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ABSTRACT:

Catadioptric cameras have the advantage of broadening the field of view and revealing otherwise occluded object parts. However,
they differ geometrically from standard central perspective cameras because of light reflection from the mirror surface which alters the
collinearity relation and introduces severe non-linear distortions of the imaged scene. Accommodating for these features, we present in
this paper a novel modeling for pose estimation and reconstruction while imaging through spherical mirrors. We derive a closed-form
equivalent to the collinearity principle via which we estimate the system’s parameters. Our model yields a resection-like solution which
can be developed into a linear one. We show that accurate estimates can be derived with only a small set of control points. Analysis
shows that control configuration in the orientation scheme is rather flexible and that high levels of accuracy can be reached in both
pose estimation and mapping. Clearly, the ability to model objects which fall outside of the immediate camera field-of-view offers an

appealing means to supplement 3-D reconstruction and modeling.

1 INTRODUCTION

Digital imaging makes photogrammetry relevant for a wide va-
riety of applications. Yet, the limited field of view imposes lim-
itations on scene coverage and necessitate acquisition of a large
amount of images, even for a modest scenes. In this regards,
expansion of the field of view by incorporation of or imaging
through mirrors (aka catadioptric cameras) can facilitate map-
ping of otherwise unseen or occluded objects or object parts. The
literature also shows a broad spectrum of cameras which differ
from one another by the mirror shape and their number (Gluck-
man and Nayar, 2001; Yi and Ahuja, 2006; Lopez-Nicolds and
Sagiiés, 2014; Jeng and Tsai, 2003; Geyer and Daniilidis, 2002;
Luo et al., 2007).

Such imaging configurations broaden the field of view, but are
governed by light reflection from the mirror surface. Thus, the
collinearity relation that stands at the core of photogrammetric
modeling does not hold here any longer. The challenge is there-
fore to establish object- to image-space relation in a manner that
can lead to estimation of the camera pose parameters and to the
performance of mapping. Our focus in this paper is on an imag-
ing system which incorporates a camera and a spherical mirror.
The latter is inexpensive and simple to manufacture thereby mak-
ing it attractive to incorporate (Ohte et al., 2005). Its symmetric
form also makes it advantageous from a modeling perspective.
In terms of system modeling, Ohte et al. (2005) model the re-
flection and projection of an object-point from spherical mirrors.
The focus lies on the image formation rather than on pose esti-
mation. Micusik and Pajdla (2003) propose an approximation to
the central perspective model with a single calibration parame-
ter. However, the approximation error does not allow to estimate
the mapping error as a function of the image noise. Lanman et
al. (2006) describe a system composed of an array of spherical
mirrors which provides multiple views from a single image. The
authors propose a bundle adjustment-like solution, however fail
to discuss accuracy matters. Agrawal (2013) uses a co-planarity
constraint, based on the fact that an object-point and the sphere-
and camera-centers are co-planar. Geometrical properties within

the plane are not considered there, and the sphere-center and cam-
era parameters require eight or more control-points for the param-
eter estimation.

In this paper we propose a novel model for pose estimation and
reconstruction while imaging through a spherical mirror. Doing
so, we first develop expressions that relate object- and image-
space points and then model the imaging system as a whole. Our
derivations yield a closed-form equivalent to the collinearity prin-
ciple, which we then show that can be developed into a linear one.
Studying the requirements for estimating the imaging system pa-
rameters shows that a minimum of only three control-points is
needed and that estimates are stable and accurate. The paper then
studies reconstruction models and evaluate their accuracy. Thus,
it offers not only study of the system geometry and its implica-
tions on modeling and accuracy, but also provides a viable frame-
work for pose estimation and modeling.

2 SPHERICAL IMAGING CONFIGURATION
MODELING

Geometric relations within spherical catadioptric systems — Im-
ages acquired by catadioptric-cameras are formed by reflection of
light from the mirror surface and onto the image plane (Fig. 1).
The law of reflection states that the incident ray x;m,, the re-
flected ray, m,¢, and the normal to mirror surface are coplanar
and lie on the plane of reflection (Fig. 1). The angles between
both rays and the normal to the mirror surface are also equal to
one another (Fig. 1). Furthermore, as the radius coincides with
the normal to the sphere surface, the sphere center, o, also lies
within the plane of reflection. We also point to a general classi-
fication of catadioptric cameras according to the geometric prop-
erties of the extended rays (as if they were not reflected). If all
the extended rays intersect at a single point, the camera is termed
central, similar to the pinhole camera. If all the extended rays
intersect along a single line, the camera is termed axial, as is
the case with our system (Ramalingam et al., 2006). Here the
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camera-axis is the vector o€, which links the perspective- and
camera-centers, with u the distance between o and ¢ (Fig. 1).

1 d; 1
| n—ri

X;

Figure 1. Geometry of the image formation using catadioptric
spherical camera, with focus on the plane of reflection

The parameters we model in this setup, include: the camera pro-
jection center ¢ (Fig. 1) and the spherical mirror center, 0. The
objective is to estimate these parameters using a set of reference-
points, X;, which are projected onto the image plane from the
sphere surface.

2.1 Geometric quantities of planes of reflection

In order to express the relation between a control-point, its pro-
jection onto the image plane, and the direction of the extended
ray, we derive first expressions that relate to both the axial camera
configuration and the reflection of light from the sphere surface.
These consist of four elements within the plane of reflection, and
include: i) the angle ~; between the camera-axis, o€, and m;¢;
ii) the distance d;, between the projection center, ¢ and q,, the
point at the intersection of the extended ray x;m, with o¢; iii) the
angle J;, between 0¢ and the normal to the sphere’s surface; and
iv) the angle ¢;, between m and o¢ (Fig. 1). To keep the model
applicable to any type of central camera (e.g., one equipped with
a fish-eye lens), we use angular quantities which are measurable
in the image reference frame.

Computing +;, requires first to define the image-space direction
of 0¢. This direction must be estimated as the mirror’s center, o,
does not show on the image. We make, first, a reference to meth-
ods that are based on either placement of actual markers on the
lens or projection of the sphere’s boundary onto the image fol-
lowing the camera orientation (Kanbara et al., 2006; Francken et
al., 2007). However, we develop an alternative one that requires
neither, and which is valid for any central camera.

We begin by observing that the projection of the mirror bounda
on the image, relates to the tangent ray to the sphere’s surface, rTll%
(Fig. 1), suggesting that the angle, o, between these two vectors
remains the same for any point on the boundary, and thus:

v; 0¢ = ||vi[||o€]| cos(cv) (1)

with v; the image space direction towards sphere boundary. As
our interest is only in the direction of o¢, we set:

[0¢]| = cos(a) " )

and so can write:

v ot = [|vi 3)

which can then be extended to multiple observations and allow to
estimate 0¢ linearly and thereby compute the angle o by Eq. (2).
The angle ~y; can then be computed by the scalar product between

0¢ and cm,. Additionally, as the radius vector is perpendicular to
the tangent ray (Fig. 1), we also have that:
r
sin(a) = — C)
I
suggesting both that the ratio /41 is constant and known, and that
if 7 is known, p can be derived.

We can now derive expressions for the following quantities within
the plane of reflection: i) the angle y; between o¢ and m_ié, ii) the
distance d;, from the projection center, ¢, to the intersection of
the extended ray m with the camera-axis at q,, iii) the angle
d;, between 0¢ and the normal to the sphere’s surface, and iv) the
angle ¢;, between ﬂ(ﬁ and o¢ (Fig. 1).

The angle ~; is the scalar product between o¢ and cm; and the

following three quantities are given by (cf. the Appendix for their
derivation):

_ sin(2v; + 20;)sin(d:)

T sin(yi + 28;)sin(v:) o’ )

—ein Y (Bsin(~)) -~
d; = sin (r sm(%)) i (6)
¢i =i + 20; @)

These geometric quantities describe both the reflection of a point
onto image space and the direction of x;m,, the extended ray,
for any plane of reflection. The relation between two planes of
reflections is given by a rotation, 1);; about the o€, which is given
by:

cos(&;5) — cos(d;)cos(d;)

sin(d;)sin(d;)
where &;; is the angle between two planes of reflection, and whose
derivation is given in Ilizirov and Filin (2016).

cos(tij) = ®)

via which the angle 1);; between the two plane of reflection is de-
rived and, together with the plane of reflection derivatives, define
the axial camera.

2.2 Transformation between the plane of reflection and object-
space

To establish the relation between the planes of reflection and
object-space, we introduce an intermediate coordinate system,
M, whose center lies at ¢, its z-axis is o€, its y-axis is orthog-
onal to the z-axis on an arbitrary plane of reflection (e.g., on that
containing X1), and the z-axis completes a right-hand-side refer-
ence frame. A control point in the M system is expressed by its
position along the line ql—xz (Fig. 1), namely:

[Xi]nr = u[p;]ar + [q;]ar )

with [ ] a vector in the M system, u a scale factor, [q,]n =

[di 0 O] T, and [p,]as the direction of q,X;, for which we use
a conical parametrization:

1
w; - cos(v;) 10)
w; - sin(v;)

Pilv = wi
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where v; represents the rotation around @, and w; the line slope
in the plane of reflection. The angle v; is derived from );;, and
the parameter w; can be derived from ¢; (Fig. 1) by:

w; = tan(¢;) = tan (2 sin”! (% sin(’yi)) + %-) 11

The transformation from the M system to object-space is of Eu-
clidean nature.! Therefore:

x| =R (x —¢) (12)

where c is the camera perspective center,and R =[r1 r2 r3]
is the rotation matrix whose columns are:

ot
ry = m (13)
(I—rirf)(x1 —¢)
[(T=rirf)(x1 — )|

rs =ri; Xrg

Iro =

Finally, use of Eq. (12) and Eq. (9) allows writing:

R (xi —¢) — [q;]m = wilp;]m =

di 1 (14
RY(xi—¢)— [ 0| =wi | w;-cos(vy) )
0 w; - sin(v;)

which provides an equivalent to the colinearity relation, where a
point in object-space, X;, is linked to derivable image-space quan-
tities (here, ¢;, d; and v;). Similar to central perspective cameras,
collineation is of the control-point-to-projection-center direction
in both image- and object space. From Eq. (14) the rotation an-
gles in R and the camera position, ¢ can be derived directly. To
derive the mirror’s center, 0, we use:

_ — Yy = _r
0=c+ pur; —C+r(r)r1 c+ (sin(a)) ri (15)

Parameters estimation using DLT — Notably, and while not elabo-
rated here, our representation (Eq. 14) facilitates linear modeling
of the system. By dividing the last two rows by the first, the pa-
rameter u can be eliminated, thereby and equivalent form to the
DLT. Its appeal lies in the direct estimation without the need for
first approximations or iterations.

2.3 Mapping

Using two or more images can be used to estimate position of a
point in object-space. Using Eq. (9), we describe the rays towards
x in two M -systems for a point that appears in two images (M
and Mo, respectively) by:

(X]ar, = wi[py]asy + [Qy]any (16)
X|no = u2([Ps]as, + [Qa]as, a7

L Under the assumption that the radius is given.

where u1 and u2 are unknown scalars. Using the estimated model
parameters, each of the rays can be transformed into object space:

e; = Ri[q,]n; + ¢ (18)
si = Ri[p;]u, 19)
yielding:
X = uiS1 +e1 (20)
X = ugS2 + €2 21)

which form two lines in object space that intersect in x. We have
six equations and five unknowns, (X, 1 and u2) and the point can
be estimated by least-squares adjustment.

3 ANALYSIS AND RESULTS

Having established the parameter estimation models, their perfor-
mance is now analyzed. The analysis is carried out over different
control configurations, at different levels of noise.

The model is tested using both simulated experiments, under re-
alistic imaging configurations, and real-world data. The imag-
ing system consists of a standard pinhole camera and a spherical
mirror, where the camera intrinsic parameters are assumed to be
calibrated in advance. Parameters similar to the real-world exper-
iments were used for the synthetic tests, with: ;¢ = 500 mm, and
r =74 mm.

3.1 Influence of control point configurations on the param-
eter estimation

To test the quality of the estimation and the influence of the control-
point distribution, we observe that the distribution of points in
image-space has the greater influence on the solution (cf. Sec. 2.2).
Thus, we describe the points by their angular image-related quan-
tities: v and . Three different configurations are evaluated: i)
a random distribution of points; ii) an X-shaped arrangement,
which represents an even distribution of the angle v; and iii) a
circular arrangement of points, which represents an even distri-
bution of the angle v (Fig. 2). In reference to the necessary num-
ber of control points, the resection model (Eq. 14) yields three
equations which include an unknown scale factor. Therefore,
only three control points are needed to estimate the six positional
parameters. To ensure sufficient redundancy and distribution in
image-space, 20 control points are used in each experiment. All
models are tested with noise levels ranging from o = 0.1 to 1.5
pixels. Accuracy estimates of the model parameters are the mean
of 100 trials for each noise level.

Applying the resection model for the random point distribution
(Fig. 2a) yields sub-millimeter accuracy estimates for 0.5 pixels
noise or lower; lower than 2 mm estimates for a 1 pixel noise
level, and lower than 2.5 mm for a 1.5 pixels noise-level (Ta-
ble 1). The condition number of Grammian matrix is 830. No-
tably, throughout the analysis ox of the mirror is omitted as the
camera-mirror position along the central-line is related by the dis-
tance p, which is computed in advance as a function of « (Eq. 4).
The angle « is the outcome of a separate adjustment process, and
being accurately estimated, its influence on the accuracy of u
is negligible. As an example, for a 1 pixel measurement noise,
0o = +1x107* rad which translates to o, = £0.01 mm for
# = 500 mm.
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The circular point arrangement offers fixed - values and an even
distribution in v (Fig. 2¢). Accuracy measures for the resection
model are somewhat higher than the previous two, but not on a
significant level (Table 4), while the condition number dropped
to 103.

(a) Random arrangement (b) Even y arrangement

(c) Even v arrangement

Figure 2. Three control configurations. Each configuration con-
sists of 20 points

Noise | Camera position [mm] | Mirror position [mm]
olpiz.] | ox | oy oz oy | oz
0.1 0.02 | 0.08 0.07 0.04 0.04
0.2 0.05 | 0.17 0.16 0.08 0.08
0.5 0.12 | 0.42 0.48 0.22 0.25
1 0.27 | 0.82 0.97 0.47 0.52
1.5 0.37 | 1.29 1.45 0.77 0.78

Table 4. Parameter accuracy measures as a function of the noise

level, using two circles arrangement (Fig. 2¢)

Noise Camera position [mm] | Mirror position [mm]
olpiz] [ ox [ oy | oz oy | oz
0.1 0.03 | 0.16 0.14 0.06 0.06
0.2 0.07 | 0.36 0.29 0.12 0.11
0.5 0.17 | 0.86 0.74 0.31 0.33
1 0.38 | 1.63 1.39 0.53 0.59
1.5 0.54 | 2.86 2.26 0.88 1.05

Table 1. Parameter accuracy measures as a function of the noise
level, using random point distribution (Fig. 2a)

| olpiz] [ osldeg] [ oa[mm] |
0.1 0.01 0.01
0.2 0.01 0.02
0.5 0.04 0.05
1 0.07 0.11
1.5 0.11 0.15

Table 2. Accuracy measures for the position and orientation esti-
mation of the central-line

The X-shaped point arrangement offers an even distribution in
along two planes of reflection (Fig. 2b).” Estimates for the resec-
tion model are listed in Table (3), showing some improvement in
the accuracy but not on a significant level, with a nearly similar
condition number 832.

Noise Camera position [mm] | Mirror position [mm]
a[pix.] ox oy oz Oy ‘ oz
0.1 0.04 | 0.13 0.13 0.06 0.06
0.2 0.08 | 0.28 0.27 0.12 0.12
0.5 0.21 | 0.76 0.71 0.34 0.32
1 047 | 143 1.40 0.62 0.58
1.5 0.69 | 1.90 2.20 0.72 0.94

Table 3. Parameter accuracy measures as a function of the noise

level, using X-shaped arrangement (Fig. 2b)

2As a solution cannot be obtained using a single plane of reflection,

this configuration is the minimal distribution of v.

These results show that as long as the point distribution is spread
throughout the image their arrangement has a lesser effect on the
pose estimation. The correlations among the estimated param-
eters is not extreme. However, relatively high correlations can
be observed between the Y and between the Z values (~88%).
Analysis of the rate of convergence shows similar patterns to
those of the conventional central projection model.

3.2 Real world experiment

Testing the model on real world data, a spherical mirror was
placed inside a box with three surrounding vertical planes cov-
ered by a checkerboard pattern. Measurement of the camera pose
with the checkerboard related control points, and when reflected
from the sphere surface was carried out. While not listed here,
accuracy equivalent to the results obtained by the simulated test
were reached. These results suggest that the proposed model re-
flects indeed the real-world settings.

3.3 Mapping

Finally, and as noted in Sec. 2.3, once the camera and mirror
position are estimated, mapping can be performed by intersection
of the extended rays (ﬁ and @ (Egs. 20; 21). In that respect,
the intersection of the extended rays with the camera axes at e;
and e», is equivalent to the central perspective baseline, which
here becomes ||e;ez]| (Fig. 3).

With this observation in mind, and with the understanding that
higher accuracy can be reached with wider baselines (||e1ez]|),
we study two mapping scenarios: the first is the conventional one,
in which two images are acquired through a stationary mirror;
and the second is designed so that the baseline is extended. For
this, we not only move the camera but also the spherical mirror
between acquisitions (Fig. 3b).

To test the expected accuracy of both settings, we study a setup
in which two images are acquired with a distance of |[cicz|| =
770 mm between them, but where the mirror is also shifted by
l0105]| = 280 mm in second setup. Comparing the baseline
under both setups show that in the first one ||e;ez]|| is equiva-
lent to 114 mm , while in the second one it reaches 366 mm,
namely three times wider. The accuracy estimate for a recon-
structed point follows from hereon that of standard pinhole cam-
eras model. We study the reconstruction accuracy of a fixed point
x for both scenarios. For the stationary case (Fig. 3a) a narrow
parallactic angle compared to the second one is obtained, with
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AO = 45° (~ 15° vs. 60°) and leading to a less accurate recon-
struction. This is expressed in Table (5) for varying noise levels.
The accuracy of the stationary scenario is two-fold lower than
that obtained by the second scenario.

(a) Stationary mirror

(b) Two mirrors

Figure 3. Mapping using reflection from spherical surfaces

Image noise | Position accuracy o[mm)|
~ N(0,0) | Non-stationary [ Stationary
0.1 0.05 0.14
0.2 0.11 0.34
0.5 0.28 0.73
1 0.55 1.56
1.5 0.83 2.34

Table 5. Estimated position accuracy measures as a function of
the noise level

4 CONCLUSIONS

The paper studied pose estimation and mapping from a catadiop-
tric system that consists of a camera and a spherical mirror. As
demonstrated, this system forms an axial camera where all ex-
tended rays intersect at an axis linking the camera’s perspective
center and the sphere center. Notably, the system remains ax-
ial irrespective of the relative position or orientation between the
camera and sphere. Through derivation of measures within and
then between planes of reflection a closed form similar to the
collinearity principle has been derived, which was then extended
into a linear model. Further analysis of the system’s geometry has

led to an alternative, trilateration-based model that yielded bet-
ter estimates and proved robust to outliers. Results and analysis
show that as long as the control configuration does not introduces
degeneracies, high-levels of accuracy can be reached in estimat-
ing the pose parameters. Furthermore, the system radius can be
calibrated, even at sub-millimeter level of accuracy. Evaluation of
the reconstruction with this system has managed to draw resem-
blance to central perspective cameras, thereby applying known
principals in assessing the reconstruction accuracy. This has led
to an alternative modeling approach that helps both broadening
the ‘imaging’ baseline thereby having high accuracy levels.
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