

AUTOMATED MOSAICKING OF MULTIPLE 3D POINT CLOUDS
GENERATED FROM A DEPTH CAMERA

H. Kim, W. Yoon, T. Kim

Dept. of Geoinformatic Engineering, Inha University, 100 Inharo, Namgu, Incheon, Korea

 (khanai91, rainnydayz)@inha.edu, tezid@inha.ac.kr

Commission III, WG III/2

KEY WORDS: Depth Camera, Point Cloud, Mosaicking, Tiepoint, Similarity transformation,

ABSTRACT:

In this paper, we propose a method for automated mosaicking of multiple 3D point clouds generated from a depth camera. A depth
camera generates depth data by using ToF (Time of Flight) method and intensity data by using intensity of returned signal. The depth
camera used in this paper was a SR4000 from MESA Imaging. This camera generates a depth map and intensity map of 176 x 44
pixels. Generated depth map saves physical depth data with mm of precision. Generated intensity map contains texture data with
many noises. We used texture maps for extracting tiepoints and depth maps for assigning z coordinates to tiepoints and point cloud
mosaicking. There are four steps in the proposed mosaicking method. In the first step, we acquired multiple 3D point clouds by
rotating depth camera and capturing data per rotation. In the second step, we estimated 3D-3D transformation relationships between
subsequent point clouds. For this, 2D tiepoints were extracted automatically from the corresponding two intensity maps. They were
converted into 3D tiepoints using depth maps. We used a 3D similarity transformation model for estimating the 3D-3D
transformation relationships. In the third step, we converted local 3D-3D transformations into a global transformation for all point
clouds with respect to a reference one. In the last step, the extent of single depth map mosaic was calculated and depth values per
mosaic pixel were determined by a ray tracing method. For experiments, 8 depth maps and intensity maps were used. After the four
steps, an output mosaicked depth map of 454x144 was generated. It is expected that the proposed method would be useful for
developing an effective 3D indoor mapping method in future.

1. INTRODUCTION

In recent day, the technology of handling 3D point clouds is
gaining industrial and public attentions. Handling 3D point
clouds is an important task in 3D indoor mapping, robotics as
well as geometrics. There are several methods to generate 3D
point clouds. In photogrammetric engineering, matching of
stereo images or laser scanning has been used for generating 3D
point clouds. However, for indoor environments, these methods
may not be easily applied. For matching, indoor images may not
have sufficient texture. For laser scanning, there is a problem of
cost and scanning speed.

As an alternative, we selected to use a depth camera as a
method for 3D point cloud generation. In this approach, we can
have an advantage that we do not need to hire sophisticated
matching process for depth calculation.

A depth camera usually has small field of view and small
number of pixels. To use a depth camera for indoor scanning, it
is necessary to combine individual depth scenes into a complete
3D point cloud. As a first attempt for such combination, we
tackle the problem of how to mosaic individual 3D point clouds.
Mosaicking of individual 2D images has been studied
previously (Yehuda and Ariel, 1998). In this paper, we propose
a new method of automated mosaicking of multiple 3D point
clouds generated from a depth camera.

2. CHRACTERISTIC OF DEPTH CAMERA

2.1 Principle of Estimating Distance Using Depth Camera

Because our method uses a depth camera, we first introduce the
principle of distance measurement using a depth camera. A
depth camera emits infrared rays, which will be reflected by the
objects. A depth camera detects the reflected rays and measures
the phase difference. From these steps, we can calculate the
distance between the camera and the objects. The phase
difference in wavelengths is calculated from the relationship
among different 4 electron charges and phase control signals
have 90 of phase lag to each other. The phase difference ݐௗ
from those electron charges could be calculated through Eq. (1).

tୢ ൌ tanିଵ
Ωଷ െ Ωସ
Ωଵ െ Ωଶ

 (1)

where Ωଵ, Ωଶ, Ωଷ, Ωସ = control signal

We can calculate the distance ݀ through Eq. 2 when speed of
light(c) and frequency are given. And ܿ 2݂⁄ is maximum
distance that depth camera can estimate without ambiguity.

d ൌ
ܿ
2݂

ௗݐ
ߨ2

 (2)

where c = speed of light
 f = focal length
 tୢ = difference of phase

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-269-2016

269

2.2 Depth Camera’s Error

Because of the depth camera design, an image generated from a
depth camera has systematic errors and non-systematic errors as
shown in figure 1. Systematic error depends on sensor’s
characteristics such as intensity of emitted IR signal, data
collecting time and temperature. Non-systematic error depends
on the object characteristics such as color, surface and quality of
the object.

Figure 1. Errors of depth camera image

2.3 Equipment

In this paper, we choose a MESA SR4000 for a depth camera. It
generates depth map and intensity map of 176 x 144 pixels that
has a precision that 16bit floating points. This depth camera can
estimate distance upto 10 meter and the detail information are in
Table 1.

Table 1. MESA SR4000 Specification

3. DEPTH MAP MOSAICKING

There is an important difference between mosaicking depth
camera’s output and mosaicking of general stereo camera’s
output. Figure 2 shows process of each method. In case of
stereo camera, relative orientation between stereo images is
estimated and stereo matching is applied to generate 3D point
clouds. For mosaicking depth map images, these processes can
be skipped since the camera generates a depth map as well as an
intensity map. Therefore the whole processing chain can be
simplified. On the other hands, an intensity map available from
a depth camera has very poor quality compared to the image
from general stereo camera. Therefore automated tiepoint
extraction from a depth camera could be challenging.

For mosaicking, we need to estimate geometric relationship
between two dataset. For 2D-2D image mosaicking, we can use
affine, homography or coplanar models for the geometric
relationship. In our case, we aim to mosaic 3D point clouds. We
need to estimate 3D geometric relation between the two dataset.

We will use 3D similarity transformation for the relation. This
process may also be challenging in that we need to convert 2D
tiepoints into 3D by attaching depth value for the tiepoint.
Depth errors will be introduced to 3D tiepoints. Precise
estimation of 3D-3D transformation with noisy 3D tiepoints is
also challenging.

We propose the following five steps to mosaic depth maps.

Figure 2. Process of mosaicking stereo images and depth maps.

3.1 Taking Image

We take multiple images from a depth camera by installing the
camera on a tripod and by rotating the camera. We set a depth
camera on a tripod to eliminate possible height variation among
perspective centers of each scene. After finishing setting, we
rotate camera clockwise or counterclockwise.

A depth map and an intensity map are generated from the
source data after removing some system noise and correcting
for lens distortion.

3.2 Extracting Tiepoints

As mentioned, we have to know relationships between adjacent
maps for mosaicking. To estimate the relationships, we first
apply tiepoint extraction. It is very important that there is
enough texture information to extracting tiepoints.

We extracted tiepoints between adjacent images by using FAST
for detecting keypoints and SIFT as a descriptor and matching.
FAST algorithm decides features by considering a circle of
sixteen pixels around interested points (Edward et al., 2006).
SIFT algorithm selects features like corner point and extracts
characteristic vectors from local patch around features (David
and Lowe, 2004)

3.3 Generating 3D Coordinate

Extracted tiepoints are expressed as 2D image coordinates (C,
R). But the transformation relationship between depth maps is

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-269-2016

270

3D-3D transformation. It means that we have to convert the
tiepoint’s coordinates into a 3D coordinates. We used a depth
value of the tiepoint pixel and use Eq. 3 for converting 2D
image coordinate (C, R) to 3D coordinates (X, Y, Z) in camera
frame.

X ൌ 	

ሺܥ െ ଴ሻܥ ൈ ݄ݐ݌݁ܦ
ܨ

	

Y ൌ 	െ
ሺܴ െ ܴ଴ሻ ൈ ݄ݐ݌݁ܦ

ܨ
	

Z ൌ 	െ݄ݐ݌݁ܦ

(3)

where ܥ଴, ܴ଴ = image coordinates of principal point
 F = focal length / ccd size

3.4 Estimating Transformation Coefficients

Converted 3D coordinates per each depth map are in individual
camera frames. We have to unify every depth map’s coordinate
frames for mosaicking depth maps. As mentioned above, we
used 3D similarity transformation for this step (Eq. 4).

൥
௜ܺିଵ

௜ܻିଵ
ܼ௜ିଵ

൩ ൌ ௜ܵିଵܴ௜ିଵሺߢ, ߮, ߱ሻ ൥
௜ܺ

௜ܻ
ܼ௜
൩ ൅ ቎

ܾ௫
ܾ௬
ܾ௭
቏ (4)

where ௜ܺ , ௜ܻ , ܼ௜= image coordinates of principal point

In Eq. 4, we estimate scale, ܤሬറ൫b୶, b୷, b୸൯, ሺߢ, ߮,߱ሻ through
least square estimation. To handle outliers due to noisy tiepoints
and noisy depth of tiepoints, a robust estimation based on
RANSAC algorithm was applied. This step estimates
transformation coefficients between adjacent maps.

3.5 Making Depth map Mosaic

After all depth map model’s transformation coefficients are
estimated, we have to make a depth map mosaic. We may set
the area of mosaic image as expanding first captured map. Then,
we apply 3D transformation equation to each map’s corner
point. If the image’s order is more than two, we apply 3D
transformation repeatedly. Through this, we calculate each
map’s corner coordinates with respect to first captured map.
Among these coordinates, we calculate the area of the whole
mosaic image by using each image’s corner coordinates. Figure
3 shows this step.

Figure 3. Deciding area of mosaic image

For making depth map mosaic, we input each depth values to
the relevant pixels. For the first depth map area, we input their
original depth values. For second and other depth map areas, we
have to apply some intelligent ray-tracing scheme to handle the
problem associate with resampling of depth map in 3D space.
Figure 4 shows this step. As a result of this step, mosaic image
is generated.

Figure 4. Depth map ray tracing

4. EXPERIMENTS AND ANALYSIS

4.1 Depth Map Mosaic

In this paper, we conducted experiments to prove validity of the
proposed method. Our depth camera, MESA SR4000, was
installed on a tripod above a flat indoor floor. We tested the
method by mosaicking 8 depth maps.

First, we took depth maps by rotating the depth camera
clockwise roughly by 10 degrees. The angular difference
between the first and the eighth images would be 80 degrees.
Through this step, we acquired 8 depth maps and intensity maps
of 176 x 144 pixels. Figure 5 shows these maps.

Among 8 depth maps, we constituted 7 depth map pairs. For
each depth map pair, we conducted tiepont extraction, 3D
similarity transformation estimation. In making depth map
mosaic, we calculated the area of mosaic image and resampled
each map. Figure 6 shows output of this process. We can
visually see that depth map mosaicking was successfully
applied.

4.2 Verifying Accuracy

For verifying transformation accuracy, we calculated RMSE of
the difference between 3D coordinates of tiepoints in the
reference depth map and 3D coordinates of corresponding
tiepoints in the pair depth map after applying 3D similarity
transformation. Table 3 shows results. We can observe that
errors in depth direction were larger that errors in X and Y
direction. This is due to the fact that we used noisy depth values
over noisy tiepoints. The z coordinates calculated from our
method would combine errors in depth values and errors in 2D
tiepoint coordinates.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-269-2016

271

(a) Depth maps

(b) Intensity maps

Figure 5. Source Images

Figure 6. Result images of mosaicking

It is also notable that errors were increased as matching pairs
were moving further from the reference image (image number
1). Due to the accumulated effects of noisy tiepoints, we
observed this error propagation.

Table 2. RMSE of matching pair’s tiepoint coordinates (X,Y,Z)

Matching
pair

RMSE of
X(mm)

RMSE of Y
(mm)

RMSE of Z
(mm)

1 & 2 12.5183 5.8769 19.9858
2 & 3 12.3145 7.8861 19.9046
3 & 4 16.3924 4.4648 23.7226
4 & 5 9.1252 9.7904 23.5761
5 & 6 6.2667 9.3772 23.7884
6 & 7 11.3569 8.1623 26.2264
7 & 8 11.4030 7.6917 24.2967

Average 11.3396 7.6070 23.0715

4.3 Processing Time

We estimated mosaicking time to test the feasibility of real-time
processing. Table 4 shows processing time for extracting
tiepoints and estimating 3D transformation coefficient.

Table 3. Major steps of processing time (msec)

Matching
pair

Extracting
Tiepoint

Estimating 3D
transformation Coefficients

1 & 2 903.9 538.7
2 & 3 1003.0 639.4
3 & 4 973.4 557.0
4 & 5 969.1 711.7
5 & 6 1129.0 986.7
6 & 7 1066.5 994.4
7 & 8 1225.3 1197.1

It took roughly 1 second for extracting 3D tiepoints from a
depth map pair. Time for estimating 3D transformation was
from 0.5 second to 1.2 second. For generating a depth map
mosaic, it spent 7.9 msec to setting area of mosaic image and
408.6 msec to making depth map. On average, it took roughly 2
seconds for making one depth map mosaic. This processing
time was measured on a CPU Core2 Quad Q9550, clock speed
4GHz, RAM 8GB and graphic card geForce 9800GT. For real-
time processing, algorithm optimization is required.

5. CONCLUSION

This paper proposes a method of automated mosaicking of
multiple 3D point clouds generated from a depth camera.
Through the experiments, it is proved that it can be applied for
automated mosaicking of multiple 3D point clouds. Our method
showed error propasgation problem and was somewhat slow for
real-time processing. So, we will study further for handling
error propagation problem and for reducing processing time.

REFERENCES

Yehuda, A., Ariel, B., 1998. Mosaicking of Orthorectified
Aerial Images. In: Photogrammetric Engineering and Remote
Sensing, Vol 64, pp. 115-125.

Edward, R., Tom, D., 2006. Machine Learning for HighSpeed
Corner Detection. Computer Vision. In: ECCV 2006, pp. 430-
443.

David, G., Lowe, 2004. Distinctive Image Features from Scale-
Invariant Keypoints. In: International journal of computer
vision, Vol.60, Number 2, pp. 91-110.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-269-2016

272

