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ABSTRACT: 

 

Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a 

precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road 

environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the 

autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional 

position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on 

a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor 

and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of 

each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine 

learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show 

sufficient accuracy and it will be utilized to generate a highly precise road map. 

 

 

1. INTRODUCTION 

Generating of a high-precision map grows up with development 

of autonomous driving vehicles. The high-precision map 

represents entire static objects within a road including their 

locations and shapes and it is more precise than an existing 

commercial map. For example, lanes and signs are distinguished 

in the high-precision map. For these reasons, it has been used to 

implement a localization of the unmanned vehicles and recognize 

the road environments. For example, Levinson, et al. (2007) 

performed vehicle localization with high accuracy by particle 

filter with sensory data from a GPS, an odometer and a Lidar. On 

the other hands, Noyer, et al. (2008) used a DGPS, other inertial 

sensors and a lane detection system mounted on their test car in 

order to automatically generate a high precision map for ADAS. 

Yoneda, et al. (2014) also focused on features from a laser 

scanner data for localization with highly precise 3D map. 

 

One of source data is point cloud data from a Lidar for creating 

the high-precision map. The Lidar mounted on a vehicle has been 

used in mobile mapping system because the Lidar provides high-

density XYZ positions, intensity, and range information. 

Although a raw data from a Lidar includes those information, it 

is visually not semantic. Thus, it is more important to process the 

point cloud to be cognitive data. In this regards, there have been 

a lot of segmentation or classification methods to process point 

cloud data.  

 

In recent years, many machine learning algorithms have been 

accepted to researches about classification or recognition 

methods in point cloud data. For example, Serna and Marcotegui 

(2014) suggested a detection, segmentation and classification 

methodology of Lidar data in urban environments using 

mathematical morphology and supervised learning. A ground 

segmentation step was implemented based on elevation images. 

Object detection was by mathematical morphology and 
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classification was by Support Vector Machine (SVM). 

Geometrical, contextual and color features were used in the study. 

Weinmann, et al. (2015) focused on 2D and 3D features in point 

cloud data for an automatic analysis about a large-scale urban 

scenes. It was important to define optimal neighbours of a point 

for an accurate feature extraction in the study. Then, classifiers 

such as decision trees via bootstrap were combined for 

supervised classification of a huge point cloud data. Lehtomäki, 

et al. (2016) also proposed a machine learning based object 

recognition from a mobile laser scanner on a road. A main 

objective of the study was to compare features for point cloud 

data classification. The features were local descriptor histograms, 

spin images and general shapes. 

 

In this paper, we propose a classification method of point cloud 

data from a Lidar mounted on a vehicle using a machine learning 

algorithm. Geometrical features are extracted from 

georeferenced point cloud data. Those features are described as 

histograms about relationships among the 3D points based on 

surface normal. Then, each point is classified to road surfaces or 

objects based on the features using SVM. 

 

2. METHODOLOGY 

2.1 Overview 

Our approach for a classification of 3D point clouds is based on 

machine learning methods. In general, the methods include a 

training step and a classification or recognition step. First of all, 

a data for classification by machine learning is separated to 

training data sets and test data sets and features in the training 

data sets and test sets are extracted. A feature is a key information 

indicating characteristics of each data set. Features from the 

training data set are used for learning. The learning is a data 

training step for an analysis about distribution of the 

characteristics so that a decision rule to determine a boundary 
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among the features is generated. As a result of these processing, 

a model for classification is produced. The model is regarded as 

a classifier which includes the decision rule to distinguish 

patterns in the features. On the other hands, the extracted features 

from the test data set is a non-learning data, so they are input data 

of the model to be classified. Therefore, the classifier classifies 

the features of the test data set by the decision rule. Following 

Figure 1 describes those processes. 

 

 
Figure 1. A general processing in machine learning 

 

The proposed approach for the classification of 3D point cloud 

data is summarized in Figure 2 and includes the following two 

steps. Our training data set and test data set are georeferenced 

point cloud data. In this study, we propose a processing of point 

cloud data by extracting geometrical features of 3D point cloud 

using Fast Point Feature Histogram (FPFH) and a classification 

of the features by Support Vector Machines (SVM). 

 

 
Figure 2. A flow chart about our approach 

 

2.2 Feature Extraction 

Various factors such as heights, roughness, gradients and surface 

normal vectors are used for extracting features in 3D point cloud 

data. For those factors, it is important to consider relationships 

between the points in order to recognize targets for the 

classification. A descriptor describes the factors as features in 

visual scenes including point cloud data. 

 

Fast Point Feature Histogram (FPFH) is a kind of a descriptor 

based on Point Feature Histogram (PFH). PFH is a descriptor 

which represents a geometrical characteristic as a histogram of 

relationships between each point and its neighborhood (Rusu, et 

al., 2008; Rusu, et al., 2010). The relationship is described as 

three angles, α, θ, ϕ among a local frame and normal vectors of 

the point 𝑝 and 𝑞 shown as Figure 3. The local frame and angles 

are defined as below two equations. 𝑛𝑝⃗⃗ ⃗⃗  and  𝑛𝑞⃗⃗⃗⃗   is surface normal 

vectors of point 𝑝 and 𝑞 respectively. 

 

 

(1) 

 

 

(2) 

 

 

 
Figure 3. A relationships between two points in PFH 

 

In this paper, we implemented the feature extraction step using 

FPFH because PFH calculates all pairs of points and their 

neighbourhood and its complexity is 𝑂(𝑛𝑘2). However, FPFH is 

a simplified form of PFH by reducing query points and its 

complexity is 𝑂(𝑛𝑘) with a lower accuracy than PFH (Rusu, et 

al., 2010). The value k is the number of neighbourhood points of 

each query point.  Therefore, FPFH is faster and an amount of the 

computation is small to process high-density point cloud data.  

 

2.3 Support Vector Machine (SVM) 

SVM is one of the supervised learning algorithms for data 

classification or logistic regression. For the following reasons, 

SVM was selected among the various types of supervised 

learning. In first, data in a non-linear distribution is classified. 

Also, a high-precision model for prediction is generated even if 

the amount of data is limited. Above all, it is suitable to classify 

a large amount of computation about geometrical features 

because required calculations for the classification is simpler than 

other methods (Huang, et al., 2013). 

 

A main concept of the SVM is to maximize a margin which is 

defined as a shortest distance from a support vector to a decision 

boundary. A support vector is a sample data that is closest to the 

decision boundary at the same time the distance to decision 

boundary is perpendicular to decision boundary. In Figure 4, all 

of the lines (a), (b), (c) can be candidates for a decision boundary 

to classify blue points and green points.  However, an optimal 

decision boundary is in Figure 5 with support vectors and the 

largest margin. The points marked by red circles are support 

vector and perpendicular distances are margins. 
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Figure 4. Examples of possible decision boundaries 

 

 
Figure 5. A concept of support vector and margin 

 

The margin and support vectors vary according to the decision 

boundary if the training data such as obtained point cloud data is 

fixed. To avoid an overfitting problem in a training step, margin 

should be maximized. In other words, SVM is a classifier which 

finds the decision boundary where the margin is the biggest 

(Bishop, 2006). 

 

3. EXPERIMENTAL RESULTS 

To apply above the methodology, 3D point cloud data as an input 

data was obtained in urban roadways. The input data of this 

experiment was acquired by a Velodyne HDL-32E Lidar 

mounted on the top of a car and then it was georeferenced to TM. 

This data also represents a road environment, so it includes signs, 

trees, poles, and a part of buildings as well as road surfaces. 

Figure 6 shows the sample of the input data used in this 

experiment. The experiments are implemented by using Point 

Cloud Library (PCL) and LIBSVM which are open source library 

based on C++.  

 

 
Figure 6. Visualization of the georeferenced point cloud data 

 

Filtering by voxelgrid before the feature extraction was not 

applied despite of high density of the input data to accurately 

represent the surface by using all points. However, a whole point 

cloud data in Figure 6 includes over 4.6 million points. Therefore, 

the point cloud was divided into several subsets instead of using 

the whole point cloud and they were also used for training data 

set or test data set. 

 

Figure 7 is a result of FPFH about road surfaces and Figure 8 is 

a result of FPFH about tree parts in each subset cloud. In the case 

of below Figure 7, the total number of points in the cloud is about 

2000. Since FPFH generates a 33-dimensional vector, a 

horizontal axis means 33 bins and a vertical axis represents 

frequencies. Each color is each point, so there are 2000 bars in a 

bin. 

 

 
Figure 7. The result of FPFH about road surfaces 

 

 
Figure 8. The result of FPFH about trees in the road 

 

In the classification step by SVM, the point cloud data in figure 

6 was divided into several subsets and training data sets and test 

data sets were generated. Then, training data sets were separated 

to five groups and cross validations were performed in order to 

create an optimal classifier. As a result of classification about a 

center of road with trees, an accuracy of the cross validation was 

about 98% and a prediction accuracy by the model was 91%.  

 

4. CONCLUSIOINS AND FUTURE WORKS 

In this study, we implemented feature extraction steps and 

classification of point cloud data from a mobile Lidar using the 

combination with FPFH and SVM. The result of the classification 

was obtained with high accuracies. However, we still have the 

following challenges for improvements. In feature extraction step, 

the number of neighbour points is important because FPFH is 

based on surface normal vectors. Also, FPFH was applied in this 

paper for an efficiency but we should compare more descriptors 

for a fast calculation and fitting to target data. In SVM, we need 

to use multi-class SVM and adjust various parameters for 

segmentation of different objects.  Then, a highly precise map 

can be automatically generated and used for Simultaneously 

Localization and Mapping (SALM).  
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