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ABSTRACT:

Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction
and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated
in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to
compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to
the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the
laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated
direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation
between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation
technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the
impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values
were illustrated using error ellipsoids on different datasets.

1. INTRODUCTION

Mobile Terrestrial LiDAR System (MTLS) is an emerging tech-
nology that combines the use of a laser scanner, Global Naviga-
tion System (GPS), Inertial Navigation System (INS) and odome-
ter on a mobile platform to produce accurate and precise geospa-
tial data on canyon urban. Much more detailed information has
been acquired in comparaison with Airborne LiDAR Systems
(ALS). (Olsen, 2013) discussed the key differences and similar-
ties between airborne and mobile LiDAR data. The MTLS allows
to obtain a large amount of 3D positional information in a fast and
efficient way, which can be used in numerous applications, such
as the object reconstruction and registration of system. In such
applications, uncertainty analysis of 3D points is of great interest
but rarely investigated in the literature. Consequently, it is impor-
tant for users to know the uncertainty of MTLS and the factors
that can influence the quality of 3D scanned data. Several studies
have analysed the sources of uncertainties in MTLS, which are
similar to those used by Airborne LiDAR System (ALS). More
detail about ALS uncertainty sources was introduced by (Schaer
et al., 2007). Others issues, related to sources of uncertainty af-
fecting on the accuracy of the Mobile Terrestrial LiDAR point
cloud are discussed in (Alshawa et al., 2007, Olsen, 2013, Leslar
et al., 2014, Poreba, 2014) .

In general, the sources of uncertainty are divided into three main
categories:

• navigation uncertainties : Here we have uncertainty of the
absolute position and the vehicule orientation measured by
INS in real time. The factors that affect the accuracy of the
vehicule’s position depend : multipath, shading of the sig-
nals caused by buildings and trees, and poor GPS satellite
geometry (Glennie, 2007, Haala et al., 2008). Under good
GPS conditions this uncertainty is about few centimeters,

however, under difficult conditions it can be up to few me-
ters. In (Leslar et al., 2014), they have proved that under
tightly controlled error conditions, the source of uncertainty
in point cloud is domined by vehicule position.

• calibration uncertainties : Namely the uncertainties in the
leverarm and in the boresight angles between scanner laser
and the INS frame. The quality of the calibration parameters
is usually known and depends on the calibration procedure
(Le Scouarnec et al., 2014, Rieger et al., 2010).

• laser scanning uncertainties : The scanner laser measure-
ments consist of two angulars and one distance.The factors
affecting laser-target position accuracy are numerous such
as the weather (humidity, temperature), properties of the
scanned surface (roughness, reflectivity), scanning geom-
etry (incidence angle on the surface) and scanner mecha-
nism precision (mirror center offset) (Soudarissanane et al.,
2008). These uncertainties are evaluated by the construc-
tors.

This paper is organized as follows: Section 1 presents briefly the
principles of geo-referencing of 3D point. Section 2 describes a
complete pipeline that takes into account all the sources of uncer-
tainties and allows to compute a covariance matrix per 3D point.
The obtained uncertainty values were illustrated using error ellip-
soids on different datasets.

In this work, the mobile data that we used was produced by the
terrestrial mobile mapping vehicle Stereopolis II (Paparoditis et
al., 2012) developped at National Geographic Institute (IGN).
The laser sensor is a RIEGL VQ-250 that was mounted transver-
sally in order to scan a plane orthogonal to the trajectory. It ro-
tates at 100 Hz and emits 3000 pulses per rotation, which cor-
responds to an angular resolution around 0.12◦ result in 0 to 8
echoes producing an average of 250 thousand points per second.
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1.1 Mobile Terrestrial LiDAR formulas

Calculation of ground coordinates from Mobile Terrestrial Lidar
System (MTLS) have been well documented in the literature (El-
lum and El-Sheimy, 2002). As shown in Figure (1), the coordi-
nates of point Pw

i in the World frame can be calculated by com-
bining the information from the LiDAR, INS measurements and
calibration

Figure 1: Concept of Mobile Terrestrial LiDAR System (MTLS)

The formula used to calculate the LiDAR point in the world frame
is given in Equation (1) :

Pw
i (t) = Rw

INS(t) PINS
i (t) + Tw

INS(t) (1)

Where :

• Pw
i (t) represents the 3D coordinate of point P in the World

frame at time t and i is the index of the point.

• Tw
INS(t) is the position of the INS in the World frame at time

t.

• Rw
INS(t) is the rotation matrix between the INS body frame

and the World frame at time t :

Rw
INS(t) = RENU

NED.R(θz(t), θy(t), θx(t)) (2)

– RENU
NED is the constant rotation matrix between the North-

East-Down coordinates and the East-North-Up coor-
dinate frame :

RENU
NED =


0 1 0

1 0 0

0 0 −1

 (3)

– R(θz, θy, θx) is the rotation matrix between the INS
body frame and the World frame (in the North- East-
Down coordinate system) with θx, θy, θz which repre-
sent the roll, pitch and yaw Euler angles given by the
INS at time t :

R(θz, θy, θx) = R(θz) R(θy) R(θx) (4)

with :

R(θz) =


cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

 (5)

R(θy) =


cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)

 (6)

R(θx) =


1 0 0

0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)

 (7)

• PINS
i (t) is the position of the target point in the INS body

frame at time t :

PINS
i (t) = Rcalib(Ω, ϕ, κ) PLiDAR

i (t) + TINS
LiDAR (8)

– Rcalib(Ω, ϕ, κ) is the constant rotation matrix between
the LiDAR body frame and the INS body frame. κ, ϕ
and Ω are boresight angles.

– TINS
LiDAR is the lever arm vector from the INS body frame

to the LiDAR body frame.

– PLiDAR
i (t) is the laser range vector between the LiDAR

and the target point p at time t :

PLiDAR
i (t) =

PLiDAR
0 (t)︷ ︸︸ ︷

XLiDAR
0 (t)

Y LiDAR
0 (t)

ZLiDAR
0 (t)

+


ρ(t) cos(θ(t)) sin(φ(t))

ρ(t) sin(θ(t)) sin(φ(t))

ρ(t) cos(φ(t))


(9)

PLiDAR
0 (t) : represents the mirror center offset of the LiDAR

instrument at time t (see Figure 2).
ρ(t) : is the LiDAR range at time t (see Figure 2).

θ(t), φ(t) : represents respectively the horizontal and verti-
cal angles measured by the LiDAR in the LiDAR
body frame at time t (see Figure 2).

Figure 2: (1) Center of LiDAR frame - (2) The mirror center
offset of the LiDAR instrument PLiDAR

0
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The equation (1) can be rewritten as :


Xw
i (t)

Y w
i (t)

Zw
i (t)

 = RENU
NEDR(θz(t), θy(t), θx(t)).

[Rcalib(Ω, ϕ, κ).

[


XLiDAR

0 (t)

Y LiDAR
0 (t)

ZLiDAR
0 (t)

+


ρ(t) cos(θ(t)) sin(φ(t))

ρ(t) sin(θ(t)) sin(φ(t))

ρ(t) cos(φ(t))

 ] +


TINS

LiDARx

TINS
LiDARy

TINS
LiDARz

 ]

+


TW

INSx(t)

TW
INSy (t)

TW
INSz (t)



The above equation shows that the coordinates of point Pw
i in the

World frame depends on 18 observations :

• TW
INSx , TW

INSy and TW
INSz defining the position of the INS in

the World frame.

• θx, θy and θz are the roll, pitch and yaw Euler angles given
by the INS.

The MTLS use an odometer, GPS, and INS to determine the
position (TW

INSx , TW
INSy , TW

INSz ) and orientation (θx, θy, θz) of
vehicule at time t.

• TINS
LiDARx

, TINS
LiDARy

and TINS
LiDARz

are the lever arm offsets from
the INS body frame to the LiDAR body frame.

• Ω, ϕ, κ are the boresight angles which align the LiDAR body
frame with the INS body frame.

The lever-arm offset (TINS
LiDARx

, TINS
LiDARy

and TINS
LiDARz

) and
boresight angles Ω, ϕ, κ are determined through a calibra-
tion procedure.

• XLiDAR
0 , Y LiDAR

0 and ZLiDAR
0 represent the mirror center off-

sets of the LiDAR instrument given by the LiDAR scanner.

• ρ, θ and φ represent the range and scan angles measured
given by the LiDAR scanner.

Each of the 18 observations have an uncertainty, in the form of
an standard deviation denoted by σ. We suppose that each of the
measurements follows the normal (Gaussian) distribution. Know-
ing the standart deviations σ of all observations (see Table 1), we
applied uncertainty propagation technique to compute the covari-
ance matrix of every obtained 3D point.

2. UNCERTAINTY PROPAGATION

In this section, we present uncertainty propagation technique which
is based on the Gauss-Helmert general method. By applying this
method, it is possible to compute the covariance matrix of a 3D
point. The objective is to convert the covariance matrix given in
terms of observations to a covariance matrix in terms of parame-
ters.

2.1 General Methodology

The generic form of the Gauss-Helmert method presented by (Van-
icek and Krakiwsky, 2015) consists in resolution of the following
equation system :

F(X̂, l̂) = 0 (10)

where X̂ is estimated unknown vector and l̂ is estimated obser-
vation vector. The linearized form of equation (10) is given in
equation (11) :

Aδ̂ + Br̂ + w = 0 (11)

where A =
∂F
∂X

∣∣∣∣
X(0),l(0)

is the matrix of partial derivatives with

respect to unknowns, B =
∂F
∂l

∣∣∣∣
X(0),l(0)

is the matrix of partial

derivatives with respect to observations, w = F(X(0), l(0)) is the
misclosure vector, X(0) and l(0) are intial values, δ̂ and r̂ are
residuals of unknowns and observations. The quantities A, B and
w are known, while δ̂ and r̂ are unknown.The unknowns correc-
tion vector δ̂ and observations correction vector r̂ are :

δ̂ = −(ATMA)-1ATMw (12)

r̂ = −CrBTM(Aδ̂ + w) (13)

where M = (BCrBT)-1 and Cr is the covariance matrix of the
observations.

Finally, the general law of propagation of variances is applied.
And, we obtain the covariance matrix of parameters :

Cx = (ATMA)-1 (14)

2.2 The covariance matrix of a 3D point

The equation (1) can be rewritten in the generic form of the Gauss-
Helmert method :

F(X̂i, l̂i) =


Xw
i (t)

Y w
i (t)

Zw
i (t)

− RENU
NEDR(θz(t), θy(t), θx(t)).

[Rcalib(Ω, ϕ, κ).

[


XLiDAR

0 (t)

Y LiDAR
0 (t)

ZLiDAR
0 (t)

+


ρ(t) cos(θ(t)) sin(φ(t))

ρ(t) sin(θ(t)) sin(φ(t))

ρ(t) cos(φ(t))

 ] +


TINS

LiDARx

TINS
LiDARy

TINS
LiDARz

 ]

+


TW

INSx(t)

TW
INSy (t)

TW
INSz (t)

 = 0
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Table 1: Sources of uncertainty in MTLS
Sources of uncertainty Observations Uncertainties Values

Navigation uncertainties

Tw
INSx(t), Position X of the INS [m] σTw

INSx
Estimated from INS

Tw
INSy (t), Position Y of the INS [m] σTw

INSy
Estimated from INS

Tw
INSz (t), Position Z of the INS [m] σTw

INSz
Estimated from INS

θx(t), INS Roll [degrees] σθx Estimated from INS
θy(t), INS Pitch [degrees] σθy Estimated from INS
θz(t), INS Yaw [degrees] σθz Estimated from INS

Calibration uncertainties

TINS
LiDARx

, LiDAR X Lever Arm [m] σTINS
LiDARx

0.001

TINS
LiDARy

, LiDAR Y Lever Arm [m] σTINS
LiDARy

0.001

TINS
LiDARz

, LiDAR Z Lever Arm [m] σTINS
LiDARz

0.001

Ω, LiDAR Roll [degrees] σΩ 0.1
ϕ, LiDAR Pitch [degrees] σϕ 0.1
κ, LiDAR Yaw [degrees] σκ 0.1

Laser scanning uncertainties

XLiDAR
0 (t), mirror center offset in the X direction [m] σXLiDAR

0
0.001

Y LiDAR
0 (t), mirror center offset in the Y direction [m] σY LiDAR

0
0.001

ZLiDAR
0 (t), mirror center offset in the Z direction [m] σZLiDAR

0
0.001

ρ (t), LiDAR Distance [m] σρ 0.005 (Given by the constructor)
θ(t), LiDAR Horizontal angle [degrees] σθ 0.001 (Given by the constructor)
φ (t), LiDAR Vertical angle [degrees] σφ 0.001 (Given by the constructor)

where :

• X̂i =

Xw
i

Y w
i

Zw
i

 : is the vector of unknowns of the Pw
i point.

• l̂i = [ ρ θ φ XLiDAR
0 Y LiDAR

0 ZLiDAR
0 Ω ϕ κ TINS

LiDARx

TINS
LiDARy

TINS
LiDARz

θx θy θz Tw
INSx Tw

INSy Tw
INSz ]T : is vector

of observations of the Pw
i point.

• A(3×3) = 1 : is the matrix of partial derivatives with respect
to unknown.

• B(3×18) =
∂F
∂l

∣∣∣∣
l(0)

is the matrix of partial derivatives with

respect to observations.

• w = F(X(0), l(0)) is the misclosure vector.

• δ̂ = −w , r̂ = 0 are the unknowns correction vector and
observations correction vector.

• Cir is the covariance matrix of the observations of the Pw
i

point.

Cir =


σ2
ρ 0 . . . 0

0 σ2
θ . . . 0

...
...

. . .
...

0 0 . . . σ2
Tw

INSz

 (15)

We assume that the observations are independent, so all non-
diagonal values in the matrix Cir are equal to zero. The covariance
matrix of Pw

i can be computed by the covariance law :

Cix(3×3) = BCrBT =

σ2
x σxy σxz
σxy σ2

y σyz
σxz σyz σ2

z

 (16)

This covariance matrix of the point Pw
i can be depicted by an error

ellipsoid.

2.3 Error ellipsoid

From the covariance matrix of parameters (Equation 16) we can
then calculate the eigenvalues (λ1 > λ2 > λ3) and eigenvectors
(e1, e2, e3). Each eigenvalue and eigenvector was used to con-
struct the three axes of an ellipsoid. The eigenvectors give the
directions of the principal axes of the uncertainty ellipsoid, and
the eigenvalues give the variances along these principal axes. To
create a 99.9 % confidence ellipse from the 3σ error, we must
enlarge it by a factor of scale factor s =

√
11.345. The ellip-

soid is centered on the point Pw
i and the principal axes of this

ellipse are determined by the following equations : v1 = s λ1 e1,
v2 = s λ1 e2 and v3 = s λ1 e3.

The error ellipsoids are illustrated in the figures (3), (4), (5) and
(6) :

Figure 3: Black : points cloud of the mobile terrestrial LiDAR ,
blue : error ellipsoids. We estimate the error ellipsoid every 1000
points
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Figure 4: Black : points cloud of the mobile terrestrial LiDAR ,
blue : error ellipsoids. An error ellipsoid every 300 points

Figure 5: Black : points cloud of the mobile terrestrial LiDAR ,
blue : error ellipsoids. An error ellipsoid every 150 points

Figure 6: Black : points cloud of the mobile terrestrial LiDAR ,
blue : error ellipsoids. An error ellipsoid every 100 points

3. CONCLUSION

In this paper, we have presented a uncertainty propagation tech-
nique based on the general Gauss-Helmert method to compute
the covariance matrix per 3D point and the obtained uncertainty
values were illustrated using error ellipsoids on different datasets.
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