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ABSTRACT: 

 

Airborne LiDAR (Light Detection and Ranging) data have a high potential to provide 3D information from trees. Most proposed 

methods to extract individual trees detect points of tree top or bottom firstly and then using them as starting points in a segmentation 

algorithm. Hence, in these methods, the number and the locations of detected peak points heavily effect on the process of detecting 

individual trees. In this study, a new method is presented to extract individual tree segments using LiDAR points with 10cm point 

density. In this method, a two-step strategy is performed for the extraction of individual tree LiDAR points: finding deterministic 

segments of individual trees points and allocation of other LiDAR points based on these segments. This research is performed on two 

study areas in Zeebrugge, Bruges, Belgium (51.33° N, 3.20° E). The accuracy assessment of this method showed that it could 

correctly classified 74.51% of trees with 21.57% and 3.92% under- and over-segmentation errors respectively. 
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1. INTRODUCTION 

Tree extraction from remotely sensed data, in addition to 
applications in mapping and three-dimensional modelling, is 

worthwhile from the aspect of environmental term and urban 

green space management. So far, many studies on the tree 

extraction have been done using aerial and satellite images 

(Kalapala, 2014; Immitzer et al., 2012; Larsen, 2007). With the 

increase in the spatial and spectral sensor resolutions, 

computation power and reducing in the cost of data gathering, 

the level of detail for automatic individual trees extraction has 

been increased. However, the vertical structure of trees, tangled 

crowns and automatic detection in the level of details of remote 

sensing data, are tree extraction challenges that researchers are 

faced with them. Nevertheless, aerial image interpretation is 

impeded by different spectroradiometric distortions caused by 

vignetting effects (caused by more light reaching the centre of an 

image than the edges), atmospheric variations, sun-target-sensor 

geometry or view/illumination geometry and topography-

induced illumination variations (Lillesand et al. 2008). Airborne 

LiDAR can penetrate in tree crown, provide the geometric 

information and show some internal structure of the trees, and 

also these capabilities may increase by increasing in point 

density. With the high ability of airborne LiDAR to provide 

three-dimensional information directly and to receive multiple 

return signals from vegetation, it has become a viable alternative 

to image. The single tree detection using airborne LiDAR data 

was primarily proposed by Brandtberg (1999), Hyyppä and 

Inkinen (1999) and Samberg and Hyyppä, (1999), which 
subsequently became an accepted topic for investigators 

(Hyyppä et al. 2008). Most published algorithms detect 

individual trees from an interpolated raster surface from LiDAR 

points that hit on the tree canopy surface (Zhang et al., 2015). 

Table 1 shows some of these methods. For example, in the 

developed algorithm by Koch et al., a Digital Crown Height 

Model (DCHM) is first calculated by subtracting the height 

value of the Digital Terrain Model (DTM) at each pixel from the 

height value of the Digital Surface Model (DSM). In the 

smoothed DCHM, tree tops are then detected with a local 

maximum filter. The Pouring algorithm is then used to obtain 

crowns (Koch et al., 2006).     

 

Algorithm Reference Forest type 
Leaf condition  

(leaf on or off) 

Point density 

(points/m2) 

Accuracy 

(In %) 

Local maxima Persson et al., 2002 Coniferous and Deciduous ----- ----- 71 

Scale-space theory Brandtberg et al., 2003 Deciduous off 12 ---- 

Pouring algorithm Koch et al., 2006 Deciduous on 5-10 72.73 (avg.) 

Normalized cut Reitberger et al., 2009 Coniferous and Deciduous on and off 10-25 66 

Watershed Alonzo et al., 2014 Urban Forest on 22 83 

Watershed Duncanson et al., 2014 Coniferous and Deciduous on and off 50 70 

Hierarchy-Directed 

Acyclic Graph 

Strîmbu, F. and Strîmbu, 

M., 2015 
Coniferous and Deciduous off 30 61.1-98.8 

Table 1. Different individual tree detection methods based on LiDAR-derived raster surface 
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The CHM can have inherent errors and uncertainties from a 

number of sources. For example, spatial error can be introduced 

during the interpolation process from the point cloud to the 

gridded height model (Guo et al., 2010), which can decrease the 

accuracy of tree segmentations and relevant measurements (Li 

et al., 2012). To increase the accuracy of detection, Persson et al. 

applied a Gaussian function to elevation model (Persson et al. 

2002), but the use of smoothing filter cause to estimate the tree 

height incorrectly (Tiede et al., 2005). As the amount of 

softening increases, the possibility of losing trees top increases. 

This can cause the indiscrimination of small trees (under-

segmentation error) and vice versa (e.g. the very low softening 

level can cause to create additional tops and over-segmentation 

error). In the study of Kumar, the impact of the degree of 

softening on the number of detected peaks is clearly visible on 

table 2. Hence, in these algorithms, the number and the locations 

of detected peaks heavily effect on the process of detecting 

individual trees (Kumar, 2012). 

 

Smoothed CHM  Tree Peaks Detected 

sCHM3  164,787 

sCHM5  92,867 

sCHM7  72,609 

sCHM9  54,194 

Table 2. Number of detected peaks in smooth CHM with 

varying degree of smoothness 

 

As small trees are dominated by larger trees in dense forests, it is 

impossible to find them by pixel analysis (Reitberger et al., 

2009). In the study of Duncanson et al. intermediate trees are 

over predicted (commission error) and understory trees are often 

undetected (omission error) (Duncanson et al., 2014). To 

overcome this problem, Alonzo et al., tried to control the 

distance between the detected peaks by applying one or more 

thresholds (Alonzo et al., 2014). But one or more thresholds 

may not enough to identify a variety of trees (variety of species, 

age, environmental conditions and growth rate) and so trees 

don’t be correctly identified. Unlike the above methods, some 

methods use LiDAR-point clouds directly to extract individual 

trees points. Table 3 shows some of these methods. It’s hard to 

define top points of deciduous or young trees under the other 

tree canopy in the point cloud (Wang et al., 2008). According to 

the three-dimensional coordinates of LiDAR points, Li et al. 

used a distance threshold to tree segmentation. But it’s hard to 

define this threshold, especially in dense forests. Inappropriate 

threshold may cause to under- and/or over-segmentation errors 

(Li et al., 2012). Another problem is that points must participate 

in the segmentation and classification processes one by one, that 

in itself rises the computation time. Lu et al. offered a method to 

detect tree trunks points based on higher levels of intensity. In 

their method, the tree segmentation begins from bottom of the 

trees. Consequently, their method will be influenced by bushes 

in some areas (Lu et al., 2014). 

 

All above mentioned methods search seed points as tree top or 

bottom to start segmentation algorithm.  Hence, the number and 

the locations of the selected seed points effect on the detection 

process directly. In our study, a new method to extract 

individual trees points from LiDAR data with no need to extract 

seed points is developed. The main idea of this method consists 

in extracting deterministic segments of individual tree points and 

investigating membership of other points to them. 

  

2. GENERAL SCHEMA 

As mentioned above, a two-step strategy is performed for the 

extraction of individual tree LiDAR points. These steps are (1) 

finding the Deterministic Segments of Individual Trees points 

(DSITs), and (2) the allocation of other LiDAR points based on 

these DSITs. Figure 1 indicates a presentation of the different 

phases of this proposed approach. In continue of this paper, 

details of this method are explained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The flowchart of proposed algorithm 

 

2.1 Data Pre-processing 

Pre-processing of LiDAR data in this study consisted two 

phases: (1) Because of using urban forest point cloud for tree 

segmentation, we first separated urban forest point clouds class 

from other urban objects class (such as roads and buildings) 

using a city plan. (2) The surface of the ground is not flat and 

our algorithm is based on the relative spacing of each point, 

therefore we first need to eliminate the effect of land. For this 

purpose, a digital elevation model (DEM) was first generated by 

interpolating the ground points using ordinary kriging (Guo et 

al., 2010). The LiDAR point cloud was then normalized by 

subtracting the DEM height from the LiDAR point cloud (Lee et 

al., 2010). According to the general shape of trees, a cylindrical 

shape is considered as a DSIT (Figure 2). These cylinders are 

defined based on a direction and a radius which should be 

extracted for each tree. 
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Algorithm Reference Forest type 
Leaf condition  

(Leaf on or off) 

Point density 

(points/m2) 

Accuracy 

(In %) 

Voxel space projection Wang et al., 2008 
Coniferous and 

Deciduous 
---- 7-8 72.12 

Adaptive multi-scale 

filter 
Lee et al., 2010 Managed pine forest On 14.2 95 

Region growing Li et al., 2012 Coniferous On > 6 90 

2D and 3D spacing 

thresholds 
Lu et al., 2014 Deciduous Off 10.28 90 

donut expanding and 

sliding method 
Zhang et al., 2015 Urban Forest On 3.5 93.5 

Table 3. Different individual tree detection methods based on LiDAR-point cloud 

 

 
Figure 2. The schematic concept of a DSIT for two trees 

 

2.2 Obtaining Cylinders’ Direction 

Tree growth of each tree is in line with its tree trunk. Hence, the 

central axis of the cylinder should be defined along the tree 

trunk. The steps of extracting tree trunk in this paper are implied 

as following steps: firstly, the bushes and the ground points are 

removed from the point cloud by applying a maximum and 

minimum height thresholds which are defined experimentally 

(Figure 3a) based on the study area. In this research, these 

thresholds were equal to 1.4 m and 4.5 m.  Then, in order to 

classify the resulted point cloud to trunk and non-trunk classes, 

third thresholding is performed on intensity of each point 

(Figure 3b). This experimental threshold is obtained from this 

fact that the number of echoes of a pulse related to the tree 

trunks and its branches are usually less than the number of 

echoes related to the leaves. Hence, the intensity of the trunk 

and branches are higher than the intensity of the leaves (Lu et al. 

2014). With this thresholding, the leaves points are removed 

from the tree trunk class as far as possible. In this research, the 

intensity threshold was equal to 25. 

 

 

Figure 3. Initial classifications for trunk class extraction 

 

Secondly, in resulted trunks class, Ordering Points To Identify 

the Clustering Structure (OPTICs) algorithm (Ankerst et al., 

1999) is applied to obtain individual tree trunk point clusters. 

OPTICs algorithm is a clustering method based on density data; 

this means that wherever the data density is high, there may be a 

pattern. The input parameters of this algorithm are minimum 

points and the neighbourhood radius parameters, which are 

indicated with K and ε respectively. A point is considered as a 

core point, if there are at least K points in the ε radius for it. 

Connected core points represent a pattern and the representative 

of this pattern is a core point that point density around it, is 

more than the rest. 

 

The output of the OPTICs algorithm is a curve that represents 

this structure in two-dimensions. In this curve vertical axis, RD, 

is each point's reachability distance and horizontal axis, order, is 

the order of points in the reachability graph. Every valley in this 

curve represents a cluster. We used a Matlab code of OPTICs 

algorithm that set the value of ε, automatically (Daszykowski et 

al. 2002). In this study, an appropriate value for K is considered 

by examining the half of trunk class at plot 1 (Figure 4a). The 

number 8 was obtained for K by trial and error method. The 

resulted plot of OPTICs algorithm has been shown in Figure 4b. 

 

 
Figure 4. Trunks point cloud of half of trees of Plot 1 and (b) 

output of OPTICs algorithm that was carried out on this point 

cloud. 
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By putting any point into cluster of its nearest representative, 

tree trunk point's clusters are obtained (Figure 5a). The obtained 

Trunk Clusters are accompanying with some bushes points and 

should be eliminated to extract final individual tree trunks. This 

elimination is done by a thresholding operation on their 

Euclidean distance from mean of each cluster. The final trunks 

point's clusters are obtained after this operation (Figure 5b). In 

the last step of obtaining cylinders’ direction, by extracting the 

trunk of single trees, their directions are extracted using principal 

component analysis (PCA). Figure 5c shows extracted trunk 

direction of two neighbouring trees. 

 

 
Figure 5. (a) The results of clustering with OPTICs algorithm, (b) 

the final trunks and (c) trunk direction of two neighbouring trees 

 

2.3 Obtaining Cylinders’ Radii 

According to the trees growth, as the diameter of a tree trunk is 

larger, its crown is more expanded. Crowns are tangled with 

each other in dense areas. Therefore, the radii of the cylinders 

are defined as a function of two parameters: distance and 

diameter. If the tree diameter is large or tree is farther from its 

neighbour trees, the radius of its cylinder should be defined 

large. As mentioned above, we express the steps of our method 

for two neighbouring tree. Cylinder radius of the tree 1 and 2 (r1 

and r2 respectively), are defined by the following equations: 

 
If trunk directions of two neighbour trees are approximately 

parallel to each other (Figure 6a), their radiuses are determined 

based on equations 1: 

 

   and    (1) 

 
Where  = distances between centres of tree trunks

 ,  = trunk diameter for tree 1 and 2

 respectively. 

 

If two neighbour trees are getting away from each other (Figure 

6b), their radiuses are determined based on equations 2: 

 

    
and    

 
(2) 

 

Where ,  = trunks direction angles for target and neighbour 

trees, respectively 

  = is determined based on equations 3 

 

( )   and  
  

(3) 

 

Where  = perpendicular distance of i-th tree trunk top point 

from intersection line of perpendicular planes on tree 

trunk centre line. 

 

 
Figure 6. Visual expression of equations parameters: (a) trees are 

parallel, (b) trees are getting away from each other and (c and d) 

trees are approaching to each other. 
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If two neighbour trees are approaching to each other and trees 

trunk centre lines are intersecting (Figure 6c), same equation 

with previous case is applied, but we limit the cylindrical zones 

with a break plane. This plane creates   and   angles with 

plane perpendicular to the central line of the target and 

neighbour tree respectively. Thus, this plane allows changing 

cylinder radius along with height changes. This radius change 

helps cylinders to keep the concept of DSITs. Finally, as shown 

in the figure 6d, if two neighbour trees are approaching to each 

other and trees trunk centre lines are skew, then we define the 
truncated cones instead of cylinders. In this case we define radii 

of these truncated cones as equations 4: 

 

    ,       , 

       and          
(4) 

 

Where  = nearest and the farthest neighbour tree trunk 

respectively, 

,  = radius of the truncated cones for 

target tree, 

,  = radius of the truncated cones for 

neighbour tree. 

 

By having DSITs for each pair of neighbouring trees: 

 

2.4 DSITs Inner Points Extraction 

In continue of our proposed algorithm, for each neighbouring 

trees pair, other tree points out of defined DSITs are extracted. 

The steps of this section are developed as follows: 

 

1. Firstly, tree trunk centre of gravity of each cluster is 

obtained and a Triangulated Irregular Network (TIN) 

model is constructed on them. This TIN model is used 

to determine trees topology and extract neighbour 

trees. In addition to trees topology, TIN model is 

applied to restrict the number of points which are 

under classification process. 

 

2. A trunk of a single tree is selected as the target tree, 

randomly, and its neighbours are sorted from nearest 

to the farthest distance. Then, the target tree and its 

nearest neighbour are selected as a trees pair and their 

DSITs are defined. The points between the trees pair 

that are inside of DSIT target/neighbour tree , may be 

related to the target/neighbour tree and indicated as 

initial target/ neighbour points (neighbour points) 

(Figure 7). 

 

 
Figure 7. The DSITs definition for couple tree 

3. Perpendicular distance between each point outside of 

the DSITs pair and each DSIT's boundary are obtained 

firstly. Then, these points are allocated to their DSIT, 

based on their minimum distances (Figure 8). The 

points allocated to the target/neighbour tree indicated 

as initial target/neighbour points. 

 

 
Figure 8. Allocation of points outside of the Deterministic 

Segment of Individual Trees (DSITs) to their trees. 

 

4. Neighbour points must be removed from point cloud 

for the target tree and be added to the point cloud for 

the next target tree. Initial target points must be 

involved in the process of segmentation for the next 

neighbour tree. 

 

5. The steps 2, 3 and 4 are repeated for the target tree 

until the last of its neighbour tree. 

 

6. The latest initial target points are the final target points 

and must be extracted as that target tree points. 

 

7. The steps 2 to 6 are run until the last target tree. 

 

3. TESTS AND ACCURACY ASSESSMENT 

Our method is performed on LiDAR data (IEEE GRSS Data 

Fusion Contest, 2015) which was acquired in Zeebruges, 

Belgium (51.33° N, 3.20° E; 20 m above sea level) (Figure 9), on 

March 13, 2011. The point density for the LiDAR sensor was 

approximately 65points/m², which is related to point spacing of 

approximately 10cm. The study sites are plot 1 and 2 with an 

area of 4900 m2 and 3300 m2 respectively. The trees of both 

plots are deciduous. 

 

 
 

Figure 9. The location of study areas 

 

In order to validate of our proposed method, we compared the 

classification result with manual extracted trees from aerial 

ortho-images (Figure 10). For this purpose, the ortho-images are  
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Plot No. of trees 
 Correct-Classification  Under-Segmentation  Over-Segmentation 

  In %   In %   In % 

1 57  42 73.68  13 22.81  2 3.51 

2 45  34 75.56  9 20.00  2 4.44 

Total 102  76 74.51  22 21.57  4 3.92 

Table 4. Segmentation results compared to aerial image 

 

superimposed on the LiDAR point cloud. Then, the points of 

each tree are extracted by an expert operator. This comparison 

shows that our algorithm, correctly classify 74.51% of trees with 

21.57% and 3.92% under and over segmentation errors 

respectively (Table 4). 

 

 
Figure 10. Aerial image of the study areas (Plot 1 and Plot 2) 

 

A general view of part of the results is presented in Fig. 11. 

 

 
Figure 11. Final segmentation results related to trees from half of 

plot 1. 

 

4. CONCLUSIONS AND FUTURE WORK 

In this study, we proposed a new method to extract individual 

trees points from LiDAR point data. The basis of this method is 

to define cylindrical areas for each tree and to allocate points to 

each tree based on these areas. This process allowed us to 

determine the class of large number of points and to use a 

process to segment less number of points in non-deterministic 

segments at the same time. The results of the evaluation show 

that the proposed method has good potential to extract 

individual trees points 

 

Future work could be focused on improving this algorithm in 

mixed forests. Tree crowns have a very complex structure, and 

change from one species to another and from one place to 

another largely. In individual tree extraction operations, there are 

some points in non-deterministic areas between trees that 

membership verification process of them is complex especially 

in very high density LiDAR data of semi-intensive urban forests. 

Prior knowledge of trees in the study area, helps to choose a 

better shape for DSITs and then to calculate DSITs parameters. 

In our scheme, the deterministic and non-deterministic area 

around each tree is separated by cylindrical zones. Other 

geometric volumes can be used. The tuning processes in the 

proposed methodology is partly dependent on the type and 

height of the trees in the study area. For example, 1.4 m and 

4 m threshold values for maximum and minimum height 

thresholding to extract initial tree trunks. Obviously these 

thresholds are area specific and needs re-tuning for trees in 

different environments. Nevertheless, much research work 

still needs to be conducted with a view to achieving complete 

elimination of the tuning stage from the entire individual tree 

extraction process. 

 

The used LiDAR data only had intensity and three-

dimensional coordinates of the points. Full-waveform analysis 

of LiDAR data can reach better results.  
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