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ABSTRACT:

Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many
safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian move-
ments without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry
of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume,
walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no pri-
vacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the
dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect
whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass
events), security (e.g. detecting prohibited baggage in endangered areas) and commercial applications (e.g. counting pedestrians at all
entrances/exits of a shopping mall).

1. INTRODUCTION

There is strong demand from transportation planning to track and
describe the motion of pedestrians, however, it is still a big chal-
lenge. Pedestrians are walking both indoor and outdoor; this indi-
cates quite big variety for monitoring methods to be able to detect
them.

The literature of traffic monitoring speaks about 10 different meth-
ods for pedestrians, from personnel counting to mechanical equip-
ment. They mention also remote sensing and video image record-
ing, too (Cessford and Muhar, 2003). (Havasi et al., 2007) and
(Leibe et al., 2005) presented pedestrian detection from static
images, while (Sabzmeydani and Mori, 2007) and (Barsi et al.,
2016) worked with videos. (Fuerstenberg and Lages, 2003) and
(Gidel et al., 2010) have implemented a system tested in passen-
ger car using laser methods. (Lovas and Barsi, 2015) applied pro-
file laser scanner, (Benedek, 2014) has used rotating multi-beam
laser scanner to detect pedestrians. (Gate and Nashashibi, 2008)
have improved the pedestrian classification accuracy by recursive
estimation. (Kisfaludi, 2004) used security camera images to de-
tect pedestrian passing. (Bauer and Kitazawa, 2010), (Shao et al.,
2007) have described the pedestrian motion and applied it in the
detection.

Our paper presents the profile laser scanning and the depth im-
age capture technologies (Section 2), then the methodology is
detailed (Section 3.1 and 3.2) followed by the results (Section 4)
and conclusion (Section 5).

2. DATA CAPTURE

The pedestrian detection was planned and investigated in the main
building of the Budapest University of Technology and Economics.
The aim was to achieve data when there is enough traffic in the
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corridors, so the morning hours before lectures were chosen for
the measurement. The instruments were fixed on the guardrail in
about 4.5 m distance of the floor.

The pedestrian movements were captured by two different laser
scanners. The first one was a Sick LMS100 indoor profile scan-
ner, which has a measurement range of 20 m, scan angle of 270◦

with 0.5◦ angular resolution. The factory given highest scan fre-
quency is 50 Hz, which is equivalent to the time resolution of 20
ms. Two data sets were captured in March 2015. The first was
467 s long, had 4281 records (stored profiles), taken ∼52 MB.
The average measurement frequency was 9.1 Hz (repetition rate
is roughly 109.3 ms). This data set was excellently suitable to
develop the required algorithms. The second data set was ∼155
MB, contained 12918 records, collected in 406 s. The frequency
and repetition rate was 31.7 Hz and 31.5 ms, respectively. Both
data sets were converted into Matlab data file, to be integrated in
the whole processing chain.

The second device was a flash Lidar sensor, the Kinect depth
camera from Microsoft. This device projects an IR pattern onto
the object and the reflected signal is captured by an IR camera
yielding to a 3D measurement system. Each pixel of the captured
image represents a virtual 3D point. Kinect includes an RGB
camera as well to extend 3D sensing capability. Depth and RGB
images are captured synchronously and both includes 640 × 480
pixels but have different FOV (depth camera: 58.5 × 46.6◦, RGB
camera: 62 × 48.6◦). The capturing frequency is 30 fps (See Fig.
1); it results a very high amount of data so the transmission speed
is a limitation (USB 2.0) and real time processing/storing has its
own limit. (Molnar et al., 2012) Data capturing was managed by
RGBDemo software.

The measurement was performed with different settings. The first
was a low resolution scanning of 72 s, logging of 1681 frames in
4.9 GB. The second measurement was 30 s long, taken 4.1 GB for
473 frames. Unfortunately, the scanner had some hardware prob-
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lems, which came out only after the data capture: there were a
systematic scintillation between the neighboring frames, so only
1030 frames were kept. The scanning frequency was about 29.7
Hz, meaning a repetition rate of 35.1 ms. The original data set
has been stored in a folder structure having subfolders for each
frame. This storage approach made the processing somewhat
complicated (in comparison to the Sick single data file style).

Figure 1. Frequency diagram of the Kinect sensor

3. PEDESTRIAN DETECTION METHOD

3.1 Detection for profile scanning

The raw data obtained by the profile scanning are polar coordi-
nates: it measures distance values at given scan angles. The LMS
scanner has a field of view starting from -45◦ to +225◦ in its lo-
cal coordinate system. At a half degree angular resolution there
are 541 directions, where the distances have been measured. The
very first processing step is therefore the transformation into or-
thogonal system considering the initial scanner position and ori-
entation. The x and y coordinates can be taken as temporal vari-
ables; by evaluating all profiles, one can derive a time series for
both coordinate vectors (Fig. 2). The pedestrians are moving ob-
jects: the approaching ones have increasing height, then a jump to
the ground level, while the passing pedestrians have quick height
jump to their highest values followed by progressive decrease to
the ground level (upper part of Fig. 2).

Figure 2. Time series for orthogonal coordinates of the profile
scanner: the pedestrians direction (upper diagram) and their pres-
ence (lower diagram)

There is a rapid analysis using all profile points: the clearance
of the corridor can be visualized (Fig. 3). Such diagrams help
to limit the working space or make available to get information
about the use of the corridor. The latter corresponds to the pedes-
trians habits, where they walk intensively. In this sense such
clearance diagrams can be the base for walking heat maps in a
given cross section.

Figure 3. Clearance diagram for the corridor. (The scanner is
marked by red cross)

After cutting out the most interesting part of the profile, a refer-
ence point set was extracted, where no pedestrian presence could
be noticed. This empty profile as a reference ensures the cal-
culation of height differences caused by the appearing pedestri-
ans. Defining a height threshold at 1200 mm, we can filter out
some noises from the measurement, but are able to segment the
dataset for pedestrians. This height limit was set empirically;
lower threshold values result too much data fragments (e.g. both
legs for a pedestrian), while too high threshold ignores smaller
pedestrians.

The thresholding step ends with a binary temporal image. Af-
ter some further smoothening steps, a connected-component la-
belling technique was performed considering eight-connected pixel
neighborhood (N8). This phase enables to label all blobs in the
binary image, which are the crossing pedestrians and to count
all those blobs. The independently labelled blobs (the pedestri-
ans) can have geometric and temporal features, such as maximum
height, maximum width, average width, or entry and exit time
stamps. The features derived this way can have also standard de-
viation values, or can be used for statistical analysis.

3.2 Detection for depth camera

The Kinect processing chain starts also with obtaining the refer-
ence. Because the depth camera produces imagery data periodi-
cally, no prior coordinate computation is needed. We only con-
verted the measurement range from meter level into millimeter
level (to homogenize all our measurements). As we noticed for-
merly, the Kinect sensor measurements are oscillating (pulsing),
we selected 21 empty frames for creating the reference instead
of a single one. The reference frames were then averaged and
slightly smoothened by median filter.

The main part of the processing phase was the computation of
the height differences to the reference frame. Since the measure-
ments were also noisy, some further filtering steps were required.
Similar to the profile scan processing, a suitable height thresh-
old was applied, resulting a binary image. This image can be
fine-tuned by median filter and image morphology operators, like
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opening.

After this procedure we validated our technology considering the
optical images captured simultaneously with the depth images. It
turned out that the beginning of the data set has been contami-
nated by a periodic error: an alternating frame storage was re-
alized. To eliminate these wrong measurements, we simply re-
moved those frames from the registered data set.

The validation was executed, as it can be seen in Fig. 4.

Figure 4. The Kinect depth image validation with the binarizing
steps and the visualization of the optical image

4. RESULTS

As it was presented in the previous sections, both profile scanning
and depth camera measurements have time-dependency. The Sick
methodology enables to create a binary image containing blobs
having pixels with heights above a threshold value. All blobs can
be labelled individually, but the visualization is the base of its
interpretation. Figures 5 and 6 show the two data sets after the
described segmentation, split into 1000 observation parts.

The samples contain 89 and 232 pedestrians; some of them were
fast (e.g. short blobs in the middle of Fig. 5), some were very
slow (like blobs in the 6th and 7th row). Neighboring pedestrians
are in the same column; it is quite typical for student crowd leav-
ing a lecture room (see Fig. 6). The profile scanner has sufficient
temporal and geometric resolution, proven by one of the authors
walking with outspread arms the last row in Fig. 5.

The Kinect procedure is more innovative. Because it collects a
depth image, the presented processing derives a two dimensional
matrix with height differences from the selected reference. The
history of these difference frames can be compiled into a 3D data
cube, where two geometric and one temporal coordinates, as ex-
tensions are to be managed (Fig. 7).

The data cube can have cross sections parallel to each coordinate
planes. The three possible planes are as follows: the first vertical
section is the difference frame itself (like the black and white
front view in Fig. 7). The horizontal section means a history at
a specific row in the difference frame. In Fig. 7 it was drawn
at 300, meaning a geometric position in the depth image, where
the pedestrians have crossed the line. The section plane contains
the pedestrian blobs; we observed 8 pedestrians in 72 s, in the
processed 1030 frames. The last section is also vertical: it has

Figure 5. Time series of sparse traffic of the corridor profile scan-
ning with all pedestrian blobs

Figure 6. Time series of dense traffic of the corridor profile scan-
ning with all pedestrian blobs

a similar meaning, like the horizontal history, but it observes a
vertical cross section. In some practical application this can be
useful.

5. CONCLUSION

Automatic counting of pedestrians can be achieved by the pre-
sented algorithms for profile laser scanner and depth camera. The
developed methods have high reliability, which was proven man-
ually by evaluating the recorded profiles and video footage. The
parameters of the pedestrians (e.g. height, width) and their move-
ments (e.g. velocity, trajectories) can be derived simultaneously,
then these measures can be evaluated statistically. The aggre-
gated information about pedestrian presence is excellent base for
maintenance and design purposes. Because pedestrians choose
the optimal way and speed, the monitoring is also suitable for
studying their walking habits. Surveying and analyzing crowded
areas, then the collaboration with engineers, architects and other
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Figure 7. 2D+1D data cube for visualizing Kinect height differ-
ence history

experts open new perspectives for reaching better infrastructure,
security and traffic service level.
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