
CHANGE DETECTION OF MOBILE LIDAR DATA USING CLOUD COMPUTING

Kun Liu,∗ Jan Boehm, Christian Alis

Dept of Civil, Environ & Geomatic Eng, University College London
{kun.liu, j.boehm, c.alis}@ucl.ac.uk

Commission III, WG III/2

KEY WORDS: Point Cloud, Cloud Computing, Change Detection, Mobile Mapping, LiDAR

ABSTRACT:

Change detection has long been a challenging problem although a lot of research has been conducted in different fields such as remote
sensing and photogrammetry, computer vision, and robotics. In this paper, we blend voxel grid and Apache Spark together to propose
an efficient method to address the problem in the context of big data. Voxel grid is a regular geometry representation consisting of the
voxels with the same size, which fairly suites parallel computation. Apache Spark is a popular distributed parallel computing platform
which allows fault tolerance and memory cache. These features can significantly enhance the performance of Apache Spark and results
in an efficient and robust implementation. In our experiments, both synthetic and real point cloud data are employed to demonstrate the
quality of our method.

1. INTRODUCTION

The acquisition of point cloud data continuously becomes more
convenient and more economical due to the great development
of surveying technologies such as mobile mapping [Tao and Li,
2007]. Mobile mapping employs a vehicle with mounted laser
scanners, panorama cameras, GPS (global positioning system),
and IMU (inertial measurement unit) together to collect geospa-
tial data. Not only can mobile mapping deliver a low-priced ac-
quisition with high density and accuracy, the entire process is
much faster than traditional LiDAR and a big volume of data can
be produced in a moment, e.g., up to 500,000 points per sec-
ond [ABA Surveying, 2015]. Such large datasets can cause the
classical data processing methods inadequate due to a high de-
mand for computing resources, which encourages new approaches
to fill the gap.

Change detection of LiDAR data is still quite difficult although
many methods have been proposed over the last few decades
[Mémoli and Sapiro, 2004, Richter et al., 2013, Lindenbergh and
Pietrzyk, 2015]. First, LiDAR data is a discrete format by sam-
pling on continuous object surfaces, and thus surface reconstruc-
tion [Kazhdan et al., 2006] is often required. Second, different
types of errors are inevitable such as missing points caused by
blocking and misalignment in point cloud registration. Moreover,
data sets acquired using different devices can vary in sampling
density and distribution. Last but not least, the methods should
be efficient enough to compensate for the increasing data vol-
ume. These aforementioned factors can seriously affect the per-
formance of change detection, which makes the problem fairly
challenging.

In this paper, we present a method using cloud computing tech-
nologies to address the problem of change detection in the con-
text of big data. We employ Apache Spark [Zaharia et al., 2010]
as the distributed computing framework to implement the whole
method. Voxel grid [Curless and Levoy, 1996] and resilient dis-
tributed datasets [Zaharia et al., 2012] intertwined naturally in the
framework contribute to the proposed method which is able to
process a large data set efficiently. In summary, this paper makes
the following two contributions:

∗Corresponding author.

1. proposing an efficient method to detect changes in mobile
LiDAR data,

2. demonstrating the great potential of Apache Spark on large
LiDAR data processing.

In the experiments, both synthetic and real mobile LiDAR data
are used to evaluate the accuracy and the efficiency of the pro-
posed method.

This paper is organized as follows. Previous work on change de-
tection is briefly discussed in Section 2. Section 3 presents our
method and Section 4 explains implementation details. Experi-
mental results are analysed in Section 5. Section 6 concludes and
close the paper.

2. RELATED WORK

A theoretical and computational framework has been proposed in
[Mémoli and Sapiro, 2004] for comparing point clouds. The un-
derlying framework is based on Gromov-Hausdorff distance and
embedded in a probabilistic setting. Gromov-Hausdorff distance
generalizes Hausdorff distance to compare two compact metric
spaces with respect to all isometric embedding. Therefore, the
framework can compare two point clouds using certain isomet-
ric deformation. However, computing a discrete approximation
of Gromov-Hausdorff distance is not straightforward. Pairwise
geodesic distances between points are required, which introduces
efficiency issue.

An out-of-core method was developed in [Richter et al., 2013]
for detecting changes in massive point clouds without having to
reduce the raw point data. The basic idea of the method is com-
puting the distance between each point to its closest point. This
distance attribute is used to characterize the amount of geometry
change. To computing the distances efficiently, a specialized data
structure multi-data octree is employed. Multi-data octree, which
is developed based on octree, can manage 3D point clouds in out-
of-core storage. It endows the method with the ability to process
a large amount of data which can not fit memory. However, for
each comparison, a multi-data octree has to be constructed. In ad-
dition, the implementation of the data structure is not as straight-
forward as voxel grid used in our platform.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-309-2016

309

Input point clouds
Visualization

Build a voxel grid

Check occupancy in the grid

Figure 1. The figure outlines the algorithm to compare the geometry of two point clouds. A voxel grid is built based on the point clouds.
Geometry differences of the point clouds can be computed by comparing occupancy status of each voxel with respect to the two point
clouds. The rightmost column visualizes the computed geometry differences which are illustrated as orange dots in the figure.

Recent approaches on change detection in laser scan data were
reviewed in [Lindenbergh and Pietrzyk, 2015]. Major existing
difficulties are studied including local varying properties of point
cloud, registration, varying view points during acquisition, and
temporary objects. In the report, methods are categorized into
two groups. i.e., pure binary change detection methods and de-
tection methods that quantify changes. Our proposed method in
Section 3 belongs to the former category. A variety of applica-
tions based on change detection are discussed as well, e.g., struc-
tural monitoring, forestry, geomorphology, and urban changes.
Readers can also refer to [Xiao et al., 2015] for a brief overview
on change detection methods from different fields such as remote
sensing and photogrammetry, computer vision, and robotics.

Our method is similar to the approach proposed in [Barber et al.,
2008] which is based on an octree. On the other hand, we em-
ploy a voxel grid and implement entire method by means of cloud
computing. The differences between an octree and a voxel grid
and the reasons of applying a voxel grid in our work are further
investigated in Section 3.2.

3. OUR METHOD

In this section, the research problem is formulated first and after-
wards our proposed method is explained in detail.

3.1 Problem Statement

The purpose of our research work is to detect spatial changes of
mobile LiDAR data automatically. Concretely, for example, we
have two LiDAR data collections of the same city region which
are captured at different dates even using different mobile map-
ping systems. The earlier acquired data set is chosen as the ref-
erence, and the newer one is selected as the target. Change de-
tection is performed to obtain differences in the target regarding
the reference. As a reference and a target are exchangeable, we
will address a more general problem, difference detection without
distinguishing a reference and a target.

Let P1 and P2 be two point clouds in R3, i.e., P1 = {pi ∈
R3 | i = 1, . . . ,m} and P2 = {pj ∈ R3 | j = 1, . . . , n}. The
proposed method takes the two point clouds as inputs, performs
difference detection, and assigns a label to each point. The out-
puts of the method are two sets, Q1 = {(pi, li) | pi ∈ P1 and li ∈

{0, 1}} and Q2 = {(pj , lj) | pj ∈ P2 and lj ∈ {0, 1}}, where
li and lj are the labels for points and equal either 1 or 0. The
value 1 indicates the point ‘exists’ in the other point cloud while
the value 0 indicates the point does not ‘exist’ in the other point
cloud. Such ‘existence’ is defined in a sense of geometry, which
will be explained in more detail in Section 3.2.

3.2 Algorithm for Difference Detection

As stated previously in Section 3.1, the input of our method are
two point clouds without further assumption such as sampling
density and distribution. The aim of our method is to compute
geometry differences between the input point clouds.

The algorithm for difference detection is outlined in Figure 1.
Given the input point clouds P1 (green) and P2 (red), a voxel
grid is built. A voxel grid, which is a regular grid in three-
dimensional space, is popularlly used in computer graphics, espe-
cially in 3D reconstruction [Curless and Levoy, 1996] and render-
ing [Fujimoto et al., 1986]. To construct the grid, the minimum
bounding box of the two point clouds is computed first and then
the box is partitioned regularly by voxels within the same size. In
our algorithm, the voxel size is a parameter prescribed by users to
control the resolution of detected geometry differences. A voxel
v is occupied by point cloud P if and only if some point p ∈ P
is located in the voxel v. Furthermore, an occupied voxel v must
be one of the three following cases:

1. occupied by P1 only,

2. occupied by P2 only,

3. occupied by both P1 and P2.

In our algorithm, a label l is assigned to each point p by checking
such occupancy information. Concretely, for a point pi ∈ P1,
let vi be the voxel where pi is located in, the label li for pi is
evaluated as 1 (0) if vi is case 3 (case 1). P2 can be labeled
similarly as well. Thus, the output Q1 and Q2 are obtained.

In our algorithm, point clouds are transformed into voxels as an
intermediate geometry representation. Mesh reconstruction [Kazh-
dan et al., 2006] and Hausdorff distance computation [Mémoli
and Sapiro, 2004] are successfully avoided by virtue of voxels,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-309-2016

310

which makes our algorithm efficient. Voxel grid can be consid-
ered as a space partitioning scheme as well. In a voxel grid,
voxels have the constant size. Such size can be prescribed as a
parameter by users. Voxel octree [Laine and Karras, 2011] is an-
other popular partitioning scheme. Contrary to voxel grid, voxels
from a voxel octree may have different sizes. In our algorithm
voxel grid is applied instead of voxel octree, because voxel grid
can perform a uniform resampling spontaneously due to constant
voxel size, which makes our algorithm robust to varying sampling
densities. In addition, voxel grid is more suitable for our paral-
lel computing engine Apache Spark. More details about parallel
implementation are discussed in Section 4.

4. IMPLEMENTATION

We implement our method based on Apache Spark [Zaharia et
al., 2010] which is a popular open-source platform for large-scale
data processing. Implementation details are given in this section.

4.1 Apache Spark

Apache Spark [Zaharia et al., 2010] is a fast and general-purpose
cluster computing library. Similar to Hadoop [White, 2009],
it supports the well-known MapReduce [Dean and Ghemawat,
2008] paradigm. As a primary abstraction in Apache Spark, the
resilient distributed dataset (RDD) plays a key role to organize
data and achieve parallel computation. An RDD can be consid-
ered as a list of elements of the same type. In general, an RDD
is partitioned into pieces distributed to cluster nodes. Each piece
has several copies in different nodes in order to realize fault tol-
erance. In addition, an RDD can be cached in memory which is
different from Hadoop. This feature dramatically enhances the
performance of Apache Spark, especially for applications with
iterative operations. In Apache Spark, several convenient built-
in libraries are available including Spark SQL for structured data
processing and MLib for machine learning applications. It pro-
vided APIs in Java, Scala, Python and R, and we use Scala in our
implementation.

4.2 RDD operations

To recapitulate briefly, the core of our method is detecting geom-
etry differences between point clouds by means of a voxel grid.
Once the voxel grid is created, voxel occupancy is examined. To
implement the occupancy checking, a straightforward way is to
create two 3D arrays of the same size respectively recording voxel
occupancy status for each point cloud. Afterwards, geometry dif-
ferences can be obtained by comparing values in the two 3D ar-
rays. Indexing of such arrays is very efficient in single machine
setup, whereas in our distributed setup it is impossible due to
discontinuous memory storage. Moreover, occupied voxels are
fairly sparse in the voxel grid and only a small portion of voxels
holds points. Therefore, the 3D arrays contain many empty items
and can waste lots of memory.

A solution possible for our platform is to create two RDDs con-
sisting of voxels occupied by the two point clouds respectively.
Differences can be computed by applying set operations on the
two RDDs such as union, intersection, and complementation. We
implement such idea in an equivalent way based on Apache Spark.
A key is assigned to each point to generate a key-value pair and
the key is chosen as the Morton code of the voxel where the point
is located in. The Morton code can be easily computed as voxel
grid is used in our method (see Section 4.3). The key-value pairs
are collected using the cogroup functionality provided by Apache
Spark and finally geometry differences can be derived from the

cogroup results. The entire implementation is a series of RDD
operations which are illustrated in Algorithm 1.

Algorithm 1 Implementation based on Apache Spark

Inputs: P1 and P2

RDD1 = [p11, . . . , p
1
m]← P1

RDD2 = [p21, . . . , p
2
n]← P2

PairRDD1 = [(k1
1, p

1
1), . . . , (k

1
m, p1m)]← RDD1

PairRDD2 = [(k2
1, p

2
1), . . . , (k

2
n, p

2
n)]← RDD2

Q1 ← cogroup(PairRDD1,PairRDD2)
Q2 ← cogroup(PairRDD2,PairRDD1)

Outputs: Q1 and Q2

4.3 Morton Code

X:

Y:

0 1 2 3
00 01 10 11

000
101

210
311

Figure 2. A 2D illustration of morton code.

In our implementation, Morton code [Morton, 1966] is used for
key assignment. Morton code is a function mapping high-dimensi-
onal data to 1-dimensional space while preserving locality. A 2D
case of Morton code is shown in Figure 2. A square is partitioned
by a 4× 4 grid. Each cell can be labeled using a pair of integers,
e.g., the top-left cell is labeled as (0, 0). If the integers are writ-
ten in binary, interleaving the two integers to generate another
integer can produce an order for cells in the grid. For example,
given an integer pair (d2xd1x, d2yd1y) in binary, an order d2yd2xd1yd1x
is generated. Such order is illustrated as the blue line in Figure 2.
Since the line has a Z-shape, Morton code is also named Z-order.
Morton code of voxels in a 3D voxel grid can also be computed
in a similar way and Figure 3 displays the Z-curve in a 2× 2 3D
voxel grid.

Figure 3. A 3D illustration of morton code.

4.4 Visualization

We use Potree [Potree, 2015] to visualize the results produced by
our method. Potree is an open source WebGL based point cloud

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-309-2016

311

Figure 4. The figure is a snapshot of the Potree user interface.
The 3D data shows London Bloomsbury area. The color encodes
the height information

render, especially for large point data sets. Its user interface is
similar to most of computer graphics modeling tools as shown in
Figure 4. Potree supports level of detail and is able to render a
large point set interactively by virtue of a special octree structure
implemented inside. In our experiments, the biggest point cloud
manipulated in Potree has about 1 billion points.

5. EXPERIMENTAL RESULTS

We first conduct a sanity check using two synthetic point clouds
as illustrated in Figure 5. The two point clouds are generated
by randomly sampling on two Gaussian surfaces with different
peaks. The orange dots represent geometry differences detected
by our method correctly as expected.

(a) (b)

Figure 5. The point clouds representing two Gaussian surfaces
with different peaks.

(a) (b)

Figure 6. Two exactly same building models except the right one
does not have part of the facade.

An important aim of this work is to detect changes in city build-
ings. Such changes are fairly difficult to detect by using airborne

Figure 7. The change detection result of the two models shown
in Figure 6. The change is represented by orange dots.

LiDAR or satellite images. As illustrated in Figure 6, two build-
ing models are exactly same except that part of the facade in the
right one is knocked down. This is a common scenario occur-
ring in most of cities. By using these two models, we obtain two
point clouds by random sampling and perform our change detec-
tion method on the generated point clouds. The result shown in
Figure 7 indicates a successful detection of the missing part of
the building.

We also apply our method on two mobile LiDAR data sets cap-
tured around London Bloomsbury area at different times by dis-
tinct acquisition systems. One of the two data set is illustrated in
Figure 4. Figure 8 illustrates the results of change detection for
a building in Bloomsbury. The left figure shows the building be-
fore refurbishment, and the right one displays the same building
under refurbishing without walls and windows.

(a) (b)

Figure 8. (a) shows a building before refurbishment and the rect-
angle highlights a piece of wall before knocking down. (b) dis-
plays the same building under refurbishing. The small rectangle
highlights the detected floor as no wall can obstruct laser from
scanners. The big rectangle highlights the scaffold.

6. CONCLUSIONS

We propose an efficient method for change detection in mobile
LiDAR data by means of voxel grid. The method is implemented
based on Apache Spark which enables distributed parallel com-
putation. As shown in Figure 8, the results are a little noisy and
thus a clustering post-processing would be helpful, which is a
direction of our future work.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-309-2016

312

ACKNOWLEDGEMENTS

The authors would like to thank anonymous reviewers for the
helpful comments and suggestions. This research work is sup-
ported by EU grant FP7-ICT-2011-318787 (IQmulus).

REFERENCES

ABA Surveying, 2015. Aba’s mobile mapping system.
http://www.abasurveying.co.uk/.

Barber, D., Holland, D. and Mills, J., 2008. Change detection
for topographic mapping using three-dimensional data structures.
International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 37(B4), pp. 1177–1182.

Curless, B. and Levoy, M., 1996. A volumetric method for build-
ing complex models from range images. In: Proceedings of
the 23rd Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’96, ACM, New York, NY, USA,
pp. 303–312.

Dean, J. and Ghemawat, S., 2008. Mapreduce: Simplified data
processing on large clusters. Commun. ACM 51(1), pp. 107–113.

Fujimoto, A., Tanaka, T. and Iwata, K., 1986. Arts: Accelerated
ray-tracing system. IEEE Computer Graphics and Applications
6(4), pp. 16–26.

Kazhdan, M., Bolitho, M. and Hoppe, H., 2006. Poisson sur-
face reconstruction. In: Proceedings of the fourth Eurographics
symposium on Geometry processing, Vol. 7.

Laine, S. and Karras, T., 2011. Efficient sparse voxel octrees. Vi-
sualization and Computer Graphics, IEEE Transactions on 17(8),
pp. 1048–1059.

Lindenbergh, R. and Pietrzyk, P., 2015. Change detection and
deformation analysis using static and mobile laser scanning. Ap-
plied Geomatics 7(2), pp. 65–74.

Mémoli, F. and Sapiro, G., 2004. Comparing point clouds. In:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH sym-
posium on Geometry processing, ACM, pp. 32–40.

Morton, G. M., 1966. A computer oriented geodetic data base
and a new technique in file sequencing. International Business
Machines Company New York.

Potree, 2015. Potree, https://github.com/potree/potree.

Richter, R., Kyprianidis, J. E. and Döllner, J., 2013. Out-of-core
gpu-based change detection in massive 3d point clouds. Transac-
tions in GIS 17(5), pp. 724–741.

Tao, C. V. and Li, J., 2007. Advances in mobile mapping tech-
nology. CRC Press.

White, T., 2009. Hadoop: The Definitive Guide. 1st edn, O’Reilly
Media, Inc.

Xiao, W., Vallet, B., Brédif, M. and Paparoditis, N., 2015. Street
environment change detection from mobile laser scanning point
clouds. ISPRS Journal of Photogrammetry and Remote Sensing
107, pp. 38–49.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mc-
Cauley, M., Franklin, M. J., Shenker, S. and Stoica, I., 2012.
Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation,
USENIX Association, pp. 2–2.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and
Stoica, I., 2010. Spark: cluster computing with working sets.
In: Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, Vol. 10, p. 10.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-309-2016

313

https://github.com/potree/potree

	Introduction
	Related Work
	Our method
	Problem Statement
	Algorithm for Difference Detection

	Implementation
	Apache Spark
	RDD operations
	Morton Code
	Visualization

	Experimental Results
	Conclusions

