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ABSTRACT:

In this paper we propose a cloud removal algorithm for scenes within a Sentinel-2 satellite image time series based on synthetisation
of the affected areas via sparse reconstruction. For this purpose, a clouds and clouds shadow mask must be given. With respect to
previous works, the process has an increased automation degree. Several dictionaries, on the basis of which the data are reconstructed,
are selected randomly from cloud-free areas around the cloud, and for each pixel the dictionary yielding the smallest reconstruction
error in non-corrupted images is chosen for the restoration. The values below a cloudy area are therefore estimated by observing
the spectral evolution in time of the non-corrupted pixels around it. The proposed restoration algorithm is fast and efficient, requires
minimal supervision and yield results with low overall radiometric and spectral distortions.

1. INTRODUCTION

Satellite Image Time Series (SITS) are sets of images acquired
by the same or different spaceborne sensors over the same area
at multiple acquisition times. In recent years, both the availabil-
ity and the temporal resolution of SITS acquired by multispectral
sensors is increasing steadily. An important challenge for the fu-
ture is the processing of SITS acquired by the Sentinel-2 mission,
which will make available multispectral SITS at global scale with
a frequent revisit time of less than 5 days, once both satellites of
the constellation will be in orbit (Drusch et al., 2012). It would
be desirable then to identify algorithms requiring limited supervi-
sion and computational resources to improve the automated pro-
cessing chain of these datasets.

One hindrance for the analysis of SITS acquired by optical sen-
sors is the presence of thick clouds in the scenes within a multi-
temporal stack, which makes difficult to observe the evolution of
a given ground cover in time. In recent years, researchers have
found sparse reconstruction techniques to outperform traditional
methods based on based on temporal replacement or patch-based
spatial replacement (Shen et al., 2015).

Recently, Sparse Unmixing-based Denoising (SUBD) has been
successfully applied for the inpainting of missing values in op-
tical earth observation data. SUBD estimates the value of cor-
rupted pixels based on their sparse decomposition in terms of un-
corrupted image elements, making only an indirect use of spatial
information. In the case of scenes affected by thick clouds within
a SITS, an effective restoration is usually possible if information
about the missing image elements is given in cloud-free acquisi-
tions in the multitemporal stack. A large set of cloud-free pixels
can be selected to model the evolution in time of the ground cov-
ers in a given scene, as sparse methods excel at handling what are
known as overcomplete dictionaries, i.e. a set of training samples
which can be much larger than the dimensionality of a dataset,
which for a multispectral SITS is proportional to the number of
spectral bands per image and to the number of temporal acquisi-
tions.
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The efficiency and automation of SUBD can increase when the
atoms in the overcomplete dictionary used for the reconstruction
are randomly selected from the image, as selecting a large number
of elements in the dictionary increases the performance minimis-
ing the reconstruction error yielded by a given dictionary. This
allows providing results in quasi real-time. Furthermore, the se-
lection of a random dictionary implies that dictionary selection,
usually requiring several parameters to set and computational re-
sources when carried out by explicitly avoiding coherent entries
or minimising reconstruction errors, only requires the setting of
the number of elements to be extracted. This can be chosen ac-
cording to the size of the analysed images and the number of
cloud-free acquisitions available for a given stack. Another ad-
vantage of working with sparse methods is their efficiency, as it
is possible to use specialized algorithms and data structures ex-
ploiting the sparse nature of the handled data, requiring limited
computational resources with respect to methods which operate
on dense matrix structures.

This paper presents the first results of applying SUBD for sparse
reconstruction of missing information in multitemporal Sentinel-
2 datasets, based on non-corrupted samples randomly acquired
from the same images. A mask for clouds and clouds shadows
must be given, and it is manually derived in our case. Given the
difficulties in the future to process the large amount of Sentinel-2
multitemporal data stacks that will be available, this paper also
moves towards an automation of the method, indicating how to
set adaptive thresholds in order to process these datasets in an
unsupervised way.

The paper is structured as follows. Section 2 gives a reminder on
the sparse reconstruction techniques adopted by the algorithm.
Section 3 reports the first experimental results of the method ap-
plied to a Sentinel-2 data stack. We conclude in Section 4.

2. SPARSE UNMIXING-BASED DENOISING (SUBD)

Sparse Unmixing-based Denoising (SUBD) has been defined in
(Cerra et al., 2016) and used to reconstruct images contaminated
by thick clouds in image time series. The main idea at the ba-
sis of the cloud removal method presented therein goes back to
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Unmixing-based Denoising (UBD), an algorithm which in its orig-
inal conception restored bands affected by a low Signal-to-Noise
Ratio (SNR) in hyperspectral images (Cerra et al., 2014). Hy-
perspectral datasets feature a high number of narrow, adjacent
spectral bands often in the order of hundreds, while as a com-
parison typical multispectral sensors have less than 10 (broader)
bands and Sentinel-2 has 13 bands at different spatial resolutions
(Drusch et al., 2012).

UBD is based on the concept of spectral unmixing, which aims
at decomposing each hyperspectral image element into a linear
(or less often non-linear) combination of signals representing the
backscattered solar radiation in each spectral band from a target
within the image or analysed in laboratory. The considered tar-
gets are typically composed of a single pure material or a homo-
geneous mixture of materials, and are often called endmembers
(Bioucas-Dias et al., 2012): in this paper we simply refer to them
as reference spectra in order to adopt a consistent nomenclature.
The output of a spectral unmixing process is a set of abundances
maps, quantifying the contribution of each reference spectrum to
a given pixel. In a linear spectral mixture a pixel m could be
expressed as:

m =

k∑
i=1

xisi + r, (1)

where x1 . . . xk and s1 . . . sk are the fractional abundances for
the k available and pre-selected reference spectra, while r is a
residual vector containing the portion of the signal which cannot
be represented in terms of the basis vectors of choice.

The output of the spectral unmixing process in eq. 1 is then in-
ferred into UBD’s reconstruction process. By considering the
physical properties of a mixed spectrum, the residual vector r
is assumed to be mostly composed by noise and more relevant in
spectral bands where atmospheric absorption effects are stronger,
and therefore ignored in the reconstruction.

Figure 1. Workflow for the described method. In orange the re-
quired input (data and parameters), in green the output. Most
of the required input parameters can be empirically or adaptively
derived without requiring too much supervision.

Better results have been obtained by coupling UBD with sparse
reconstruction techniques (Cerra et al., 2015). In sparsity-based

spectral unmixing, most of the abundances xi in Equation (1)
are equal to zero, as these methods assume that only a few ref-
erence spectra contribute to m, and the abundance vector to be
estimated is therefore sparse. The use of sparse unmixing within
the UBD workflow resulted in the definition of Sparse Unmixing-
based Denoising (SUBD), which can be carried out as follows.

In the first step a spectral dictionary A is derived by collecting a
large number of image elements, randomly selected from the area
which is cloud-free in all the images in the stack. The dictionary
is overcomplete, meaning that the number of entries it contains is
higher than the dimensionality of the data. The use of overcom-
plete libraries for sparse reconstruction have been widely used in
the past; see, for example, (Iordache et al., 2011), (Bieniarz et al.,
2015), and (Tang et al., 2014). Afterwards, each image element
y and the dictionary A are fed to a non-negative version of the
least angle regression LASSO (LARS/LASSO) reconstruction al-
gorithm (Efron et al., 2004), which guarantees a sparse solution
by solving the following minimization problem:

minx|Ax̌− y̌|22 s.t. |x̌1| ≤ λ, x̌ ≥ 0 (2)

where y̌ is the original image from which the corrupted bands
have been removed, and x̌ contains the fractional abundances for
the spectra selected in the reconstruction of y̌, without consider-
ing the bands belonging to the corrupted image. The regulariza-
tion parameter λ is the upper bound on the `1 norm controlling
the sparsity of the solution vector x̌. The regularization prob-
lem in eq. 2 is especially advantageous when the dictionary A
is overcomplete: this is the case for the large spectral libraries
used in SUBD, which are also highly coherent (Bioucas-Dias et
al., 2012, Bieniarz et al., 2015). This motivates the choice of the
LARS solver, which is robust in dealing with dictionaries having
the mentioned characteristics (Bach et al., 2011).

It is important to remark that in the problem x̌ must be used in-
stead of x, as including in the dictionaries the values of corrupted
bands (covered by clouds) would introduce relevant error in the
abundance estimation step. Instead, the reconstruction is esti-
mated in the cloud-free portion of the stack. To give an informal
example, consider a pixel p1 below a cloud in the first image of
a stack containing n acquisitions, and that in the rest of the stack
the spectro-temporal pattern p2...n is composed by 50% of D1

and 50% of D2, where Di is the ith entry in a dictionary. If in
eq. 2 the bands from p1 would be included in the dictionary, the
real abundance values could be reconstructed with relevant errors.
Instead, the pixel p1 can be reliably reconstructed as a subset of
p = 0.5D1 + 0.5D2, as the relative dictionary entries have been
collected from areas of the image which are cloud-free also in the
corrupted portion of the stack.

With respect to previous works, instead of selecting the median
value for each reconstruction after running the process several
times, in this paper we select separately the best dictionary for
each pixel, chosen in order to yield the minimum value for r after
the reconstruction in eq. 1. This increases the probability that all
type of materials or ground covers below the cloud can be cor-
rectly reconstructed if they are present also outside of the clouds
and selected in any of the dictionaries, as this would yield the
minimum reconstruction error.

The full workflow for the method is reported in Fig. 1, in which
the required inputs are highlighted. These can be empirically
or automatically derived as follows. Firstly, a clouds and cloud
shadows mask is easier to automatically retrieve from a SITS
than from a single image from dedicated algorithms. Regarding
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Figure 2. True color combination for a cloud-free subset from
the Sentinel-2 Stack analysed in this paper. The area denoted
with an A is assumed to be covered by thick clouds and therefore
invisible. The dictionaries used for the sparse reconstruction are
built by collecting random pixels from the area in a buffer around
the cloud, denoted with a B.

the setting of the λ regularization parameter, a value of 1 usu-
ally yields satisfactory results whenever the dictionary entries are
collected from the same image (Cerra et al., 2016). With the dic-
tionary size empirically set as will be detailed in next Section,
the only parameter requiring further investigations is the number
of iterations. From preliminary analysis, results did not change
significantly after 50 iterations, so we set this specific parameter
to 50 in the reported experiments.

3. EXPERIMENTAL RESULTS

We analyse a stack of four images acquired over an area close to
the city of Rome, Italy, in a timespan ranging from the 18th of
December 2015 to the 17th of January 2016. A 550 × 550 sub-
set which is cloud-free in all the images is selected, and only the
bands with a spatial resolution of 10 or 20 meters are kept for a to-
tal of 10 spectral bands per image. The three bands with a spatial
resolution of 60 meters are discarded, and the bands at higher res-
olution are resampled to 20 meters after applying a Gaussian filter
separately to each one to prevent aliasing. Please note that this is
done only to simplify the workflow: the bands could be kept at
their original resolution by applying the method separately to the
three groups of spectral bands, with no degradations in perfor-
mance (Cerra et al., 2016).

After the subset is selected, occlusion by a cloud of size 350×350
is simulated in the center of the image (area A in Fig. 2). A to-
tal of 50 dictionaries D is built by collecting for each of those 20
random spectra from the stack in the area outside of the cloud, de-
noted by a B in Fig. 2. The number of elements |D| for each dic-
tionary D is chosen applying the empirical rule defined in (Cerra
et al., 2016):

|D| = min{5N, 100} (3)

Figure 3. True color combination for the restoration of the area
denoted with an A in Fig. 2.

In which N is the dimensionality of the subspace containing the
relevant information in the dataset. To estimate N methods tradi-
tionally applied to hyperspectral image processing could be used
(Bioucas-Dias and Nascimento, 2008). In this case we applied
a Principal Component (PC) transform to the Sentinel SITS and
select a number of dimensions which contains more than 98.5%
of the total variance of the dataset. For the described stack, these
conditions are met by selecting the first four PCs after the rota-
tion, so N is set to 4 and |D| to 20.

Afterwards, SUBD as described in eq. 2 is applied, and the image
is reconstructed according to the dictionary yielding the smallest
residual vector for each pixel. Results are reported in Fig. 3.
The images are visually very similar, with smooth transitions on
the borders between the reconstructed obscured pixels and the
cloud-free ones. Results are assessed quantitatively by estimating
the absolute reconstruction error and spectral distortion across the
10 considered bands in the affected image. For the former, the
figure of merit is the Mean Average Error (MAE) across all the
considered 10 spectral bands expressed in percentage, while the
latter is quantified through the mean Spectral Angle (SA) (Kruse
and al., 1993). Results are reported in Table 1.

MAE SA
1.08% 4.5× 10−2

Table 1. Mean Average Error (MAE) and Spectral Angle (SA)
for the cloud removal experiment in the area denoted by an A in
Figs. 2 and 3.

It is possible to spot in the lower part of the larger lake of the
reconstructed image a pattern in the water which is not present
in the original image. This is due to the fact that, even though
the method can succeed at keeping local spectral information, a
consistency is assumed between spatial patterns in the rest of the
stack. To explain what this could mean in practice, assume hav-
ing an agricultural field which is partially covered by thick clouds
in one image and that its spectrum changes abruptly only in this
particular image. If the dictionary used for its sparse reconstruc-
tion contains a sample image element from the cloud-free portion
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of that field, this can be reliably reconstructed. On the other hand,
local changes on the field below the cloud such as specific crop
marks cannot be restored.

Results could be provided to the end users simply as restored
images, or by overlaying a transparent white layer on the recon-
structed areas, in order to clearly show which pixels have been
synthesized and are therefore less reliable than the ones which
were cloud-free in the first place. An example for this visualiza-
tion is reported in Fig. 4.

4. CONCLUSIONS

This paper presents the first results of applying Sparse Unmixing-
based Denosing (SUBD) to cloud removal in single scenes of
Sentinel-2 SITS. Pixels covered by clouds are restored through
sparse reconstruction, with the employed dictionaries composed
of randomly selected cloud-free pixels.

To increase the automation of the method, a set of dictionary
composed by randomly selected image elements is considered,
and for the restoration of each pixel the dictionary yielding the
minimum reconstruction error in the available cloud-free bands is
selected. This allows selecting with high probability a given dic-
tionary which contains the spectro-temporal patterns of the ma-
terials of which the pixel of interest is composed. These will be
more than one if the image element to be reconstructed is mixed,
thing which is likely at Sentinel-2 ground sampling distances.
First results on a data stack acquired close to the city of Rome
in Italy are satisfactory both objectively and subjectively, as they
are visually very similar to the test image and are restored with
low reconstruction errors.

The method is not suitable for cases in which information on the
contaminated pixels is corrupted but available, as in the case of
haze, as it completely ignores the cloudy pixels in the reconstruc-
tion process. For this purpose, algorithm coming from the field
of atmospheric correction should be employed instead.

In the future, traditional methods based on substitution of the con-
taminated pixels with cloud-covered ones will be integrated in the
workflow. The reconstruction process will resort to these alterna-
tive algorithms whenever the residual vector is too high, indicat-
ing that probably the materials composing a given pixel below
the cloud have not been found in any dictionary extracted from
the cloud-free areas around the sensitive one. Another improve-
ment would be represented by a better characterization of the area
from which the dictionaries are extracted, increasing the proba-
bility that a selected dictionary entry contains a material which is
also present to some degree in the area below the cloud. If the
cloud mask is available, a possible choice would be creating a
buffer around the cloud, and forcing the dictionary entries to be
selected from the area defined by the buffer: this would go in the
direction of the experiments in Section 3 for the simulated square
cloud therein.
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