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ABSTRACT: 

 

Topological relations are fundamental for qualitative description, querying and analysis of a 3D scene. Although topological 

relations for 2D objects have been extensively studied and implemented in GIS applications, their direct extension to 3D is very 

challenging and they cannot be directly applied to represent relations between components of complex 3D objects represented by 3D 

B-Rep models in 3R . Herein we present an extended Region Connection Calculus (RCC) model to express and formalize topological 

relations between planar regions for creating 3D model represented by Boundary Representation model in 3R . We proposed a new 

dimension extended 9-Intersection model to represent the basic relations among components of a complex object, including disjoint, 

meet and intersect. The last element in 3*3 matrix records the details of connection through the common parts of two regions and the 

intersecting line of two planes. Additionally, this model can deal with the case of planar regions with holes. Finally, the geometric 

information is transformed into a list of strings consisting of topological relations between two planar regions and detailed 

connection information. The experiments show that the proposed approach helps to identify topological relations of planar segments 

of point cloud automatically.  
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1. INTRDUCTION 

Spatial relations include topological, metric and directional 

relations and together with semantic information are used for 

describing a scene qualitatively (Mark, 1994). Topological 

relations between geographical objects are necessary for spatial 

analysis in GIS. These relations can be queried and analysed 

independently from geographic coordinate system definition 

and the specific location of objects. Topological relations 

describe relative spatial relations with respect to reference 

objects. Hence topological relations are invariant and do not 

change with topological transformations, such as translation, 

scaling, and rotation (Egenhofer, 1990b).   

 

In general, topological relations between spatial objects are 

derived from Region Connection Calculus (RCC-8) (Egenhofer, 

1989;Egenhofer, 1991) in 2R . Existing RCC have been further 

applied to Qualitative Spatial Reasoning (QSR) in the field of 

GIS, robotics, medicine and engineering problems for the 

reasoning of the topological relationships in 2R  (Cohn, 2008). 

Here, a  region is defined as a 2-cell with a non-empty, 

connected interior (Egenhofer, 1990a). Additionally, the 4-

Intersection Model (4IM) (Egenhofer, 1991), 9-Intersection 

Model(9IM) (Clementini, 1993) and Dimensionally Extended 

models (DE) (Clementini, 1993) are widely adopted and 

implemented for describing topological relations for spatial 

analysis. Topological relations between spatial objects can be 

described based on relations defined for 2D regions in RCC 

model. Basic relations between two regions include disjoint, 

meet, overlap, contain, cover, coveredBy, containedBy and 

equal (Egenhofer, 1990b;Randell, 1992).  

 

The definitions of topological relations between spatial objects 

in 3R are closely related to 3D objects models. A 3D spatial 

object can be modelled as a solid geometry or represented by its 

boundaries. Thus, topological relations between spatial objects 

in 3R can be divided into two aspects: topological relations 

between 3D complex objects and topological relations among 

components of a complex object. For 3D objects represented by 

boundary representation (B-Rep), there exists the concepts of 

the interior, boundary, and exterior of objects. The topological 

relations between 3D spatial objects represented by B-Rep can 

be directly extended to define eight basic topological relations 

in 3R  (Zlatanova, 2004). However, in this paper, we concentrate 

on topological relations among object components in a single 

3D spatial object represented by B-Rep rather than relations 

between 3D complex objects. However, the topological 

relations among objects components are not the same as 

relations between complex objects themselves. Additionally, the 

boundaries of 2D objects can be extracted and represented by 

polygons in 2R , similarly, the boundaries of 3D objects can be 

modelled as facets. Here, facets are composed of small planar 

surfaces such as triangles for representing surfaces. Referring to 

the definition of the region in 2R , a planar region in 3R is 

defined as a planar surface area with a non-empty, connected 

interior in 3R . A planar region is described by its boundaries 

and the parameter of the plane equation in which planar regions 

are located. Therefore, the topological relations between 

components of a complex object represented by B-Rep can be 

modelled as the relations between planar regions in 3R  .  

 

For creating 3D B-Rep models from point clouds, we need the 

topological relations among points, the relations among 

components of complex objects and objects themselves in three 
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different levels (Pigot, 1991). For representing objects with 

complex structure, such as buildings, using B-Rep models, 

topological relations among components provide the connection 

of components to form a whole 3D model with interior space. 

Unlike the definitions of 3D simple geometric primitives, such 

as the sphere, cube, and cylinder (Leopold, 2015), a planar 

region in 3R  does not have a volume. In 3D B-Rep models, a 

planar region can represent a part of a 3D complex object 

boundary. The topological relations between planar regions 

connect all boundaries parts together to represent a 3D object. 

Thus, topological relations between planar regions play an 

important role in creating 3D B-Rep models from a point cloud. 

More importantly, the definition of the boundary of a planar 

region in 3R  (for example a part of a wall represented as a 

rectangle in 3R ) depends on plane equation that contains planar 

regions and the definition of its boundary is needed to 

determine the topological relations among planar regions.  

 

The existing topological models have limitations to meet the 

requirements of building topological relations of object 

components to form a whole 3D B-Rep model. For example, in 

Table 1, the overlap relation between region A and B in 2R  can 

be represented by 4IM as a matrix [1 1; 1 1]. But if RCC-8 is 

directly applied to determine topological relations, we will get 

[0 0; 1 0] in 3R . It cannot be defined as overlap. It is needed to 

extend these relations to describe the topological relation of two 

planar regions in 3R  

 

Space type Figure example Representation of 4IM 

2R  A B

 

1 1

1 1

 
 
 

 

3R  B

 

0 0

1 0

 
 
 

 

Table 1.  The differences of topological relations between two 

regions in 
2R  and 

3R   

 

Some studies propose RCC extension in response to those 

limits. For example, topological relations extended from RCC 

model are defined and distinguished as non-occlusion, partial 

occlusion and complete occlusion relations in the projected 

planes in a specific perspective in RCC-3D (Albath, 2010b) and 

VRCC-3D+ (Albath, 2010b;Sabharwal, 2011). However, they 

did not involve the topological relations among objects 

components. Therefore, a formalized representation and 

discrimination method for the topological relations between 3D 

planar regions is an indispensable part of 3D modelling and 

spatial analysis.  

 

In this paper, we are concerned with the determination of the 

topological relations between planar regions in 3D space 

generated from point clouds (ex. LiDAR point clouds). We 

present an overview of generalized topological models for 

describing relations between planar regions in 3R  and then 

based on the definitions of basic eight topological relations, a 

new extended topological model from RCC is proposed to 

define topological relations among planar regions. In addition, 

the validation of the extended RCC model is conducted to 

identify topological relations between buildings components 

consisting of planar regions extracted from point clouds. 

 

The reminder of this paper is organized as follows. Section 2 

briefly discusses 3D model representation methods that are 

suitable for 3D modelling from point clouds, and their 

advantages and limitations. In addition, the RCC, 4IM, 9IM and 

DE9IM in 2R , and other studies related to topological relations 

in 3R  are discussed. In section 3, topological relations for 

planar regions are defined and formally represented. Moreover, 

the steps for deciding topological relations are presented. 

Section 4 validates the proposed topological models for planar 

regions on a point cloud dataset. The processes of deciding 

relations among planar regions segmented from point clouds are 

given as well. Section 5 outlines conclusions and future work. 

 

2. RELATED WORK 

2.1 3D Objects Representation Methods  

Boundary Representation, also called as B-Rep, describe 3D 

objects boundaries composed of vertices, edges and faces 

(JARROUSH, 2004). In a B-Rep model, geometric information 

is derived from the coordinate of vertices. The geometric 

information describes its shapes and its boundaries constrained 

by vertices, edges, and faces. The topology between different 

components describes the connectivity relationships among 

basic primitives of boundaries. For example, a part of point 

cloud observed to model a planar wall provides basic geometric 

information through the coordinate points. The shape of a wall 

is determined by the parameters of a plane equation and its 

boundary. The connection between several walls are described 

by topological relations. For objects with complex structure, B-

Rep represents objects based on their fundamental geometric 

primitives to create a complete model with the help of topology. 

Therefore, B-Rep is capable of creating 3D models of complex 

objects, and it can describe their surface boundaries accurately. 

However, B-Rep model is not very efficient for the 

representations of complex solid objects because it needs a large 

volume of data to represent them (Koussa, 2009). 

 

Constructive Solid Geometry (CSG) model create a complex 

object using Boolean operations (including intersection, union, 

and difference) among basic primitives, such as cubes, 

cylinders, cones, and spheres (Foley, 1996). However, it has 

limitations to create complex objects with irregularly curved 

surfaces. More importantly, CSG does not provide a unique 

representation, which will yield different results (Foley, 1996). 

In conclusion, for automatic 3D modelling of point clouds, the 

simple operations between simple primitives in CSG is not 

enough to represent complex structures of objects and irregular 

shapes of objects.  

 

Another approach for modelling 3D objects is the “Parametric 

approach” (Koussa, 2009). In this approach, an object is 

modelled by its primitive components. These primitive 

geometric objects are defined by a set of parameters. Geometric 

information of these objects consists of length, height, width, 

angle and diameter. These geometric parameters and the 

relationships among components are allowed to be defined by 

users. Thus, it is flexible to represent geometric models, and 

some semantic information can be attached. In general, these 

kinds of information are manually set by users (Koussa, 2009). 

However, if the geometric parameter can be acquired from point 

clouds, this method is helpful to represent planar regions. 

Therefore, this method can be employed in automatic 3D 

modelling if geometric parameters are obtained from point 

cloud automatically. For those nonplanar primitives (such as a 

cylinder, cone, and torus), parametric approach briefly describes 

geometric models by several parameters as well. However, the 

topological relations between planar regions are the cores of 3D 

topologies because complex shapes can be decomposed into 
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simple planar primitives. Also, for the purpose of determining 

topological relationships of planar regions from point clouds, 

the accurate boundary information still require geometric 

parameters of planar regions. 

 

For automatic 3D modelling from point clouds, B-Rep is more 

adaptable because point clouds record the outer surface 

information of objects in points. As for various kinds of objects, 

B-Rep has the capability of describing complex shapes and 

spatial structures of objects due to the topological relationships 

built from vertices, edges, and faces. Additionally, B-Rep can 

represent 3D objects with complex structure through the 

topological relationships among simple geometric primitives. 

Especially for complex irregular shapes, B-Rep can use 

triangulations for surface representation where topologies can 

be defined the relations between simple triangular faces.  

 

In conclusion, considering the advantages and limitations of the 

presented models, we propose a hybrid approach that combines 

parametric approach and B-Rep models to define topological 

relations among components of a complex objects in 3D space. 

 

2.2 Models for Topological Relations 

2.2.1 Calculus-based Spatial Logic Model: In 2D space, 

Region Connection Calculus (RCC) is one of the fundamental 

methods for the definition of topological relationships. In this 

model, topological relationships are grouped into six categories 

including relations between point-point, point-line, point-

region, line-line, line-region, region-region.  Among these 

relations, region-region relations are the most commonly used 

to express topological relations between different primitives 

(Deng, 2007).  The existing eight topological relations (RCC-8) 

are (Randell, 1992): disconnected (DC), partial overlap (PO), 

equal (EQ), externally connected (EC), tangential proper part 

(TPP), non-tangential proper part (NTPP) and their inverse 

relations are TPPi and NTPPi respectively.  Additionally, RCC 

describes the logics representations of spatial relations between 

regions (Randell, 1992). Also, these eight relations can also be 

converted from one relation to another to describe topological 

relations in a dynamic scene.  

 

2.2.2 Intersection Model: In “4-Intersection” Model (4IM) 

(Egenhofer, 1989;Egenhofer, 1991), eight topological 

relationships between two regions are defined. They are 

disjoint, meet, overlap, contain, cover, coveredBy, containedBy 

and equal. These relations correspond to RCC-8 relations: DC, 

EC, PO, NTPP, TPP, TPPi, NTPPi, EQ, respectively. They are 

obtained by the intersection between boundaries and interiors of 

two primitives geometries (ex. region). A matrix 

( , )T A B consists of the intersection of boundaries and interiors 

of region A and B. The intersection values are distinguished 

only by “empty” and “non-empty” value. 0 and 1 represent the 

empty and non-empty, respectively. 

 

 ( , ) =
A B A B

T A B
A B A B

  
 
    

   (1) 

 

Where A  = the interior of region A 

 A  = the boundary of region A 

 B  = the interior of region B 

 B  = the boundary of region B 

 

The eight relations are showed as follow: disjoint(A,B) = [0 0;0 

0], meet(A,B)= [0 0;0 1], overlap(A,B) = [1 1;1 1], cover(A,B) 

= [1 1;0 1], contain(A,B)= [1 1; 0 1], coveredBy(A,B)= [1 0;1 

1], containedBy = [1 0;1 0], equal(A,B) =[1 0; 0 1].  

 

In “9-Intersection” Model (9IM) (Egenhofer, 1990a;Egenhofer, 

1993), for definition of topological relations, in addition to 

interiors and boundaries of the regions, the exteriors are also 

considered. The “9-Intersection” model easily extends the “4-

Intersection” to nine elements using a 3*3 matrix.  

  

 

B

( , ) = B

B

e

e

e e e e

A B A B A

T A B A B A B A

A B A B A

   
 
      
    

  (2) 

 

Where A  = the interior of region A 

 A  = the boundary of region A 

 eA  = the exteriors of region A 

 B  = the interior of region B 

 B  = the boundary of region B 

 eB  = the exteriors of region B 

 

Even though the exterior of objects adds more expressiveness to 

the topological relations, no more relations between region-

region are distinguished in “9-Intersection” model (Chen, 

2001). The topological relations of “9-Intersection” are defined 

for eight relations as follows (Clementini, 1994): disjoint(A,B) 

= [0    ;   0  ;      ], meet(A,B)= [0    ;   1  ;   

   ], overlap(A,B) = [   1  ; 1    ;      ], cover(A,B) 

= [   1  ; 0 1  ;      ], contain(A,B)= [   1  ;   0 

 ;      ], coveredBy(A,B)= [   0  ; 1 1  ;      ], 

containedBy = [      ; 1  0  ;      ], equal(A,B) =[   

   ;  0   0;      ]. Here 0 and 1 represent the empty and 

non-empty, respectively. Each δ indicates a value that we don’t 

care. The 4IM and 9IM are easy to be implemented in practical 

applications. But they have limitations to determine the more 

expressively relations between parts of a 3D complex object.  

 

2.2.3 The Dimensionally Extended Model: For the purpose 

of  describing detailed topological relations, the dimensionally 

extended method was presented by Clementini et al. 

(Clementini, 1993). In this method, values -1,0,1 and 2 are used 

to qualify the intersection between two regions. If there is no 

intersection, -1 is used to indicate null set. 0 implies that 

intersection result contains, at least, one point and no lines or 

areas. Similarly, 1 indicates that the intersection contains, at 

least, a line and no area. Finally, 2 indicates that the intersection 

contains at least an area. Based on these definitions, the 

dimension of intersection is taken into account in the 

topological relations. The five topological relations, including 

touch, in, cross, overlap and disjoint, are defined and analysed. 

These relations are used to define the topological relations 

among point, line, and area. These relations are proved to be 

mutually exclusive because they meet the criteria of Jointly 

Exhaustive and Pairwise Disjoint (JEPD). A decision tree is 

provided to discriminate topological relationships with the aid 

of dimension definition. Additionally, Multi-level topological 

relations are presented based on 4-Intersection model. The 

intersection and difference model replaces the original 

intersection model for reducing the computation complexity of 

spatial operation between regions. Moreover, the definitions of 

topological complexity and topological distance are introduced 

to classify the eight relations. Five topological invariants are 

applied to decide further the detailed level of topological 

relations hierarchically. This method can determine more 

detailed topological relations between two region based on 
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topological invariants (Deng, 2007).  

 

The Dimensionally Extended 9-Intersection Model (DE-9IM) 

(Strobl, 2008) is a full descriptive assertion about two spatial 

objects in 2R . The “9-Intersection” model belongs to binary 

classification. The values of elements in “9-Intersection” model 

can be either empty or non-empty. However, the corresponding 

elements in DE-9IM become the dimension operation of those 

elements in the “9-Intersection” model. 

  

dim( ) dim( ) dim( )

( , ) dim( ) dim( ) dim( )

dim( ) dim( ) dim( )

e

e

e e e e

A B A B A B

T A B A B A B A B

A B A B A B

   
 

       
    

  (3) 

 

Where A  = the interior of region A 

 A  = the boundary of region A 

 eA  = the exteriors of region A 

 B  = the interior of region B 

 B  = the boundary of region B 

 eB  = the exteriors of region B 

 dim() = dimension operator 

 

Here         1 2
= , , ,

n
dim s max dim s dim s dim s , and 

i
s  is the 

spatial set of intersection of the interior, boundary and exterior 

of region A and B. So the possible dimension values are in the 

set of {-1, 0, 1, 2}. -1 means empty set, 0 for points, 1 for lines 

and 2 for areas. But for querying of topological relations, the 

3*3 matrix are formatted as a string code. The DE-9IM code is 

an accepted standardized format in the OGC standards. The DE-

9IM have been implemented in PostGIS for data analysis 

(Boundless, 2014). More importantly, it can transform 

geometric information into semantical descriptions of 

topological relations.  

 

2.2.4 RCC in 3D Space: Among all the 512 possible 

relations in 9IM, eight relations are easily recognizable in 2R . 

Similarly, eight relations can apply to 3D objects in 3R  

(Zlatanova, 2004). Because  RCC may define regions as 

continuous space representation,  Generalized 2D Region 

Connection Calculus (GRCC) (Li, 2004) extends RCC for both 

infinite real space and discrete space for the purpose of 

analysing topological relations between regions in discrete 

space, such as regions extract from images and point clouds. 

Thus, RCC-3D (Albath, 2010b) extends the spatial reasoning in 
3R  based on GRCC, and it introduces new relations by adding 

the relations of objects projected in principle planes 

perpendicularly in 3R (ex. objects projected to planes formed by 

xy-axes, yz-axes and zx-axes). The combination of five 

predicates and a converse predicate can uniquely identify 13 

RCC-3D relations between a pair of 3D objects or multiple 

objects in the case of no a priori knowledge about the 

underlying relations(Albath, 2010a). VRCC-3D+ (Sabharwal, 

2011) used RCC-3D and depth parameter to distinguish non-

occlusion, partial occlusion and complete occlusion relations in 
3R , which relies on the viewpoints and the projection planes.  

Essentially, these methods transform the topological relations 

into 2D plane to determine relations in 3R . Meanwhile, the 

definitions of topological relations models are derived from 

RCC-8 in 2R .however, these models cannot be applied to 

determine topological relations among object components in the 

B-Rep 3D models.  

 

In conclusion, RCC-8 is the used to define topological relations 

in 2R . It is also used for analysing the topological relations in 

3R . For the topological relations among components of objects 

represented by the B-Rep model, the extended DE-9IM is more 

effective. This model helps to describe the topological relations 

among components of a complex object by integrating 

information from parametric approach.  

 

3.  TOPOLOGICAL RELATIONSHIPS AMONG 3D 

PLANAR REGIONS FORMING A COMPLEX 3D 

OBJECT 

3.1 Definition of Topological Model for Planar Region  

For determination of topological relations between planar 

regions in 3D space, their boundary and interior of planar 

regions are critical. The geometric representation of a plane in 
3R  is formally defined by Ax 0By Cz D    . But this equation 

defines a plane without any boundary. Thus, we need not only 

define a planar region by a plane equation, but also we need to 

determine its boundaries, and its interior.  

 

Topological relations between planar regions in 3R  are firstly 

dependent on the spatial relations between two planes (SRp) in 

which planar regions locate. Then topological relations of 

planar regions (TRr) can be determined based on SRp. The set 

of SRp is {parallel, coplanar, intersecting}. TRr still are defined 

based on the eight topological relations defined in 4IM. If the 

value of SRp is parallel, two planar regions must be disjoint. If 

the value of SRp is coplanar, then the relations between 3D 

planar regions become relations between regions in 2D space. 

The intersecting case of SRp results in more detailed 

topological relations between planar regions in 3R .  

 

When SRp is the intersecting case, according to the definitions 

of the calculus-based model, “Disjoint” is the case that there is 

no common part between two planar regions. “Meet” is decided 

when there is and only is a common part of the boundaries of 

two planar regions in the intersection line. Except disjoint and 

meet, intersect relation covers all other remaining relations. The 

main topological relations for the intersecting case of SRp can 

be classified as disjoint, meet and intersect cases. The 

topological relations between planar regions can be divided into 

the relations between intersecting line of two planes and two 

planar regions because intersecting line is the only possible 

connection between two planar regions.  

 

Based on the spatial relations of planes, the topological 

relations of two planar regions are closely related to the 

relations between intersection line of two planes and each 

planar region.  Therefore, intersection line, the boundaries and 

interiors of two planar regions are used to define topological 

relations between planar regions in a 3*3 matrix as in DE-9IM 

as follows: 

  

dim( ) dim( ) dim( )

( , ) dim( ) dim( ) dim( )

dim( ) dim( ) dim( )

B

p B

A A A B

A B A B A Il

T A B A B A B A Il

Il B Il B Il Il

   
 

       
    

 (4) 

 

Where  A = indicates the interior of region A  

 A = the boundary of A  

 B = the interior of region B 

 B = the boundary of region B 

 Il = intersection of two planes containing two planar 

regions. Here A
Il  and B

Il  share the same line equation.  

 dim() = dimension operator 
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Because the value of dim( )
A B

Il Il  always is 1, it cannot provide 

more details to describe topological relations. However, the 

intersection primitives of Il  and a planar region could be 

points or line segments. For providing detailed descriptions of 

topological relations between these primitives, the dim( )
A B

Il Il  

is replaced by  . The   indicates topological relations of two 

parts of intersection primitives (points and lines) constituted by 

the intersecting line and two planar regions individually. Thus, 

the original matrix is represented as follow: 

  

dim( ) dim( ) dim( )

'( , ) dim( ) dim( ) dim( )

dim( ) dim( )

B

p B

A A

A B A B A Il

T A B A B A B A Il

Il B Il B 

   
 

       
   

 (5) 

 

Topological relations between intersection primitives lying in  

the intersection line are comprised of the relations of point-

point, point-line, line-line in the same line equation, so it 

contains disjoint, meet, overlap, covers, contains, coveredBy, 

containedBy and equal as well (as shown in Table 2 ). 

Additionally, 
 
is represented by a list of string, including the 

description of topological relations between primitives in 

intersection line, rl

A
Il  and it geometric type, rl

B
Il  and its type, the 

common part of rl

A
Il  and rl

B
Il , here rl

A
Il  indicates the common 

parts of region A and the intersection line, and rl

B
Il  means the 

common parts of region B and the intersection line. Therefore, 

   is designed to discriminate the detailed topological relations 

on the basis of other eight elements of the matrix.   

 

Type of relations Graphical representation 

Point-point 

relations 

disjoint

equal
 

Line segment-point 

relations 

disjoint

meet

contain
 

Line segment-line 

segment relations 

disjoint

meet

overlap

cover

contain

equal
 

Table 2.  Basic topological relations between primitives in the 

intersection line of two planes (red primitives are the 

intersections between planar region A and the intersecting line, 

and yellow parts are the intersections between planar region B 

and the intersecting line) 

 

As shown in Figure 1, for the case of disjoint between line 

segment and line segment,  = [disjoint, <
1 2A A

P P , line 

segment>, <
1B 2B

P P  , line segment>,   ]. 

 

P1A P2A

P1B P2B

 

Figure 1. Disjoint case between line segments resulted from the 

intersection of two planar regions and intersecting line of two 

planes 

 

Similarly, for the case of overlap,  = [overlap, <
1 2A A

P P , line 

segment>, <
1B 2B

P P  , line segment>, <
1B 2A

P P , line segment>]. For 

meet relation we have  = [meet, <
1 2A A

P P , line segment>, 

<
1B 2B

P P  , line segment>, <
2 A

P , point>].  

However, for those regions with holes, the   is composed of a 

set of relations that is represented by a list of 
i

 . For example, 

in Figure 2, there is a hole in region B. for this case,  = [ 

[overlap, <
1 2A A

P P , line segment>, <
1B 2B

P P  , line segment>, 

<
1A 2B

P P , line segment> ]; [overlap, <
1 2A A

P P , line segment>, 

<
3B 4B

P P  , line segment>, <
3B 2A

P P , line segment> ] ]. Therefore, 

the last element   in the matrix is an effective complementary 

for the description of topological relations of two planar 

regions. In summary, a detailed representation of topological 

relations of two planar regions consists of SRp and topological 

matrix with  . 

 

       

   B
A

     P1B P2B

P1A P2A

P3B P4B  

Figure 2. Topological relations of two planar regions with holes 

 

3.2 Definition of Topological Relations between Planar 

Regions 

In the following section, we present some examples for disjoint, 

meet and intersect relations and their representations. One 

should note again that the intersection relation contains 

different cases of the relations between two planar regions as 

presented in previous section. 

 

3.2.1 Disjoint: According to the definition of disjoint 

relation in 9IM,  disjoint(A,B) = -1 -1*;-1 -1*;**    is used to decide 

disjoint relation between planar regions in 3R . However, there 

are several cases for the disjoint relation between two planar 

regions in 3R . For example, in Figure 3(3) and 3(6), the 

relations between A and B are represented with the same 

element  . But combining other eight elements in the matrix, 

  can be used as a key element to differentiate those cases in 
3R .  

 

B

A

B

A

B

A

       B

A

     B

A

     B

A

[-1 -1 -1; -1 -1 -1; -1 -1 ζ ] [-1 -1 -1; -1 -1 -1; -1 1 ζ]  [-1 -1 -1; -1 -1 1; -1 1 ζ]

 [-1 -1 -1; -1 -1 -1; 1 0 ζ]  [-1  -1 -1; -1 -1 1; 1 0 ζ]  [-1 -1 1; -1 -1 0; 1 0 ζ]

(1) (2) (3)

(4) (5) (6)  

Figure 3. Disjoint relations of two planar regions 

3.2.2 Meet: For a meet relation, there are six common cases 

that we can distinguish. In Figure 4(1),   is the case of meet 

relation. In (2), (3) and (4), they have the same previous eight 
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elements in the matrix, but   is various. They are overlap, 

equal and contain relations respectively. But in (1), (5) and (6), 

they have the same  . 

 

     B

A

B

A
B

   

B      B

A

     B

A

[-1 -1 -1; -1 0 1; 1 0  ζ] [-1 -1 -1; -1 1 1; -1 1  ζ] [-1 -1 -1; -1 1 1; -1 1  ζ]

 [-1 -1 -1; -1 1 1; -1 1  ζ]  [-1 -1 -1; -1 0 1; -1 1  ζ]  [-1 -1 1; -1 0 0; 1 0  ζ]

(1) (2) (3)

(4) (5) (6)  

Figure 4.  Meet relations of two planar regions 

 

3.2.3 Intersect: The following six cases are common 

relations for the intersection relations between two planar 

regions. In Figure 5(1) and (4), two   representations are the 

overlap case. For (2) and (5), they are the equal case. In the 

same way,   in (3) and (6) are the contain case. 

 

B

A

B    B

B

A
B

A
B

A

[-1 -1 -1; 1 0 1; 1 0 ζ]  [-1 -1 -1; 1 0 1; 1 0  ζ] [-1 -1 -1; 1 -1 1; 1 0  ζ]

[1 0 1; 0 -1 0; 0 0 ζ]  [1 -1 1; -1 0 0; 1 0  ζ] [1 -1 1; 0 -1 0; 1 0  ζ]

(1) (2) (3)

(4) (5) (6)  

Figure 5.  Intersect relations of two planar regions 

 

3.3 The Discriminant of Topological Relations between 

Planar Regions 

The discriminant of topological relations between planar 

regions needs four steps: 

Step 1:  Compute parameters of plane equations for two planar 

regions in a same Cartesian coordinate system in 3R ; 

Step 2:  Compute the spatial relations of planes (SRp); 

Step 3: Decide the topological relations between planar regions 

based on SRp; 

a) If SRp is parallel, topological relations of planar regions 

(TRr) is disjoint; 

b) If SRp is coplanar, TRr is the case of topological 

relations between regions in 2D space; 

c) If SRp is intersecting, firstly, calculate the intersecting 

line equation of two planes and decide the common 

parts of planar regions and intersecting line; then, 

compute the elements of topological matrix, including 

the last element   as described in the previous section; 

Step 4:  Provide semantic descriptions topological relations 

after geometric computation and analysis of matrix; 

 

The first three steps are done by geometric computation. In the 

third step (c), the topological relations can be defined by a 2*2 

submatrix 
2 2

dim( ) dim( )
( , )

dim( ) dim( )

A B A B
T A B

A B A B


  
  

    
in the 

upper left of '( , )
p

T A B .  For the disjoint case, 
2 2

( , )T A B


  = [-1,-1; 

-1,-1], it is same as the case in 2D space. For the meet case, 

2 2
( , )T A B


  = [-1,-1; -1, *], here * could be 0 or 1. According to 

the matrix '( , )
p

T A B , the intersect case also can be decided by 

matching the elements from matrixes in  Figure 5.  Additionally, 

for each case,   can be defined and stored following the 

predefined formats in section 3.1. The detailed intersected 

information is described in  . If there are more than one list 
i

  

in  , it indicates that there are holes that pass the intersecting 

line. The common part in   is the connection part of two planar 

regions. Therefore, the topological relations between two planar 

regions in 3R  are obtained through the geometric computation 

and the predefined matrix to describe topological relations and 

the connection of planar regions. 

 

3.4 Challenges for Extraction of Topological Relations 

between Planar Regions Obtained from Point Cloud 

Point clouds can be observed by Light Detection And Ranging 

(LiDAR) devices, including terrestrial and airborne LiDAR. In 

a point cloud, information are contained in high volume points. 

Each point has several attributes defining coordinate (x, y, z), 

intensity, classification, number of returns and point source ID 

and so on. However, despite the high density of points from 

surfaces, for occlusion cases, there may be missing parts in 

scanned LiDAR data that lead to incomplete segmentation of 

objects components. This can affect the determination of 

boundaries of each component of 3D complex object. Each 

component can be represented as a planar region and be used 

for obtaining topological relations between those components. 

For example, a wall could be modelled as a rectangle planar 

region. However, the boundary extracted from point clouds is 

not a perfect rectangle. A concave polygon extracted from a 

component cannot be directly estimated as a rectangle because 

the boundary constituted by points of a concave polygon is 

difficult to be ensured to form line segments of rectangle 

perfectly. As shown in Figure 6(1), following the segmentation 

step, six segments are identified in the point cloud for defining 

the building walls. From the top view in Figure 6(3), these 

segments look to be connected together perfectly. However 

when the boundaries of those segments are extracted, their 

topological relations are not perfect. We can see several gaps 

between the blue part and yellow part (Figure 6(2) and 6(4)). 

These imperfections affect the extraction of final boundaries 

and the determination of topological relations between those 

segments. Besides, the boundaries quality also depends on the 

quality of the point cloud. Thus, boundaries of components 

cannot be directly modelled as some primitives. In sum, 

extracting topological relations among components of a 

complex 3D object obtained from 3D LiDAR point clouds is 

very complex. Because the planar regions are not perfectly 

embed in a plane as supposed in the previous sections. The 

boundaries of those regions are very irregular and composed of 

concave hulls of points composing the region. These may 

become more complex if we deal with occlusion presence in 

point clouds. 
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(1) (2)

(3) (4)  

Figure 6. Examples of the components of a building and their 

boundaries obtained from a point cloud 

 

4. EXPERIMENTAL ANALYSIS 

In the automatic modelling from point clouds, the existing 

segmentation algorithms can detect planar components from 

point cloud because the model-based geometric detection 

algorithms are capable of detecting planes and acquiring 

parameter of planes from point clouds. For example, Random 

Sample Consensus can segment simple primitives, such as 

plane, sphere, cylinder and cone. After segmentation, in Figure 

7(1), 16 pieces of planar components are extracted from a 

building. From the top view of the building, lines with different 

colours indicate different walls. In Figure 7(2), this building is 

displayed from another view. Five walls of this building are 

presented in Figure 7(3). Each segment has geometric properties 

after segmentation. For example, a segment can be represented 

by geometric parameters (A, B, C, D) for a plane equation. We 

use the equations of two planes in 3D space to determine the 

equation of their intersecting line (L). Consider that 

1 1 1 1
+c 0a X bY Z d   and 

2 2 2 2
+c 0a X b Y Z d    to be two plane 

equations. The direction vector of the line L is orthogonal to the 

normal vectors of two planes 
1 1 1 1

( , , )n a b c  and
2 2 2 2

( , , )n a b c . 

The direction vector is obtained by 
1 2

s n n  . If
1 1 1

( , , )M x y z is a 

common point between the two plane then the line equation is 

defined as: 

1 1 1
X x Y y Z z

p q r

  
     (5) 

Where 
1 2 2 1
* *p b c b c  　, 

1 2 2 1
* *q c a c a  　, 1 2 2 1

* *r a b a b   

To determine the common parts of two planar regions and the 

intersecting line, the distance between points of planar regions 

and line is used to make a decision. The distance between a 

point
0 0 0 0
( , , )M x y z  and the line L in 3D space can be computed 

by following equation: 
2

2 2 2 2 0 1 0 1 0 1

0 1 0 1 0 1 2 2 2

[ ( ) ( ) ( )]
( ) ( ) ( )

p x x q y y r z z
d x x y y z z

p q r

    
      

 

 (6) 

In order to compute the value of  , we need to determine if 

both planar regions have interstation with line L. To do so, we 

define a distance threshold which is determined by the average 

distance between M and its K-nearest neighbours. Thus, each 

point in the planar regions has its distance threshold to judge 

whether it is on the line. By considering the K-nearest 

neighbours of M, we make sure that the distance is determined 

based on the local density of points. Here K is defined by the 

density of point cloud. If the distance between point M 

belonging to one of the regions and the line L is less than the 

threshold of this point, then we consider that this point is on the 

line L. Next, those points belonging to one of planar regions on 

the line L are combined to create line segments using the same 

distance threshold used in previous step. If the distance between 

point M and its nearest boundary point N on the line are in the 

distance threshold of M, M and N are added to the same line 

segment. In the next step, N is the new starting point to search 

other points on the line. This action is repeated until all the 

points of a planar region are processed. In this way, the line 

segments formed by the common part of the intersection line L 

and the planar region are obtained. This process is also carried 

out for the second planer region in the same way. The points of 

planar regions have two classes: boundary and interior. 

Therefore, the line segments are easy to be identified as the 

intersecting part of line L and the boundary or the interior. 

Finally, the line segments belonging to two regions on the line 

L are used to determine   according to the steps presented in 

Section 3.1. 

 

For distinguishing the boundary and interior of each segment, 

the concave hull of a planar segment is extracted from the point 

cloud, which is implemented by algorithms in Point Cloud 

Library (Rusu, 2011). As shown in Figure 7(4), the white planar 

region and blue one have the meet relation, similarly, the pink 

one has meet relation with the blue one. These relations are 

computed using the topology matrix following the steps 

presented in Section 3.3. Therefore, the topological relations 

between two neighbouring segments are obtained by the 

topology matrix and the last element  . 

(1) (2)

(3) (4)  

Figure 7. Results for planar regions segmented from point cloud 

 

5. CONCLUSION AND FUTURE WORK 

The topological relations between planar regions in 3R  are 

extended from Dimension Extended 9-Intersection models. The 

extended model is more expressive and allows better 
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distinguishing and describing the topological relationships 

among planar regions. Furthermore, it can transform geometric 

information into topological relations between components of 

3D complex objects based on basic geometric computations and 

the analysis of topology matrix. The proposed approach 

describes not only the topological relations, but also the details 

of the relation of the connection parts between planar regions. 

Moreover, the topological relations of planar regions with holes 

can be represented by the proposed approach. We have also 

analysed different challenges that we have when applying the 

proposed method for the determination of topological relations 

between two planar regions extracted from point clouds. 

Finally, the proposed topological models is applied to identify 

the topological relations between planar regions extracted from 

point cloud automatically. Future work will be focused on 

extending topological relations of planar regions to other 

geometric primitives. Also, the data structure for topological 

relations of objects components will be designed to realize 

spatial querying and analysis on complex 3D objects. 

Furthermore, we will explore the creation of complete B-Rep 

models based on fundamental topological relations in 3D 

complex models. 
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