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ABSTRACT: 

 

The objective of this research is to detect points that describe a road surface in an unclassified point cloud of the airborne laser 

scanning (ALS). For this purpose we use the Random Forest learning algorithm. The proposed methodology consists of two stages: 

preparation of features and supervised point cloud classification. In this approach we consider ALS points, representing only the last 

echo. For these points RGB, intensity, the normal vectors, their mean values and the standard deviations are provided. Moreover, 

local and global height variations are taken into account as components of a feature vector. The feature vectors are calculated on a 

basis of the 3D Delaunay triangulation. The proposed methodology was tested on point clouds with the average point density of 12 

pts/m2 that represent large urban scene. The significance level of 15% was set up for a decision tree of the learning algorithm. As a 

result of the Random Forest classification we received two subsets of ALS points. One of those groups represents points belonging to 

the road network. After the classification evaluation we achieved from 90% of the overall classification accuracy. Finally, the ALS 

points representing roads were merged and simplified into road network polylines using morphological operations.   
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1. INTRODUCTION 

The classification of airborne laser scanning point clouds aims 

typically at identification of ground points and points belonging 

to various objects above the topographic surface. Over the past 

years the high resolution ALS data have been also increasingly 

used for topographic object detection and modelling. 

 

Information about road networks is a significant component of 

topographic data basis. It should be up to date because of its 

importance for many applications, e.g. incident and emergency 

responses, the transportation management, etc. Various data 

sources can be utilised to obtain the geometrical information 

about road networks.  

 

Aerial imagery and the satellite imaging are well established 

data sources for the road network extraction (Shackelford et al., 

2003), that is performed using solely two dimensional 

geometrical and radiometric information provided by the 

imagery.    

 

The accurate and dense ALS point clouds can be explored in 

order to extract the road network for topographic data basis as 

well as for the road surface inspection. Different approaches 

have been proposed for extracting of a road network from ALS 

data (e.g. Hu et al., 2004, Clode et al, 2004, Choi et al., 2008, 

Ferraza et al, 2016). The approaches that rely solely on ALS 

data base on the creating of a digital surface model (DSM) or a 

digital terrain model (DTM) and then performing 

transformations and filtering on the reduced dataset. In order to 

filter the point cloud, Clode et al. (2004) use only intensity and 

height differences in DSM. Another approach is proposed by 

Choi et al. (2008). The authors combine approaches based on 

clustering using similar height and pulse intensity with 

additional constraints for height differences. Although the 

results are good, as authors point, the method is characterized 

by a high level of the false positive rate, especially on roofs of 

big, flat, and relatively low buildings (Choi et al., 2008).  

 

In the paper of Zhao et al. (2011), a method is proposed, that 

bases on transformation of ALS data into binary image using 

point’s intensity and height differences from DTM/DSM. 

Afterwards, the raster analysis is deployed to extract streets and 

streets junctions. The disadvantage of the method is the main 

assumption that the road network takes the form of a regular 

grid and most roads bend at right angle (Zhao, 2011). 

 

A method that combines two data sources, ALS point clouds 

and imagery has been also developed (Hu, et al., 2004).  ALS 

point cloud processing and filtering is supported in this method 

by an analysis of a high resolution aerial imagery. In described 

work authors use ALS data and imaginary as the separate 

datasets and analyze them separately in order to extract different 

features and then to combine the results (Hu et al., 2004). 

 

The topic of the road detection using ALS data is mostly 

discussed in the context of urban areas, but there is also 

approach that addresses it to rural or forest areas. According to 

Ferraza et al. (2016), some additional assumptions have to be 

set up in this case. The authors of discussed work base their 

method on the classification of DTM utilising the random forest 

algorithm executed on the calculated geometry parameters of 

DTM triangles. Then, after filtering and processing the results, 

the road graph is generated, that provides very good 

representation of the road network, even on the areas with high 

canopy (Ferraza et al., 2016).  
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This research addresses the identification of ALS points that are 

reflections on the road surface. The objective is to detect road 

points using ALS features and areal imagery features 

simultaneously. This novel approach is in the contrary to the 

work of (Hu et al., 2004), where these data sources were 

explored separately. We classify points into two subsets, road 

points and non-road points. No filtering is performed before the 

classification. In order to achieve the objective we use the 

random forest algorithm that is a classifier based on the decision 

trees. The feature vector required by this algorithm consists of 

components derived from ALS data and R, G, B taken from 

imagery. We consider ALS points that represent the last echo 

only. In order to simplify the road axes we use a set of 

morphological operations. The proposed approach is tested on 

the high urbanised city scene.     

  

2. STUDY AREA 

The test site with an area of 22 km2 is located in Warsaw, the 

capitol of Poland. This area stands out for a large diversity of 

the road networks. There are single lane roads and multiple lane 

roads with median, alleys in residential areas, property access 

roads (driveways), shopping centre parking lots, roundabouts, 

viaducts. Moreover, parks, low and high buildings including 

large trading halls with flat roofs exist in the study area. 

Therefore, the study area is representative for an urban 

environment of a large city. The location of the study area on 

the city map is presented in Figure 1.       

 

Figure 1. Location of the study area 

The ALS data was acquired using the Riegl LMS-Q680 

scanner. The average point density is about 12 points per square 

meter. Beside the coordinates, the following parameters were 

provided for each point: intensity, the echo number and the total 

number of echoes. Additionally, point cloud was coloured 

utilising orthoimage created from images acquired by the IGI 

DigiCAM60 camera. 

 

3. METHODOLOGY 

The extraction of the road network axes from an ALS point 

cloud is a complex issue, which requires several steps of the 

data processing. The main task is the separation of the point 

cloud into two sub datasets: road points and non-road points. 

To achieve this goal, pre-established constraints and filtering of 

the data transformed to the DSM are mostly used (e.g. Clode et 

al., 2004; Choi et al., 2008).   

 

In this work the random forest classification is used to filter out 

points not belonging to roads. A number of point attributes is 

determined for this purpose. The result of the classification is 

then transformed to the binary raster, which is than reduced to 

the representation of the road axes using a set of the 

morphological algorithms. 

  

3.1 Random Forests 

Random forest algorithm is the statistical, robust method of 

homogeneous, large datasets classification. Random forests are 

the combination of tree predictors, where each tree depends on 

the values of a random vector sampled independently and with 

the same probability distribution for all trees in the forest. The 

generalization error of a forest of tree classifiers depends on the 

strength of the individual trees in the forest and the correlation 

between them. Internal estimates monitor: error, strength, and 

correlation. These parameters are used to show the response to 

increasing number of features used in the splitting. Moreover, 

the internal estimates are used to measure the variable 

importance (Breiman et al., 1984, Breiman, 2001).   

 

Random forests can be utilised for the ALS point cloud 

classification, based on various point attributes, such as height-

based, echo-based, plane-based or full waveform-based. 

According to Chehata et al. (2009), random forest algorithm can 

classify ALS data with the accuracy exceeding 90 %. Niemeyer 

et al. (2013) integrated the random forest classifier into the 

conditional random field and applied this framework to classify 

ALS data in dense urban areas.  The approach uses an extended 

set of contextual information for each point in the dataset. Each 

3D point is classified in order to enable the detection of small 

objects as cars in the scene. Nevertheless, the approach shows a 

weakness in detection of trees. In this study we investigated this 

issue during road surface detection under tree canopies.   

 

3.2 Training Data 

The accuracy and correctness of a supervised classification 

depend strongly on the quality of training data. In this research 

we use 3 separate training fields, each representing different 

features that are commonly occurring in urban areas (Figure 2).  

 

 
Figure 2. Training fields: top left: field 1, top right: field 2, 

bottom left: field 3. Evaluation filed, bottom right - field 4. Blue 

colour represents road points of ALS point clouds.  
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The field 1 (570 m x 530 m) is an area covering the estate of tall 

apartment buildings, trees, small, single-lane roads and two-lane 

road separated by a median. The field 2 (570 m x 530 m) is a 

typical residential area. Roads occurring in this area are narrow, 

surrounded by trees and parked cars. In addition, there are gaps 

in the dataset due to water bodies. The field 3 (490 m x 470 m) 

is an area covering industrial district, where large and relatively 

low buildings occur. From the top view, those buildings are 

confusingly similar to parking lots. This training field should 

help to eliminate incorrect classification of building roofs as 

roads. 

 

For the accuracy assessment the field 4 (570 m x 530 m) was 

selected. Similarly to other three test fields it was classified 

manually, but was used only for classification evaluation. It was 

not used as a training dataset.  

 

3.3 Feature Calculation 

The features selection is an essentials step in the data 

classification using random forest. Since in our approach 3D 

points are classified, the primary information available from the 

point cloud is mainly explored. The point cloud is initially pre-

filtered and only points that represent last echo are considered. 

To compose the feature vector, the information available 

directly from the point cloud data record (point intensity, 

number of echoes) and RGB are used. Furthermore, additional 

features are calculated for each point analysing geometrical 

configuration of surrounding points in the direct 

neighbourhood. The 3D Delaunay triangulation is built for this 

purpose and in each point P(x,y,h) the mean normal vector is 

calculated. 

 

The extended vector of the features is composed of the 

following components:  

1. intensity,  

2. number of echoes, 

3. Red, 

4. Green,  

5. Blue, 

6. the mean value   of the deviation angles between the 

normal vectors and the z-axis, 

7. the standard deviation of the deviation angles between the 

normal vector and the z-axis, 

8. the mean value of the deviation angles between the normal 

vectors and the z-axis, calculated based on triangles within 

the 3 meter radius,  

9. the standard deviation of the deviation angles between the 

normal vector and the z-axis, calculated based on triangles 

within the 3 meter radius,  

10. information whether the point represents local minimum,   

11. deviation between the mean height of the whole scene and 

the height of  the considered point,   

12. deviation between the mean height of the points within the 

3 meter radius and the height of  the considered point. 

 

A given point P can be the vertex of several adjacent triangles 

of the 3D Delaunay triangulation. Each of the triangles has own 

normal vector n(x,y,h). The angle α between n(x,y,h) and z-axis 

is calculated for each triangle (Figure 3). Then the mean value 

of the α angles for adjacent triangles is calculated and 

associated with the point P. Moreover, the standard deviation 

for   is also calculated. This parameter can be considered as 

the terrain roughness in the point P.      

In a similar manner the mean value  and its standard 

deviation are computed for the 3 meter neighbourhood. 

     

 

Figure 3. Visualisation of the deviation angles between the 

normal vectors and the z-axis 

 

The component „local minimum” of the feature vector is 

calculated utilizing points that are vertices of the adjacent 

triangles.  This value is “true” for the point P if 

)min(
ip

hph  , i=1,2,..,n.  

To calculate the 11th component of the feature vector the mean 

value of h for the whole scene is calculated. In order to remove 

ghost points, only points within the interval <hmin, hmax> are 

taken into account: 

σh=minh 2 ,    (1) 

σh=maxh 2 ,    (2) 

where σ  is the standard deviation of the heights on the whole 

scene. Alternatively to this approach, the M-estimation can be 

applied to determine optimal mean plane for the scene 

(Chechata et al., 2009). Finally, the height differences between 

h and heights of the ALS points are calculated. In a similar 

manner the local values, within the 3 meter neighbourhood, are 

determined.  

 

3.4 Feature Evaluation and Accuracy Assessment  

In order to build classifier, the data representing all training 

fields were used simultaneously. From each training data set 

100 000 points representing both road and no-road classes were 

taken randomly. In the first pass 100 trees were grown utilising 

all components of the feature vector. This number of trees is 

sufficient to stabilise the mean squared error of generalisation 

(Figure 4).  

 

Figure 4. Mean squared error as a function of the grown tree 

number 
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As a result of the first pass calculation, the variable importance 

of the particular features (Figure 5) and the generalisation error 

of 7% were estimated. The plot (Figure 5) shows the increase in 

mean squared error averaged over all trees and divided by their 

standard deviations, calculated for each variable separately. 

 
Figure 5. Feature importance 

 

Based on the results of the classifier training, the vector of the 

features was reduced. Due to low value of the importance of the 

8th variable, the mean value of the deviation angles within 3 

meter radius was removed from the feature vector. For the 

reduced vector of the features we received the generalization 

error of 7%. Therefore, the reduced set of features is as well 

effective as the original vector of features. The classifier built in 

the second pass was used in the further investigations. 

 

All data representing the test fields were classified using 

constructed classifier. The level of certainty was set up on 85 %. 

It means that a point was classified as the road point if 85% of 

the trees voted for that. The results of classification were 

compared with the results of the manual classification. This 

comparison is given as the confusion matrix for the particular 

training field (Table 1, 2, 3) and for the evaluation field (Table 

4).   

manual  Non-roads Roads Total 

classification  automatic classification 

Non-roads 4 437 284 245 349 4 682 633 

Roads  84 668 184 736 2 69 404 

 4 521 952 430 085 4 952 037 

Table 1. Confusion matrix for the field 1 

 

manual  Non-roads Roads Total 

classification  automatic classification 

Non-roads 4 615 897 89 103 4 705 000 

Roads  125 355 156 293 281 648 

 4 741 252 245 396 4 986 648 

Table 2. Confusion matrix for the field 2 

 

manual  Non-roads Roads Total 

classification  automatic classification 

Non-roads 4 648 007 54 987 4 702 994 

Roads  1 917 6 334 8 251 

 4 649 924 61 321 4 711 245 

Table 3. Confusion matrix for the field 3 

 

manual  Non-roads Roads Total 

classification  automatic classification 

Non-roads 4 736 704 502 377 5 239 081 

Roads  47 041 344 632 391 673 

 4783745 847009 5 630 754 

Table 4. Confusion matrix for the field 4 

 

The values on the diagonal of the matrix represent values of the 

correct classification. The off-diagonal values are the numbers 

of points that were classified incorrectly (e.g. Table 1, values 

245349 and 84668).      

 

Moreover, for the accuracy assessment, the following 

parameters were estimated: 

ICP – Overall classification accuracy 

Kappa – kappa coefficient, overall classification agreement 

Ec1 – Error of commission for class non-roads 

Ec2 – Error of commission for class roads 

Eo1 – Error of omission for class non-roads 

Eo2 – Error of omission for class roads 

Ap1 – producer's accuracy for class non-roads 

Ap2 – producer's accuracy for class roads 

Au1 – user's accuracy for class non-roads 

Au2 – user's accuracy for class roads 

 

These values for the particular test fields are given in Table 6. 

Since the datasets of the test fields 1, 2 and 3 were used 

simultaneously for the classifier construction, the values given 

in the columns 2, 3 and 4 of Table 6 reflect the internal quality 

of the classifier. The values collected in the column 5 (Field 4) 

show the classification accuracy on the evaluation dataset, 

which can be interpreted as the absolute accuracy.      

 

 

Parameter Field 1 Field 2 Field 3 Field 4 

ICP 0.93 0.96 0.99 0,90 

Kappa 0.92 0.95 0.99 0,87 

Ec1 0.05 0.02 0.01 0,10 

Ec2 0.31 0.45 0.23 0,12 

Eo1 0.02 0.03 0.01 0,01 

Eo2 0.57 0.36 0.90 0,59 

Ap1 0.95 0.98 0.99 0,90 

Ap2 0.69 0.55 0.77 0,88 

Au1 0.98 0.97 0.99 0,99 

Au2 0.43 0.64 0.10 0,41 

Table 6. Accuracy ratings for training and evaluation fields 

 

3.5 Road axes detection  

As a result of the classification the point cloud is divided into 

two subsets: road points and non-road points. Since the level of 

certainty was set up at 85 % all points below this value have 

been classified as non-road points. The subset “road points” 

have been then converted to raster with 0.5 m pixel size. In 

order to achieve road axes, a set of binary morphological 

operations, implemented in Matlab, is utilised in the following 

order: majority, clean, thin, clean, diag.  
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4. RESULTS  

After the classification of the whole test area, the filtered point 

cloud representing roads was obtained. The resulting dataset 

contains only those points from source dataset that were 

assigned to class roads with 85% level of certainty. The 

classified points with the assigned level of certainty are shown 

in Figure 6 for a representative part of the study area. 

Figure 6. Classification results (a part of the study area) 

 

Some gaps are present in the data set representing road. These 

gaps are produced by cars and road overpasses. Unfortunately, 

overpasses were not present in the training datasets.  

The detailed analysis of the results shown that involving the 

RGB in the vector of features improves the classification in the 

case of the presence of vegetation in the direct neighbourhood 

of the road.  

 

After the generation of the binary image and applying the 

morphological algorithms, the road axes were produced. The 

morphological operations were able to reduce small gaps 

(Figure 7). Nevertheless, the big gaps caused by overpasses still 

remain (ellipses in the Figure 7). Besides this issue, the overall 

accuracy and quality of the road detection is satisfactory. 

 

 

Figure 7. Produced road axes (a part of the study area) 

 

5. CONCLUSION 

In this study, the random forests were successfully applied to 

detect the urban road in the ALS point cloud. ALS and imagery 

based parameters were selected as the components of the feature 

vector. After the feature evaluation by random forests, the local 

variation of the mean value of the normal vector (feature No 8) 

has been removed due to low importance. The most relevant 

features are intensity, number of echoes and height differences. 

The RGB features improve the classification in the presence of 

vegetation. We received the overall classification accuracy of 

93%, 96 and 99% for three training datasets, respectively. For 

the evaluation dataset we received the overall accuracy of 90%.     

 

The proposed approach at the current stage was not able to 

recognize correctly road overpasses. This issue should be 

addressed in the future work.                   
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