseng (Wang and Tseng, 2014) pre-processed point clouds
with a segment-based filter and then used 1-dimensional neigh-
bourhoods to label the points. Abo Akel et al. (Abo Akel et
al., 2004) used a segment-based filter (using only intrinsic prop-
erties of the segments) to extract a road network and then per-
formed multiscale neighbourhood comparisons to find all other
ground points. Woestyne et al. (Woestyne et al., 2004) also use a
segment-based filter but follow it with a surface-based filter.
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The review article (Sithole and Vosselman, 2004) lists common
difficulties for ground filters of LIDAR data:

e Qutlying points far above or below the true surface. These
are usually caused by sensor or matching errors, or birds
or aircraft in the image. Most filters have a bias towards
low points so low outliers are typically more problematic
than high outliers.

e Large objects. These are especially problematic for filters
that use fixed-sized neighbourhoods because the object’s
extents may exceed the neighbourhood.

o Complex shapes and configurations. For example, discon-
nected patches of bare earth (such as courtyards), build-
ings connected to other buildings, roofs that have multiple
levels, or roofs overshadowed by trees.

e Attached objects are objects that are seamlessly connected
to the ground on one edge, but are above the ground on
another edge. Some examples of this are roofs that touch
the ground, bridges and ramps.

o Vegetation on slopes or low vegetation. It is difficult to
determine between natural variation in the Earth’s surface
and variation due to vegetation.

e Discontinuities and abrupt height changes in the ground.
Many filters remove or smooth these terrain features.

For stereo photography data, canopies also present difficulties be-
cause stereo photography relies on observations from two or more
views potentially producing fewer ground points than LiDAR.

There are two types of errors in classifying ground points: omis-
sion errors (rejection of true bare-Earth points) and commission
errors (false labelling of objects as bare-Earth).

This paper presents a novel algorithm for generating DTMs from
DSMs. We concentrate our description on using elevation models
presented in raster/gridded form, and note that the concepts gen-
eralise to non-gridded points. The algorithm first labels segments
and then applies a surface-based outlier removal. It differs from
the algorithm of (Woestyne et al., 2004) by using (1) a neigh-
bourhood to label the segments so that small isolated patches
of ground are correctly filtered and (2) a multiresolution out-
lier removal that can quickly remove large regions of non-ground
points. The algorithm is described in detail in Section 2.

We applied the algorithm to a 9600km? decimetre resolution
dataset and the quality of the resulting DTMs are discussed in
Section 3. The filter accuracy was 89.6% and the DTMs are al-
ready in use by local governments (Western Australian Planning
Commission, 2013).

2. MATERIALS AND METHODS

Here we describe our 2-stage algorithm for generating DTMs
from DSMs. The complete work flow is presented in Figure
1. The data used for developing and testing the algorithm is
described in Section 2.1. The surface fitting algorithm used in
both the surface-based filter and the final DTM interpolation is
described in Section 2.2. The first stage comprises a segment-
labelling neighbourhood filter and is described in Section 2.3.
The second stage, a point-labelling surface-based filter, is de-
scribed in Section 2.4. Computational aspects of producing the
DTMs are described in Section 2.5.
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Figure 1. Complete work flow from stereo photography to DTM

2.1 Data

The algorithm can be applied directly to point clouds generated
by LiDAR or stereo photography, however for simplicity we use
DSMs that are already available.

The DSMs were generated as part of a wide-region, fine-scale ur-
ban monitoring study (Caccetta et al., 2015). See Figure 2 for an
example DSM. This project leverages state-funded annual stereo
aerial photography capture of a 9600km? region around Perth,
Australia. Henceforth we will refer to this region as the Urban
Monitor (UM) region.

The annual stereo aerial photography data set, which contained
approximately 35,000 frames per annum, was acquired using a
Microsoft UltraCAM-D (Leberl and Gruber, 2003) flown at a
height of about 1300m above the ground, capturing multispec-
tral data (red, green, blue and near infrared bands) along with
panchromatic data. The ground sample distance (GSD) was ap-
proximately 0.3m and 0.1m for the multispectral and panchro-
matic data respectively. The dates of each capture corresponded
to Perth’s dry hot Mediterranean-type summers. The captured
frames had at least 65% forward and 30% side overlaps. The
overlaps among frames allowed detailed DSM to be extracted us-
ing stereo photogrammetric techniques.

All frames went through a rigorous photogrammetric process in-
cluding image calibration (Collings et al., 2011; Collings and
Caccetta, 2013), aerial triangulation (block adjustment), gener-
ation of DSM, and ortho-rectification using the derived DSM.
High performance computing based aerial digital photogramme-
try was employed in the creation of a DSM at 20cm resolution
for the 9600km? region. The in-house DSM generation method
was developed based on one of the authors early work (Wu, 1996,
1995), and the processing was performed at Western Australia’s
Pawsey Supercomputing Centre.
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(a) 2007 DSM (b) 2007 nDSM

Figure 2. The UM region. It is 210km from North to South.
Viewed at this scale the DSM (a) is indistinguishable from the
DTM, instead we show the nDSM (b). In the nDSM cool colours
correspond to low elevations, hot colours are high elevations (red
= taller than 10m). Noticeable are tall canopies of dense plan-
tation forests in the North, and non-uniform canopy of native
forests in the East. Some height errors in water are also visi-
ble due to DSM issues over water. In (a) elevations range from
Om (blue) to approximately 0.5km (white) above sea level.

2.2 Multi-Resolution Surface Fitting

The surface fitting algorithm was derived from Terzopoulos’ work
(Terzopoulos, 1988) and is quite similar to the surface fitting al-
gorithms of Bolitho et al. (Bolitho et al., 2007) and Zoraster (Zo-
raster, 2003). The algorithm can be applied directly to a point
cloud to generate a DSM. In principle other surface fitting meth-
ods might also be sufficiently fast and accurate.

The algorithm operated at multiple resolutions using coarse res-
olution results as starting estimates for fine resolution surface fit-
ting. The surface fitting at a coarse resolution provides approxi-
mate surfaces with relatively small computational costs. The finer
resolution surface fitting adjusts this approximate surface to im-
prove detail and accuracy. Multiple resolution algorithms are well
known for reducing computation times.

At each resolution the initial surface guess was iteratively evolved
to minimise an energy function that combined a data matching
cost with a roughness cost. The former was the difference be-
tween the estimated surface and the input points averaged to the
current resolution. The latter was based on the magnitude of the
second-order derivatives of the surface.

Further details may be found in (Hingee, 2013) and a forthcoming
paper (Hingee et al., 2016).

2.3 Segmentation Filter

This filter used an algorithm known as inflows that was origi-
nally developed by one of the authors (Caccetta, 1997). Sim-
ilar algorithms were more recently presented for point clouds
(Belkhouche et al., 2015) and DSMs (Beumier and Idrissa, 2015).
The filter required a slope S parameter, an area A parameter and

a relative gradient R parameter to be provided by the user. The
algorithm first labelled pixels having slope less than S as candi-
date ground points (cgp), and rejected all other pixels. Connected
components of cgp were treated as regions. Regions with area
smaller than A were rejected, largely for the purpose of remov-
ing numerous commission errors at the expense of some omis-
sion errors. Remaining regions were then labelled according to
the percentage of neighbouring boundary pixels higher than the
nearest region pixel, or in watershed terminology, the percent-
age of neighbouring pixels that would flow into the region (hence
the term “inflow”). Regions having inflow scores greater than,
for example R = 0.5, were retained and all other regions were
rejected. An example is shown in Figure 3.

DSM

(in pink)

Figure 3. An example of the inflows segmentation filter in action.
Using the DSM (b) (hot/grey colours correspond to high DSM
values), the area was segmented into pixels above or below the
slope threshold (c). In (c) pixels that would ‘flow’ into a neigh-
bouring region are yellow, and pixels that would ‘flow’ away
from a neighbouring region are blue. In (c) the level segments
are coloured with various saturations of red; the less saturated
(darker) a segment the higher the proportion of inward flowing
pixels. The segments with more than 50% of their boundary pix-
els flowing inwards were then labelled ground (d) (ground pixels
are coloured pink).

The parameters used for the UM region were S = 25°, A =
0.4m? and R = 0.5. Initial testing indicated that the algorithm
performed well on outliers in the DSM, discontinuities, sharp
ridges, low vegetation, vegetation on slopes, large objects, and
even low objects. However it often misclassified saw-toothed
roofs, attached objects (such as roof-top car parks) and more
complex configurations such as roofs with many objects on top
of the roof and roofs neighboured by even higher roofs (such
as in high density commercial districts). It also had difficulty
with large horizontal segments in canopies (where the areas of
segments could be greater than the area threshold of A) and ex-
tremely steep terrain (greater than S slopes).

With inflows as the only filter these few (by area) commission
errors resulted in DTMs with mounds every few metres, see Fig-
ure 4 for an example. Initial testing suggested that this was an
unacceptable error rate, however inflows was extremely fast.

Removal of further non-ground points required a method that
compared candidate points to the closest true-ground points,
which were potentially many metres to tens of metres away. This
suggested either extremely large neighbourhoods (larger than
most non-ground objects) or surface fitting. In the next section
we describe our solution which was based on the latter.

2.4 Surface-based filter

This filter improves the candidate ground point (cgp) set by re-
moving points that cause large roughness in the fitted surface. At
each iteration a surface, u, was fitted to the current set of cgp and
then a cgp point located at (¢, ) was removed if the sum of the
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(a) False Colour

(b) DSM (c) Candidate (d) Fitted Surface
Ground Points

Figure 4. An example of a surface fitted to an inflows candidate
ground mask. Shown is a false colour display of the region (a),
the DSM (b), the set of cgp from inflows (c) and the fitted surface
(d). The sub-figures (b), (c) and (d) are coloured according to
the same height scale (blue = low, red = high). The surfaces (a)
and (d) are also sun-shaded to accentuate texture. In (c) the black
pixels are those that were not candidate ground. A few high, non-
ground, pixels (coloured green or yellow due to their height) can
be seen in (c); they are causing the large mound-like features in

(d).

second-order derivatives,

*u\’ *u \’ *u\’
- 2 -
(8:02) + (8:08y> + <8y2) ’
evaluated at (4, j) (calculated by discrete approximation from the

heights of neighbouring pixels) was above a user-defined thresh-
old and the cgp was above the fitted surface.

The protection of below-surface cgp prevented true-ground points
from being removed when nearby above-ground points caused
rough surfaces. In the present algorithm this caveat was relaxed
on some iterations to remove below-ground DSM errors which
occasionally resulted in loss of true ground points.

2.4.1 Parameter Selection. The user defined thresholds were
chosen by trial-and-error on small subsets of the data. The region
contained two broad terrain types, a smooth coastal plain that
contained most of the urban area and a hillier area with little ur-
ban development and lots of forests. In Figure 2a the hillier area
is mostly orange and white, whilst the plains are green and blue.
Exploratory testing gave a strong indication that it would be ben-
eficial to use different parameters for each of these terrain types.
On the coastal plain there were many complicated aboveground
structures (due to the higher urbanisation) leading to more com-
mission errors by inflows, however the greater smoothness of the
ground allowed stricter thresholds and thus enabled removal of
more non-ground points.

Parameter choices in the surface fitting algorithm affected both
the computation time and the quality of the filtering. A smoother
surface used coarser resolutions, required less computation time,
and enabled tighter roughness thresholds which removed larger
amounts of commission error. However smoother surfaces were
unable to detect small commission errors that were close to true-
ground points. Heuristically, surface fitting at 3.2m resolution
(which was 2* times the input DSM resolution) is ideal for re-
moval of residential roof sized patches of commission error be-
cause at this resolution a residential roof is only a few pixels wide
and there are similar sized patches of ground (backyards, roads)
to constrain the surface close to true ground. Outlier removal that
used 1.6m resolution or finer surface fits were useful because the
surface fitting could detect a greater number of small commis-
sion errors in trees. Outlier detection at the full 0.2m resolution
was not considered due to the greater computational time it re-
quired. Furthermore additional care was taken when candidate

ground points below the surface could be removed because there
was a risk that true ground points on the floors of valleys and
depressions would also be removed.

We used two areas to guide parameter selection, a sharp, well
vegetated valley for the hills (Figure 5) and a large region con-
taining urban, suburban and parkland areas for the coastal plain
(Figure 6). These regions were chosen to be challenging with the
expectation that the filter will work better on any other region.

Only six iterations were used due to the complexity of determin-
ing parameters. The parameters selected, and details of the pa-
rameter search can be found in (Hingee, 2013). We do not in-
clude them here because they were specific to the surface fitting
program and do not add much conceptually.

(a) false colour display (b) sun-shaded DSM
Figure 5. The region used to guide parameter choices for the hilly
terrain. Dimensions: 1km by 1km. Grey colours correspond to
high elevations (~ 270m), cool colours correspond to low eleva-
tions (blue ~ 63m).

Figure 6. The region used to guide parameter choices for the
coastal plain. Shown is a false colour display (above) and sun-
shaded DSM (below). Dimensions: 3.4km by 1.4km. Grey
colours correspond to high elevations (~ 63m), cool colours cor-
respond to low elevations (blue ~ 10m).

2.5 Processing

Filtering of the DSM and surface fitting to create the DTM was
performed using Western Australia’s Pawsey Supercomputing
Centre. Due to very large memory requirements of the surface
fitting, the DSM was cut into 20 000 x 20 000 pixel tiles (4km by
4km), with an overlap of 1000 pixels (200m). This resulted in a
total of around 1000 tiles to be processed.
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The surface-based outlier removal together with the final surface
fit to produce a DTM required around 16GB of memory and just
over 4 hours of CPU time for each tile resulting in over 4000
hours of processing in aggregate. In comparison the segment-
labelling filter used very little memory or other resources.

The resulting DTM tiles were mosaicked back together to form
the final DTM taking around 36 hours to complete. The 1000-
pixel tile overlap allowed the feathering of edges through a simple
linear weight ramp, from a weight of O at the edge of a tile, to
1 where the overlap finished. Without this feathering the final
mosaic would have contained extensive tile edge effects, due to
surface fitting being calculated independently on each tile.

The nDSM in Figure 2, which was generated by simply subtract-
ing the DTM from the DSM, required around 5 hours to complete.

3. RESULTS AND DISCUSSION

The quality of the final DTMs generated for the region were in-
vestigated with a manual inspection of the entire region (Section
3.1), arrays of manually classified points (Section 3.2) and a com-
parison to the commercially available match-T algorithm (Sec-
tion 3.3).

3.1 Manual Inspection

The DTMs of the entire UM area were manually inspected for
large errors and large patches of errors. Here we focus on the
DTM for 2007. The results of the other year, 2009, were similar
- see (Hingee, 2013). Due to time constraints the DTM was only
checked at scales larger than the typical residential house.

Industrial roofs were often problematic because inflows was con-
fused by their complex shapes (saw-toothed roofs, rooftop car
parks attached to the ground, and roofs with objects on them are
all common in industrial/commercial zones) and the large roof
areas hindered removal by the smoothing filter. Bridges were not
classed as commission errors because in some real-life situations
they are regarded as ground, however it was noticed that our filter
partially commissioned most bridges as ground - inflows labelled
them as ground and the smoothing filter eroded the edges.

Some dense forest issues also occurred, primarily in two large
plantation forests, and were due to a lack of visible ground to
constrain the surface-based filter.

Discontinuities and sharp changes in true ground such as cliffs,
gullies and occasional peaks of sand dunes were overly smoothed
however these issues were either small or rare, and deemed a rea-
sonable price for reduced commission error.

Two large gentle hill-sides were interpolated instead of fitting to
ground points present in the DSM. These were caused by large
ground segments with inflow scores lower than the threshold of
R =0.5.

The effects of the piecewise generation of the DTM (recall that
the size of the data necessitated surface fitting on 4km by 4km
subsets) were only noticed three times, all in large data-less re-
gions such as rivers or lakes.

3.2 Comparison to Arrays of Manually Interpreted Points
In clear, flat, open ground, manual inspection showed that the

DTM was nearly identical to the DSM and consequently inaccu-
racies of the DTM were attributed to two sources, the input DSM

and any commission/omission errors of the ground filter (a third
source, occlusions, was also possible in other parts of the UM
region where there was very dense forest).

Accuracy was estimated by arrays of points in three separate re-
gions. A complex urban region (the same region used to train
parameters for the coastal plains), a simpler coastal suburb and a
farming district that contained a nature reserve. Manual interpre-
tation of these points as either ground, non-ground, or unknown
(could not distinguish between ground or non-ground) was per-
formed using orthorectified images. Due to time restrictions no
manual interpretation of points occurred in the hilly region.

The difference of the final 2007 DTM to the 2007 DSM was
thresholded at 0.3m to label locations as ground/not-ground. This
allowed investigation of the commission/omission of our ground
filter, but not absolute accuracy of the DTM. See table 1 for the
confusion matrix pooled across all three regions.

An overall accuracy of 89.6% was achieved with a 2.2% com-
mission error and a 8.1% omission error.

Differences in terrain complexity, sensor properties and prepro-
cessing make comparison of these accuracies to published results
difficult. Instead the next section presents a direct comparison to
a commercially available DTM algorithm.

manual interpretation

predicted
ground  non-ground  unknown sum
ground 922 32 56 954
non-ground 116 354 91 470
sum 1038 386 1424

Table 1. Confusion matrix for the 2007 DTM. The proportion
of predictions that matched the manual interpretations (the over-
all accuracy) was 89.6%, the percentage of manually interpreted
pixels that were incorrectly predicted as ground (the commission
error) was 2.2% and the fraction of manually interpreted pixels
that were incorrectly predicted as non-ground (the omission er-
ror) was 8.1% (these accuracies and the sums of each row above
are ignoring the unknown pixels).

3.3 Comparison to an Inpho match-T DTM

Inpho’s match-T algorithm (Lothhammer, 2005) was used to cre-
ate both a DSM and a DTM for a 4.5km by 5.7km region repre-
senting a fairly simple, but prevalent landscape. The region was
on the flat coastal plain and contained clear ground, sparse forest
and large, highly vegetated residential blocks. Due to time and
data transfer limits it was only possible to compare algorithms on
this small region.

Exactly the same raw photographs from the 2009 data were used
for both algorithms. The default parameters were used for the
Inpho algorithm. It is likely Inpho’s DTM could have been im-
proved with better parameters however this risked over fitting.

In clear open ground both DTMs closely matched the DSMs so
numerical height accuracies were not compared. However there
were clear differences in the abilities of each method to filter non-
ground objects.

Each DTM was evaluated by manually scanning through the re-
gion at high resolution, noting any commission or omission er-
rors. For an error to be noticeable there usually needed to be an
area of unexpected roughness of approximately 300m? or larger
(e.g. the surface contained objects, protrusions or small mounds
where nothing in the DSM or orthophotos indicated a change in
height), or was smoother than it should be (e.g. loss of gullies and
sharp landscape features).
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The height of the two DTMs were then differenced (Figure 7, bot-
tom) to highlight further differences, this was especially useful
for discerning omission errors in our DTM. Differences that the
user could not easily attribute as error, such as inclusion/exclusion
of a large mound of dirt, were ignored.

Images of the results are shown in Figure 7. A total of 40 errors
were found in our DTM. There were 20 commission errors of
trees, 15 omissions of dams and gullies, 3 roofs commissioned
as ground and 2 incidences where the DTM smoothed over true
bulges in the ground.

A total of 67 errors were found in Inpho’s DTM. There were 59
errors caused by trees, 6 roof errors, and 2 erroneous protrusions
in the DSM that the DTM failed to remove. No omission errors
were found; it did not smooth over gullies or dams.

Overall our algorithm resulted in 40% fewer errors. Inpho’s DTM
contained almost three times as many vegetation commission er-
rors as our DTM, and twice as many roof errors. However it
captured many sharp changes in the ground, which were mostly
caused by gullies and dam walls, that our DTM consistently mis-
sed. In dense urban areas and forests Inpho is likely to create
many more above-ground errors because there are many more
above-ground objects in these regions. The improvement gained
from our algorithm implies a significant reduction in costly man-
ual editing for the region.

Assuming the accuracy of our DTM here is similar, on average,
to the whole UM region the error counts suggest at least 400 un-
recorded small-scale commission errors.

4. CONCLUSION

Our algorithm’s estimated accuracy for the Perth region was

89.6% and in a peri-urban region it produced 40% fewer errors
than Inpho’s match-T algorithm. Qualitative manual inspection
suggested that the algorithm produced good estimates of ground
height in well-vegetated dense suburbs, new suburbs, peri-urban
areas and farmland. However it had difficulties with a few rarer
terrains: industrial buildings, dense forests, extremely steep hills,
sharp depressions and discontinuities.

The algorithm, which combines a segmentation filter with a sur-
face based smoothness filter, shows how improvements to single
method algorithms can easily be obtained through a secondary
filter. It is also a rare demonstration of DTM estimation from
digital stereo photography.

The results of this algorithm applied to the UM region are already
in use by urban decision makers (Western Australian Planning
Commission, 2013, page 13).

S. FUTURE WORK

In the future we would like to gain a better estimate of our algo-
rithm’s accuracy using manually interpreted points over a broader
region. We would also like to investigate improvements to the
filter through a specialist below-ground filter and/or morphologi-
cal removal of outliers after surface fitting. Applications to very
steep terrains could use an inflows variation wherein segments of
slowly changing slope are separated by high curvatures.

Our algorithm was sufficiently fast and accurate to produce DTMs
for multiple dates. Future comparisons between these DTMs
could provide further valuable information to a wide range of
professionals.
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Figure 7. Comparison with the match-T generated ground eleva-
tion. Shown from top: a false colour display; the DTM generated
by Inpho; our DTM; and a grey scale difference of the two DTMs
with the errors noted in polygons. In the last image dark shades
correspond to locations where the Inpho DTM was higher than
our DTM. Many more errors were found in the Inpho DTM (blue
polygons) than our DTM (yellow polygons). Note that the Inpho
DTM contained some stereo photography matching issues at the
edge of the region, these were ignored.
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