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ABSTRACT: 

 

Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest 

point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an 

relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. 

In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions 

are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a 

cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it 

does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the 

iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) 

for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and 

rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion 

called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information 

between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits 

some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The 

effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method 

can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory. 

 

 

1. INTRODUCTION 

RGB-D cameras have received considerable attention of 

robotic, vision and photogrammetric researches and new 

challenges for 3D mapping of indoor environment have been 

developed. Such sensors can provide a colored 3D point cloud, 

quite useful for on line maps and their advantages compared 

with laser scanning and ToF cameras are the lightweight, low 

cost, faster and highly flexible and also it does not need 

expertize human interaction. In the actual applications, we need 

to track features in texture-less regions, or with limited texture,  

without the need for additional sensors and it requires robust 

registration of long sequences of color/depth images. Systems 

using RGB-D cameras also are quite useful because can exploit 

both visual and depth information to handle the problem.  

 

The most important existing 3D mapping methods using RGB-

D cameras firstly perform a feature-based tracking technique for 

extract and matches 2D feature in the RGB images. Algorithm 

developed by Lowe (2004) known as scale-invariant feature 

transform (SIFT), is often used. Then, their associated depth 

values are used for a pairwise registration. The registration goal 

is to compute the rotation and translation parameters of the 

separately acquired 3D point clouds in a global coordinate 

framework. The most prominent registration method is known 

as iterative closest point (ICP) algorithm and it was originally 

developed by Besl and Mckay (1992). Finally, a global 

consistency of the complete data sequence is performed to 

minimize the registration errors, which can be solve using 

methods based on extended kalman filtering (EKF), maximum 

likelihood estimation, expectation maximization (Thrun, 2003) 

and pose graphs (Grisetti et al., 2010). 

 

In literature most of the proposed works, has despite of the 

limited depth precision provided by the RGB-D cameras taking 

as an implicit assumption that errors in XYZ coordinates are 

independent and equally weighted. According to Khoshelham 

and Elberink (2012); and Park et al. (2012) the quality of the 

point cloud from the Kinect devices is influenced by: the low 

resolution of the depth measurements; by the lighting condition; 

properties of object surfaces in the disparity data and also due to 

sensor noise, occlusions and changes in the viewpoint direction 

achieving low accuracy for 3D mapping (Henry et al., 2012). In 

order to utilize RGB-D data, the information regarding 

uncertainty of the sensor is essential for a reliable 3D 

registration.  

 

As described, in most cases, ICP and its variants are generally 

used for pairwise registration process. Considering that the ICP 

algorithm requires an relatively accurate initial transformation 

and high overlap a weighted closed-form solution for RGB-D 

data registration is proposed. In our solution, we have weighted 

and normalized the 3D points based on the theoretical random 

xyz errors and the dual-number quaternions are used to 

represent the 3D rotation. Basically, dual-number quaternions 

provide a closed-form solution by minimizing a cost function. 

The most important advantage of the closed-form solution is 

that it provides an optimal transformation in one-step and it 

does not need to calculate a good initial estimate and 

expressively decreases the demand for computer resources, in 

contrast to the iterative method. We also describe a new RGB-D 
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loop-closure approach, based on the uncertainty of the sensor 

and also on the volumetric information between overlap areas of 

the pair of point clouds. 

 

The paper proceeds with related work in the Section 2. In 

section 3, the methods for weighting of closed-form solution 

and loop-closure detection as presented. Section 4, describes the 

experiments and its results using the proposed method. The 

paper concludes with final remarks, in Section 5. 

 

2. RELATED WORK 

Since 90s several approaches have been proposed to register 3D 

point clouds for 3D mapping applications. Although the ICP 

algorithm is quite useful for point cloud registration, it 

performance on a dense point cloud is a time-consuming 

procedure and also requires a relatively accurate initial 

transformation. Chen and Medioni (1992), Masuda and Yokoya 

(1994), Eggert et al. (1998), Okatani and Deguchi (2002), Park 

and Murali (2003), Segal et al. (2009) and others have proposed 

some variations and improvements for the ICP algorithm, using 

point-to-plane and plane-plane approaches. Other researchers 

addressed methods that integrates both depth and intensity 

information for the 3D registration (Godin et al., 1994; Weik, 

1997; Stamos and Leordeanu, 2003; Barnea and Filin, 2008; 

Swadzba et al., 2007; May et al., 2009; Ye and Bruch, 2010; 

Khoshelham, 2010). The aforementioned approaches discussed 

there, make use of the depth image information supplied by a 

laser scanning device or range cameras, to transfer the selected 

2D features to 3D points. They also report some aspects of their 

matching algorithm design and registration method proposed. It 

should be important to note that, the majority of the approaches 

consist of feature detection and matching on arbitrary images.  

 

However, due to the low resolution of intensity images 

delivered by both laser scanning and range devices, providing 

only a few features for certain scene and a low accuracy and 

precision in the depth value at the feature location, the 

automatic detection and matching algorithms, such as SIFT and 

SURF, cannot correctly localize the key points on the actual 

corner location. Driven by this issue, Al-Manasir and Fraser 

(2006) suggested the use of the calculated transformation 

parameters via a bundle adjustment of images taken by a digital 

camera to register the laser scanning data. In Ellekilde et al. 

(2007) a data association, performed by a combination of SIFT 

2D matching plus a 3D outlier removal and a least square 3D 

point set fitting was proposed for successfully provide the 

means to accurately establish an initial local registration. The 

distinctive features are detected in the images taken by a 

conventional camera mounted and they discuss the use of initial 

local registration as input for globally estimation process. 

Prusak et al. (2008), suggested a joint approach for robot 

navigation employing ToF camera combined with a fish eye 

camera. They also report the use of a Trimmed ICP algorithm 

proposed by Chetverikov et al. (2002) for improve the 

registration, affected by many errors. The authors generate a 

3D-depth-panorama from many ToF images to figure out the 

very few 2D-3D correspondences caused due to the small field-

of-view (FoV) covered by ToF camera, for the registration 

problem. Nonetheless, the registration using the 3D-panorama 

lacks absolute accuracy, due to the incompleteness of the 

panorama at occlusions and unmapped objects. In Huhle et al. 

(2008) the local registration is performed based on the normal 

distribution transform (NDT) and the SIFT 2D feature detector 

is applied to the RGB images. They combine the globally 

feature-based approach and the local fitting technique and 

report some results qualitative results of scene reconstruction. 

Image-based registration group (IBR) methods for 3D point 

cloud also were proposed by Bendels et al. (2004), Dold and 

Brenner (2006), Barnea and Filin (2007), Ellekilde et al. 

(2007), Prusak et al. (2008), Huhle et al. (2008) and Kang et al. 

(2009). 

 

In the ideal case, one would like to have added images that 

could have improved the registrations performed previously, to 

the meta-view. The RGB-D cameras potentially can also be 

used for that purpose.  

 

In Henry et al. (2010), Du et al. (2011), Engelhard et al. (2011), 

Steinbrucker et al. (2011), Dryanovski et al. (2012), Endres et 

al. (2012) they all have discussed the use of both rich visual 

features and shape matching for pairwise registration and 

globally consistent alignment into ICP optimization. In Henry et 

al. (2012) a new ICP variant (RGB-D ICP) with re-projection 

RANSAC algorithm is proposed to exploit the advantage of 

both color and depth information contained in RGB-D, to 

categorize the sparse point feature in each frame. Recently, 

RGB-D cameras have been widely utilized in simultaneous 

localization and mapping (SLAM) problems, in which the 

globally consistent alignment is one of the most important 

methods for 3D registration. The SLAM problem became 

ubiquitous. Accordingly to Grisseti et al (2010), “Lu and Milios 

(1997) were the first to refine a map by globally optimizing the 

system of equations to reduce the error introduced by 

constraints”. 

 

As described before, in indoor environments, is very common 

the occurrence of texture-less or repetitive pattern. Taguchi et 

al. (2013) was the first to propose plane-based SLAM for RGB-

D sensors using both points and planes as primitives for 

registration of 3D data. Raposo et al. (2013) proposed a new 

visual odometry method which uses both depth and color 

information for relative pose estimation between consecutive 

frames. In the absence of the minimum number of required 

planes, 2D point correspondences are extracted for finding the 

remaining degrees of freedom. Ataer-Cansizoglu et al. (2013) 

presented a SLAM system that exploits planes in conjunction 

with points, as primitives in order to minimize failure cases, due 

to texture less regions.  In Khoshelham et al. (2013) a weighting 

scheme to adjust the contribution of the 3D point 

correspondences for estimation of the transformation parameters 

is proposed. The obtained results demonstrated that weighting 

the 3D points improves the accuracy of sensor pose estimation 

along the trajectory. However, the before mentioned and 

proposed method, are not implemented to be robust into texture 

less regions. However, such approach fail if there are no a 

minimum of 3 non-parallel planes or too few point 

correspondences to estimate the parameters. 

 

In Chow et al. (2014) a new point-to-plane ICP, that minimizes 

the reprojection error of the infrared camera and projector pair 

in an implicit iterative extended Kalman filter (IEKF) to 

account for the texture-less regions is presented. They also 

integrated observations from an IMU to provide changes in 

rotation and translation for initializing 2D/3D matching. 

According the authors, the point-to-plane ICP only minimize 

the 1D orthogonal distance. For a side-looking Kinect it not 

prevents it from sliding along the wall as desired. An inertial 

navigation system is used to help push the solution forward in 

the along-track direction while the ICP corrects the across-track 

position and the two orientations that are not parallel to the 

normal of that wall. They also included weighting scheme 
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describing the uncertainties in the point cloud, due to the 

baseline-to-range ratio and parallax angle over the Kinect’s full 

frame. Nevertheless, the developed approach depends on 

additional sensors (i.e, IMU) to provide a good initial alignment 

for the ICP. 

 

Dos Santos et al. (2016) presented an adaptive coarse-to-fine 

registration method for 3D indoor mapping using RGB-D data. 

They have weighted the 3D points based on the theoretical 

random error of depth measurements, such as in Khoshelham et 

al. (2013)They also have introduced a novel disparity-based 

model for an accurate and robust coarse-to-fine registration. 

 

3. WEIGTHED CLOSED-FORM SOLUTION 

The generic structure of our proposed method framework, 

shown in Fig. 1, is as follows. Given a pair of RGB frames, 

first, we extract and match sparse visual features in successive 

RGB frames. After the outliers are detected and removed using 

the RANSAC algorithm and a statistical dispersion called 

interquartile range (IQR), then we create the successive 3D 

point clouds by projecting the depth map into 3D coordinates 

and associate the inlier points with their corresponding depth 

values. After that, we employ a registration approach to find the 

transformation parameters. The loop-closure detection is 

applied based on the volumetric information between pair of 

point clouds. Finally, the global adjustment must be executed.  

 

 
       Figure 1. Generic structure of the proposed method. 

 

Note that we have previously calibrated the Kinect device using 

the MATLAB Camera Calibration Toolbox (Bouguet, 2004). 

The Bouguet method improved the technique originally 

proposed by Zhang (2000), and also estimated the relative 

translations and rotations between the RGB and IR sensors. The 

following sections present the adopted strategy for 3D indoor 

mapping in this paper. 

 

3.1 3D point matching procedure 

Since we have RGB images, we can exploit the advantages of 

the color information and extract sparse visual features from the 

two consecutive frames and after associate them with their 

corresponding depth values. In this paper we used the well-

known SIFT algorithm to produce a feature descriptor that 

allows quick and highly discriminatory assessments with other 

features. SIFT keypoints are detected along with their 

descriptors, the process was done using the OpenCV library.  

 

Once that exact corresponding points cannot be assumed in the 

dense point clouds captured by the Kinect, the cost function is 

highly sensitive to outliers in the approximated 

correspondences. In order to minimize the possibility of outliers 

we used the RANSAC algorithm (Fischler and Bolles, 1981) 

with a 2D-affine transformation as underlying mathematical 

model, instead of the usual model, the fundamental matrix 

estimation, that becomes unreliable because of the very small 

baselines caused by the data high acquisition rate. The 

RANSAC-step is followed by a statistical dispersion technique 

that is called interquartile range (IQR). Given a data set, the 

IQR goal is to find the difference between the upper and low 

quartiles (Graham and Ian, 1996).  Basically, IQR divide the 

data in four equal parts, being Q1 and Q3 the median values of 

low (25%) and upper (75%) quartiles, while Q2 represents the 

median calculated value (50%), as follows:  

                                                                      (1) 

where n = number of coordinates  

          

          .  

 

The maximum (OutlierMax) and minimum (OutlierMin) values 

can be obtained as follows:  

                                      (2) 

                                       (3) 

where CoefIQR = the half upper value. 

 

The points between OutlierMax and OutlierMin are inliers, 

otherwise should be eliminated. These issues are of extreme 

importance with respect to the quality of the registration 

process.  

 

For the estimation of initial transformation parameters, the 2D 

inliers should be transformed to 3D space by using the depth 

data. The 3D points ( ) are computed as in Khoshelham 

and Elberink (2012): 

                                                                     (4) 

                                                                     (5) 

                                                                   (6) 

where , = 2D coordinates for each SIFT matched current 

images 

            = calibrated focal distance 

          ,  = slope and the intercept of the line 

           = denormalized disparity value. 

 

As the shift between the coordinates of the conjugate points in 

the RGB frame and depth image has a large variance, even 

when the image coordinates are corrected for the lens 

distortions, we use the method proposed by Khoshelham et al. 

(2013) to generate 3D correspondences from the 2D inliers.  

 

The only required inputs are the interior and relative orientation 

parameters between the RGB and IR cameras, which are 

previously obtained in a calibration procedure. Then, we realize 

an image normalization procedure in the RGB frame, and the 

epipolar geometry is used to transform the visual features to the 

3D space (Dos Santos et al., 2016). 

 

3.2 Pairwise registration 

 Once the corresponding 3D associated points are obtained, the 

point clouds of two or more successive frames can be 

registered. In order to speed up the registration step, we use 
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dual number quaternions including a normalized weighted 

scheme for the closed-form solution. Walker and Shao (1991) 

presented a single-cost function to represent rotation and 

translation, which enables the simultaneous determination of 

transformation parameters without initial values. Then, first we 

calculate the quaternion  using the equation as: 

                 (7) 

where,  and  are the parts with dual and real coefficients of a 

dual quaternion, respectively 

             = number of points used for each pair of images 

            = normalized weight associated to the pair point factor 

          ,  = set of corresponding points 

         ,  = product of a right and left quaternion 

transformation. 

 

According Khoshelham et al. (2013) since the Kinect depth 

images are captured typically at a frame rate of 20 to 30 fps, we 

can approximate our observation equations with vi = xi,j-1 - xi,j, 

for which the weight can be defined inversely proportional to 

the variance of the observation, as follows: 

                                                         (8) 

where  = variance of point x and k is an arbitrary constant.  

 

As the theoretical precision of point coordinates  is 

different, we have defined the weights of each coordinate 

separately. Using the equations 4-6 the variance of image 

measurements can be propagated to the 3D coordinates in 

object space. For the depth coordinate we have: 

                                                                       (9) 

where  = precision of disparity measurements. Doing the 

same for  yields: 

                                                       (10) 

Substituting equations (5) and (9) in (10) gives us the following 

equation: 

                                                (11) 

And similarly for  we can obtain: 

                                             (12) 

where  ,  = precision of measuring pixel coordinates in x 

and y respectively.  

 

Using equations (9), (11) and (12) in (8) we can now define the 

weights for   coordinates as follows: 

                                                            (13)                     

                                        (14) 

                                  (15) 

where   

          = depth calibration parameter as described in 

Khoshelham and Elberink (2012) 

           k = an arbitrary constant 

            = variance of the disparity 

            = depth information  

 

Note that  is obtained by a simple least-squares linear 

regression of the disparity-depth relation, and to avoid round-

off errors, it is useful to scale the weight values, by tuning the 

parameter r, and keeping it constant in all pairwise registrations. 

  

Normalizing the weight associated to the pair point yields: 

                                           (15) 

Then, we can calculate the translation vector  from the 3D 

weighting based on the theoretical random error of xyz 

measurements as  

                                                          (16) 

where  

 

Note that, the 3D rotation matrix ( ) can be obtained using the 

 elements. 

 

3.3 RGB-D loop-closure solution and global optimization 

The global optimization is achieved using the obtained 

transformation parameters as the initial alignment along the 

trajectory. One camera pose is represented as one node in the 

graph pose, and the edge linking two nodes represents the 

transformation parameters from one pose to another. For each 

pairwise registration, the edges are obtained using the loop-

closure detection solution. The loop-closure detection that relies 

on the idea that one interesting event occurs when the sensor 

has returned to a past position.  

 

  
Figure 2. A loop-closure for a sequence of RGB-D data. 

 

Our method addresses the loop-closure problem as an image 

and depth (RGB-D loop-closure) retrieval task: the algorithm 

seeking for the past image and point cloud, which looks similar 

enough to the current one. 

 

In order to select the past frames, that are more likely to match 

with the current frame, we use the method proposed by 

Engelhard et al. (2011). In Fig. 2, as the sensor moves through 

its work space and it creates a sequence of RGB-D data 

. Then, the loop-closure problem should 

find two subsequence of , and  
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being  and  the index variables (the weighted 3D inliers and 

the volume of overlap area of a pair of point clouds).  

 

We use a modified form of the proposed method by Ho and 

Newman (2007). First, the most recent RGB-D data (sorted 

after a pre-defined number of RGB-D data collected by the 

sensor) is compared with the previous one. The number of 

matched inliers, a histogram that represents the cumulative 

weighted inliers and the volume for the pair of point clouds are 

all computed. Then, the algorithm proceeds by generating a 

symmetric matrix D. Each element Dij is the maximal 

cumulative  and  score of a pairing of RGB-D data ending 

with pairing  and .  

 

In Fig. 2 the green nodes denote the transformation parameters 

between the pair of the RGB-D data, the red nodes represent a 

detected loop-closure, blue dashed edges denote a link with 

high probability of the current sensor is revisiting a past 

position based on before mentioned variables. While the fill 

edges represent a link with high volume value, however with 

the low number of inliers (probably it found a low texturized 

region, then the ICP algorithm can be applied to solve the 

registration problem). Moving the sensor from position 0 to n 

each Dij is described by a probability mass function giving 

priority to the before mentioned variables as follows. Let  be 

the random variable denoting loop-closure hypotheses at 

location :  is the event that current sensor  close 

the loop with past sensor .  

  

                                                                   (17) 

where n the number of variables,  

 denotes the 

distribution of weighted inliers  and  
 

  

represents the volume calculated into overlap area of pair of the 

point cloud.  

 

In other words, we look for pair of the RGB-D data whose sum 

of the probabilities is above the threshold. If the motion 

transformation satisfies the specific threshold constraints, it is 

thought that there is a valid transformation parameter between 

the above two observations. Hereafter, the whole pose graph 

can be optimized using a tree-based network optimizer (Grisseti 

et al., 2007). 

 

4. EXPERIMENTS 

As a proof-of-concept of our proposed method, we achieved a 

relative accuracy assessment of the obtained results through the 

root mean square error (rmse) of the mean discrepancies for 

each pairwise registration into indoor environment and an 

absolute accuracy with some visual landmarks. The sensor 

travelled a distance of around 14 m before returning back to a 

previously visited location. The algorithm is implemented using 

C++ on Linux. Table 1 summarizes the results obtained using 

the proposed method.  

 

 

_______________________________________________ 

 

 

Experiment Accuracies (cm) 

 Relative Absolute 

A 14.5 21.1 

 

Table 1. Relative and absolute accuracy obtained with proposed 

method 

 

The residual distributions were centered approximately at zero, 

implying that the weighted closed-form solution is appropriate 

and that the overall adjustment estimation is probably reliable. 

The assignment of unequal uncertainties to points is essential 

for registering datasets acquired with RGB-D sensors as errors 

increase significantly with increasing range. The absolute 

accuracy is around 1.5% with respect to the expected errors. 

Figure 3 shows the trajectory of sensor poses maintained before 

and after loop-closure. Note that the estimated position of the 

sensor is more than 2 meters off its actual position when it has 

completed a loop. 

 

 
 

Figure 3. The trajectory of sensor poses maintained before and 

after loop-closure 

 

In order to evaluate the benefits of RGB-D loop-closure 

proposed solution, we collected a challenging dataset with less 

texturized surfaces. This is an advantage of our solution - when 

there is enough overlap between the current and past RGB-D 

data the volume computed is high, however, keypoints cannot 

be detected. In this case, the volume value scores significantly 

enough to trigger up a loop-closure. Then, we used ICP 

algorithm to compute the transformation parameters. This is a 

disadvantage of our approach – a certain amount of overlap 

between the point clouds must exist for less texturized regions 

and we have to use an iterative solution to compute the 

parameter transformation instead a closed-form solution as 

proposed in this paper.  

 

5. CONCLUSIONS 

When iterative methods are used for pairwise registration, it 

requires an relatively accurate initial transformation and a high 

overlap between consecutive point clouds. We investigate how 

to weight and normalize the 3D points based on the theoretical 

random xyz errors into a closed-form solution for pairwise 

registration. The key insights of this investigation are, first, the 

closed-form solution provides an optimal transformation in one-

step. It does not need to calculate good initial estimates and 

expressively decreases the demand for computer resources in 

contrast to the iterative methods; second, the xy errors also can 
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be used for a more efficient loop-closure solution; third, the 

computed volume value between the current and past RGB-D 

data also must become more efficient with the the loop-closure 

detection, mainly into less texturized regions. 

 

The most important characteristic of the RGB-D loop-closure 

proposed solution is that, because and  are highly 

influenced by  and  image coordinates, because of the lens 

distortions, the dominant weight in the histogram suggests if the 

sensor is revisiting a past position or not, jointly with both 

before mentioned information.  

 

In order to avoid incorporate all the information from each 

RGB-D data into a concise 3D map representation, our 

algorithm only use low overlap areas based on volume 

computed.  

 

A drawback of registration by using RGB-D sensors is the 

influence of low resolution of the depth measurements, lighting 

condition, properties of object surfaces in the disparity data, 

sensor noise, occlusions and changes in viewpoint direction. All 

this factors contribute to achieve low accuracy for 3D mapping 

(Henry et al., 2012). This emphasizes the importance of more 

sensors capturing RGB-D data along the trajectory of the 

sensor. 
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