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ABSTRACT: 

 

The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV), and robotics offer new possibilities for 

many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in 

many applications like mapping, precise measurements, 3D modeling and navigation. 

Image orientation comprises three main techniques of resection, intersection (triangulation) and relative orientation, which are 

conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still 

exist in the state – of –the –art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial 

distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles 

derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed 

procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting 

from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between 

the object points and the camera stations.   

Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of 

collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global 

minimum even with improper starting values.        

  
 

1. INTRODUCTION 

Collinearity equations are considered as the standard model 

used in photogrammetry and computer vision to compute the 

image orientation within bundle adjustment (Lourakis and 

Argyros 2004; McGlone et al. 2004). The concept is based on 

the central projection with an ideal situation that the object 

point, its image coordinates, and the camera perspective center 

are collinear and lying on a straight line. The exterior and 

interior orientation parameters of the camera are efficiently 

represented within these collinearity equations. The calculation 

of the exterior orientation parameters is based on observing a 

minimum of three reference points by resection. Whereas 

intersection or triangulation is to determine the space 

coordinates of target points by knowing the exterior orientation 

of at least two viewing cameras (Luhman et al. 2014). 

Basically, collinearity equations are nonlinear and normally 

solved by starting from a proper set of approximate values. 

 

Many researchers in the field of photogrammetry and computer 

vision have tried to avoid the indirect nonlinear solution of 

collinearity and to solve with a minimum number of reference 

points. They introduced during the last three decades different 

direct closed form solutions for resection, triangulation and 

relative orientation problems. From a computer vision 

perspective, the space resection problem is solved as the 

perspective n-point (PnP) problem and this approach is mainly 

developed with three points P3P or four points P4P methods 

(Gao and Chen 2001; Grafarend and Shan 1997; Horaud et al. 

1989; Quan and Lan 1999). However, these methods have 

resulted in more than one solution and a decision should be 

made to find the unique solution. Moreover, these methods are 

not considering the redundancy in observations that is supposed 

to strengthen the solution from a statistical viewpoint.  

Another approach is called direct linear transformation DLT 

(Marzan and Karara 1975) and is based on the projective 

relations between the image and the object space by estimating 

the so called projection matrix P. A minimum of five reference 

points is necessary to solve the system of DLT equations in a 

direct linear solution (Luhman et al. 2014). For image 

triangulation which is the subject of this paper, Hartley and 

Sturm (1997) introduced an extensive study of the available 

triangulation methods and evaluated the best methods by 

studying their stability against observation noise. For 

perspective image triangulation problem, a rigorous direct 

linear solution can be derived with collinearity (Alsadik 2013). 

 

Generally, the challenge of image orientation with the nonlinear 

collinearity methods is to initialize the solution with the proper 

approximate values of orientation parameters. Starting from 

improper approximate values can mostly lead to a wrong 

divergent solution. On the other hand, collinearity is not always 

applicable in its standard form like in the case of panoramic 

imaging. 

 

The aim of this research is to develop a mathematical model of 

image triangulation that is appropriate to handle for poor 

approximations and solution instabilities. Especially when 

collinearity cannot be applied as in the case of spherical or 

cylindrical equirectangular panoramic imagery. This means to 

try introducing a solution with a geometric stability, reliability 

and converge to global minimum even with improper initial 

values or when the points are badly distributed. The developed 

model is based on using angular conditions represented by 

inclined angles instead of collinearity conditions. Based on land 

surveying principles, intersecting horizontal and vertical angles 

are sensitive to improper approximate values. A shifted 

approximate point coordinates of more than 1′ in directions is 
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probably failing to converge (Shepherd 1982). Therefore, 

inclined angles are used instead of horizontal and vertical 

angles for image orientation because they offer a higher 

geometric constraint on the solution and converge steadily to 

the global minimum. 

 

The following section 2 introduces the method of deriving the 

inclined angles and how to use the observed image coordinates 

in the derivation and image triangulation. Section 3 illustrates 
the experimental results and section 4 presents the discussion of 

results and conclusions. 

 

2. METHODOLOGY 

The proposed method of image triangulation is based on 

deriving inclined angles from the observed image coordinates 

in the viewing cameras. A spherical trigonometry law is used to 

apply the derivation as discussed in the following section 2.1. 

Afterward, the derivation of the proposed mathematical model 

of image triangulation and the least square adjustment will be 

shown in section 2.2.  

 

2.1 Inclined angle derivation 

Given a spherical triangle ABC (Fig.1) with two known vertical 

angles (β1, β1) and one known horizontal angle (θ ), the 

inclined angle γ may be computed from the cosine rule (Murray 

1908). 

 
Figure 1. Spherical triangle ABC and inclined angle γ. 

 

The cosine rule in equation 1 can be used to solve the spherical 

triangle ABC and to compute the inclined angle γ.  

 

cos( γ) = cos(θ) cos(β1) cos(β2) + sin ( β1)sin (β2)   (1) 

 

The described solution of the spherical triangle of inclined 

angle is useful to solve the problem of image triangulation as 

will be shown in section 2.2. From the aforementioned 

discussion of the spherical triangle, three points are necessary 

to define the inclined angle in the orientation problem, the 

viewing camera center C1, the object point A and the adjacent 

camera C2 as shown in Fig. 2. Accordingly, if every inclined 

angle formulate an observation equation then a minimum of 

three inclined angles is necessary to define the object space 

coordinates XYZ of a point.   

 

As stated, inclined angles are defined by knowing the 

horizontal and vertical angles to the target point. These angles 

are indirectly observed by knowing the image coordinates. The 

horizontal angle θ is defined as the difference between direction 

angles α1 and α2. 

 
Figure 2. Image triangulation with angular observations. 

 

In image space, these angles (α, β) are computed by using the 

image coordinates x, y of the target point and the camera focal 

length f as shown in equations 2, 3, 4 and 5. Fig.3a illustrates 

the derivation of these angles for a single camera based on the 

measured image coordinates with respect to the image center 

(principal point p.p) system. However, cameras in reality are 

oriented in an angular rotation, which is not parallel to the 

space coordinate system (XYZ) as shown in Fig. 3b. The 

angular rotations can be represented as Euler’s angles ω,φ, k 

around the X-Y-Z axis respectively (Wolf and DeWitt 2000). 

The exterior orientation angles ω,φ, k should be considered in 

the computations of the correct angles (α, β) to finally estimate 

the inclined angles. It is worth to mention that the derivation is 

based on a right-handed system.  

 
Figure 3. (a) Horizontal and vertical angles (α, β) by using 

observed image coordinates. (b) The effect of camera rotation 

on the image plane. 

 

The horizontal angles (α1, β1) of Fig.3a and Fig.2 are derived 

as: 

 

[
xa′
ya′

f′

] = M [

xa
ya
f
]                                                (2)   

M = rotation matrix = MωMφMk                    (3)   

α1 = tan−1 (
xa′

f′
)                                 (4)   

β1 = tan−1(
ya′

√f′2+xa′2
)                                      (5)   

 

where Mω, Mφ, Mk are the rotation matrices with respect to 

orientation angles ω,φ, k respectively and xa, ya refer to the 

image coordinates and f is the focal length. 

 

The second pair of angular directions (α2, β2) is computed 

between the viewing camera C1 and the adjacent camera C2. 

The computation is simply as follows: 

 

 

α2 = tan−1 (
∆X

∆Y
)                                              (6)   

 𝑍  

 𝐴   

 𝛾  
𝛽2 

 𝛽1 

 𝜃   

 𝐵   

 𝐶   
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β2 = tan−1(
∆Z

√∆X2+∆Y2
)                                                  (7)   

∆X = XC2 − XC1                                              (8)   

∆Y = YC2 − YC1                                      (9)   

∆Z = ZC2 − ZC1                                                  (10)   

 

It must be noted that the aforementioned derivation is only 

applicable to the perspective images. On the other hand, the 

angles are easily computed in panoramic images as will be 

shown in section three. Finally, the inclined angle γ can be 

derived as shown in equation 1 after computing the horizontal 

angle θ which is the absolute difference between direction 

angles α1  and  α2 as mentioned earlier. 

 

2.2 The mathematical model of image triangulation with 

inclined angles  

To apply the image orientation with inclined angles, a 

mathematical model should be developed to relate the inclined 

angles with camera orientations and the object points. This is 

done by using two vectors dot product as shown in Fig. 4 and 

equation 11.    

 
Figure 4. Vectors dot product. 

 

v1⃑⃑⃑⃑ . v2⃑⃑⃑⃑ =  |v1||v2| cos γ                   (11)   

 

where |v1|and |v2| represent the vectors length and γ is the 

inclined angle enclosed between them. On this basis, and with 

reference to Fig.5, the mathematical model can be developed as 

shown in equation 12 for inclined angle γ enclosed by two 

vectors connecting the viewing camera C1 with camera C2 and 

object point P. 

  

cos γ =  
(XP−XC1)(XC2−XC1) +(YP−YC1)(YC2−YC1)+(ZP−ZC1)(ZC2−ZC1)

l lC1P
        (12) 

Where  

l       =  √(XC2
− XC1

)2 + (YC2
− YC1

)2 + (ZC2
− ZC1

)2    

lC1P = √(XP − XC1
)2 + (YP − YC1

)2 + (ZP − ZC1
)2      

           
Figure 5. Inclined angle derivation between two cameras and 

the object point. 

 

Accordingly, every derived inclined angle is formulated in one 

observation equation. Hence, three intersected images at least 

are needed in image triangulation to compute the object point 

coordinates XP, YP, ZP and three reference points in resection for 

computing the exterior orientation parameters ω, φ, k, Xo, Yo, Zo. 

The possible number of inclined angles can be calculated based 

on the number of viewing cameras n using the following 

equation 13: 

 

Max. no. of inclined angles = (n − 1) ∗ n           (n > 2)    (13) 
 

This high redundancy in the observed angles is expected to 

strengthen the stability of the solution and convergence to an 

optimal minimum as will be shown in the numerical examples.   

To solve the non-linearity and redundancy of the observation 

equations 12, least square adjustment using a Gauss-Markov 

model is applied (Ghilani and Wolf 2006) as shown in equation 

14. This nonlinear system of equations is normally linearized 

by using Taylor’s expansion and neglecting higher order terms.        

 

∆= (BtQe
−1B)

−1
BtQe

−1F = N−1t                                  (14) 

 

where  

∆: Vector of corrections δXP, δYP, δZP. 
B: Matrix of partial derivatives to unknowns XP, YP, ZP. 

F: Vector of function value of discrepancy between the 

approximate and correct values of unknowns. 

Qe: Cofactor matrix of observations. 

N: Normal equation matrix. 

 

With respect to equation 14 and Fig. 5, the coefficient matrix B 

of the partial derivatives to the unknown parameters of image 

orientation will be formed as: 

 

Bs = [ 
∂F

∂XP

∂F

∂YP

∂F

∂ZP
]  =  [bXP

, bYP
, bZP

]                           (15) 

 

The partial derivatives can be formulated as:  

      

bXP
 = ∆X − q (XPo − Xc)    

bYP
 = ∆Y − q (YPo − Yc)                            (16)    

bZP
 = ∆Z − q (ZPo − Zc)    

         

Where  

Po = approximate coordinates of point P. 
q  = cos  γ ∗ l /lC1P

o      

                                      
3. EXPERIMENTAL TESTS 

To evaluate the developed method, three numerical tests were 

implemented. The first test was applied to three intersected 

street view panoramas to a manhole control point. For 

perspective images, two tests are applied. A simulated 

experiment of five intersecting cameras and a real test of the 

intersection of twelve cameras triangulated at a control point.  

The first two tests were applied with a focal length camera of 

18mm and image format 22.3×14.8 mm2.  

   

Panoramic image intersection: Three intersected spherical 

panoramas in a street mapping system (CycloMedia.B.V. 

Technology) are shown in Fig.6 where the vehicle equipped 

with a GNSS system and IMU. A ground control point GCP is 

measured on each panorama (red dot) and listed in Table 1 to 

determine finally its position by intersection. 
 

Image X [m] Y [m] Z [m] k [deg.] 
Column 

[pixel] 

Raw     

[ pixel] 

1 7049.814 51663.499  152.694  0.1860     4760.39  1380.54 

2 7042.044 51657.261 152.575 0.1674 3741.38 1359.29 

3 7046.141 51660.114 152.621 0.1767 4229.65 1423.77 

Table 1. exterior orientation of the panoramic images 

𝛾 
v1 

v2 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-453-2016

 
455



  

 

 
 

 
Figure 6. Three panoramic images triangulation. 

Orientation angles ω and φ are set to zero in all images, while 

the format size of each image is 4800×2400 pixels. A starting 

value of GCP point coordinates is: [1 1 1]. 

The image coordinates are transformed into the image center 

before computing the angular observations as: 

 

xi = ci  − 2400 − 0.5  
yi = 1200 − ri − 0.5  

 
Obviously, angular value per pixel is 0.075 degrees and these 

results in computing the horizontal and vertical HV angles as 

follows (Table 2): 

Image Horizontal angles Vertical angles 

1 

2 

3 

176.994° 

100.568° 

137.189° 

-13.578° 

-11.984° 

-16.820° 

Table 2. horizontal and vertical angles computed from each 

panorama to GCP point. 

 

As mentioned before, the conventional intersection of 

horizontal and vertical angles (HV method) is not successful 

and will diverge with this improper starting value. Therefore, a 

non-linear least square adjustment of inclined angles is applied 

to finally result in the adjusted position. The solution iterations 

are shown in Fig. 7.  

 

Figure 7. Corrections to GCP point by inclined angles 

triangulation from the second iteration. 

 

The corrections magnitude is large in the first iteration because 

of the selected far starting values. The adjusted position of the 

GCP point with the standard deviations is computed as follows:  

X =   7050.098m∓8mm 

Y = 51655.729m∓8mm 

Z =     150.915m∓6mm. 

      

Perspective images - First test: A simulated example of five 

cameras was triangulated to fix the position of point P as shown 

in Fig. 8. The object point coordinates were designed to be 

[10.25,1.10,0.85], while the designed image orientations are 

listed in Table 3 with the projected image coordinates of P in 

the principal point system. The focal length is assumed to be 18 

mm within a free lens distortion camera. It must be noted that 

the image coordinates are listed in their exact values without 

adding noise to check the correctness of the triangulation 

method if it converges to the exact true location of P. The 

orientation angle ko is set to zero in this simulation test. 

 
Camera X [m] Y [m] Z [m] ωo φo x [mm] y [mm] 

C1  9.90            0.10           0.90            85 -15   1.3472  0.6359      

C2 10.25              0.00 0.70           100 0   0.0000 -0.7024        

C3 10.60            0.10             1.00 95 30   3.3049 -4.1490     

C4  9.25            0.10           0.70           100 -35   3.0738 -0.3329       

C5 11.00 -0.10             1.00 95 30  -0.7506 -3.2684 

       Table 3. Simulated data of a triangulation problem. 

 
Figure 8. Triangulation test of five simulated cameras. 

 

The maximum number of 20 angles is observed as shown in 

equation 13. An approximate starting value of the nonlinear 

least square adjustment was selected to be far from the true 

coordinates [1000; 1500; 500] to investigate the stability of the 

solution based on the measured image coordinates of Table 3. 

Fig. 9 shows 20 iterations for the visualization of the solution 

convergence. It shows a fast convergence after four iterations to 

zero values and to reach the global optimum of the coordinates 

of P with least squares. It must be noted that the condition 

number of the normal equation matrix was stable and near unity 

value in the iterations. 
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Figure 9. The log plot of convergence of iterations to zero 

values in the first test.  

 

To validate the efficiency of the developed method, the solution 

was compared with the nonlinear collinearity image 

triangulation. A normally distributed random noise between 1 

and 10 pixels were generated and added to the image 

coordinates. This is to investigate the deviation magnitude away 

from the true value of the object point coordinates as shown in 

Fig.10. The shift in the object point coordinates was computed 

with respect to a noise increment of one pixel. The graph shows 

a close result between the proposed method of inclined angles 

and the collinearity equation method. 

 
Figure 10. Comparison between the proposed method and 

collinearity by estimating shift in the object space (y-axis) with 

respect to the added normally distributed image noise (x-axis). 

 

Perspective images - Second test: The second test is applied in 

a real imaging case of a target point marked on a building 

façade and measured with a total station for checking and found 

to be (975.524, 20044.271, 302.718m) in 𝑋, 𝑌, and 𝑍 

respectively. Twelve images are triangulated to the object point 

as shown in Fig.11 with a Canon 500D camera. The interior 

orientation parameters of the camera are: f=18.1mm, frame 

size= 4752×3168 pixels, pixel size=4.7 microns while the lens 

distortion parameters are neglected. As shown in equation 13, a 

maximum of 132 inclined angles is derived from the twelve 

images and processed as the observed values to the target object 

point. 

 
Figure 11. Triangulation - second test 

Table 4 lists the predetermined camera exterior orientations 

with the measured pixel coordinates of the object point in each 

image. 

 
Table 4. Orientations and measurements of the second test. 

 
As shown in the first test, a far approximate coordinates of     

[1, 1, 1] are selected to test the stability and convergence of the 

triangulation with inclined angles. The correction converges to 

zero after eight iterations and the solution reached the global 

minimum as shown in Fig.12. The second iteration shows a 

large correction value because we started from a far 

approximation as mentioned earlier. The standard deviations 

after the triangulation is computed in meters in three methods 

as follows:  

 

with Inclined angles:  𝜎𝑥 =0.012, 𝜎𝑦 =0.005, 𝜎𝑧 =0.139  

with H-V angles:         𝜎𝑥 =0.034, 𝜎𝑦 =0.016, 𝜎𝑧 =0.014 

with Collinearity:       𝜎𝑥 =0.034, 𝜎𝑦 =0.019, 𝜎𝑧 =0.015  

 

The initial values to run the HV method is based on the output 

of the inclined angle method to ensure the solution 

convergence. 

 
Figure 12. The convergence of corrections to zero values of the 

second test.      

 

Similarly to the first test, a validation of the developed method 

is applied by adding noise (1-10 pixels) to the image 

coordinates. The solution was compared with the collinearity 

image triangulation. The shift in the object point coordinates 

was computed with respect to a noise increment of one pixel. 

The graph (Fig. 13) shows a close result between the proposed 

method of inclined angles and the collinearity equation method. 

The graph shows a maximum shift of 6 cm resulted in the point 

position when adding a noise of 10 pixels.  

 
Figure 13. Comparison between the shifts resulted after adding 

a random noise to the image coordinates of the second test. 

(red: proposed method, blue: collinearity).  
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4. DISCUSSION AND CONCLUSIONS 

In this paper, we presented a modified algorithm for image 

triangulation using inclined angles. These inclined angles were 

derived from the measured image coordinates using spherical 

trigonometry rules. Dot product of two vectors was used to 

model the inclined angles enclosed between the points and their 

viewing cameras as illustrated in equation 12. The derived 

inclined angels offered a higher redundancy than collinearity 

equations with the same number of points and cameras. 

Therefore, least square adjustment (equation 14) was used in 

the computations of triangulation. The partial derivatives of the 

object points were listed in section 2.2. The minimum number 

of three cameras was needed to solve the triangulation. In 

addition to orient frame-perspective images, the method was 

promising in the application of panoramic image intersection of 

Fig. 6. 

 

The inclined angles were efficient and stable even when noise 

added to the observations (Fig. 10). However, the linear 

solution of triangulation with collinearity is still preferable 

since it is a direct method without the need for starting values 

and can be solved with two stereo images. However, the 

proposed method can also be used to solve panoramic image 

intersection and geodetic intersection problems. 

 

The developed method of triangulation as shown in the results 

is stable and converges efficiently to their true values. In 

practice, starting from close approximations is more efficient to 

solve the image triangulation problem. However, similarly to 

collinearity, the developed method was also inadequate in the 

situations where the cameras or reference points were located 

on a straight line as mentioned previously. Either this may 

result in zero valued inclined angles or rank defected system of 

equations and the method fails. 

 

Accordingly, improper starting values like [-1000; -1000; 500] 

in the simulated test of Fig. 8 produced a wrong triangulation 

despite the convergence of the solution to a local minimum. 

This problem is caused because the intersecting angles can be 

satisfied in the opposite direction as shown in Fig. 14 along the 

dotted red line.  

 

 
Figure 14. The possible solutions of triangulated angles along 

the dotted red circle.  

 

Many issues can be investigated for future work like the 

extension of this approach to solve the resection problem and 

relative orientation. Further, to combine collinearity with 

inclined angles to make the solution more robust or to develop 

direct linear solutions. Camera calibration is also to be 

considered with the developed model. The use of other forms of 

rotation instead of Euler angles is to be explored like the use of 

quaternion for more computational simplicity. 
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