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ABSTRACT:

In this paper, we propose a unified framework for efficiently completing streetview and indoor360◦ panoramas due to the lack of bottom
areas caused by the occlusion of the acquisition platform. To greatly reduce the severe distortion at the bottom of the panorama, we first
reproject it onto the ground perspective plane containing the whole occluded region to be completed. Then, we formulate the image
completion problem in an improved graph cuts optimization framework based on the statistics of similar patches by strengthening
the boundary constraints. To further eliminate image luminance differences and color deviations and conceal geometrical parallax
among the optimally selected patches for completion, we creatively apply a multi-bland image blending algorithm for perfect image
mosaicking from the completed patches and the originally reprojected image. Finally, we back-project the completed and blended
ground perspective image into the cylindrical-projection panorama followed by a simple feathering to further reduce artifacts in the
panorama. Experimental results on some representative non-panoramic images and streetview and indoor panoramas demonstrate the
efficiency and robustness of the proposed method even in some challenging cases.

1. INTRODUCTION

A panorama is an image with a wide angle of view, which has
been widely used for street view photos and indoor virtual tour
recently. A panorama with a view angle of360◦ is common
in specific applications. To obtain such360◦ high-resolution
panoramas, one common way is to capture multiple images syn-
chronously from an integrated platform with multiple cameras
whose viewpoints cover the whole360◦ except for the ground
region occluded by the platform itself and then mosaic these im-
ages into a complete360◦ panorama. This way has been widely
used in industry, for example, Google Street View, and Chinese
Baidu and Tencent Street View, by mounting such an integrated
platform on a mobile vehicle or a backpack. Another simple and
popular way is to capture multiple images at different times with
a single camera mounted on a static platform (e.g., a tripod) by
rotation and then generate a panorama from these images. This
way is widely applied for panorama acquisition in indoor scenes
or relatively small spaces. All of these acquisition ways cannot
perfectly cover the complete360◦ viewpoint due to the ground
occlusion caused by the platforms themselves. To quickly obtain
a perfect and complete360◦ panorama, the image completion
and blending techniques can be applied to complete the ground
occluded region. In addition, for some privacy protection, we
can also apply image completion to conceal the sensitive image
regions.

Image completion aims to generate visually plausible completion
results for missing or content-concealed image regions. In gen-
eral, most of image completion algorithms are divided into two
categories: diffusion-based and exemplar-based. Earlier work-
s (Ballester et al., 2001, Roth and Black, 2005, Levin et al., 2003,
Bertalmio et al., 2000, Bertalmio et al., 2003) typically used the
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diffusion-based methods, which find the suitable colors in the re-
gions to be completed through solving partial differential equa-
tions. These methods usually make use of the consistency of an
image and are only suitable for filling narrow or small holes in
the image. The ground bottom region to be completed in a360◦

panorama is usually too huge to be effectively completed with
these diffusion-based methods.

Another category of image completion methods are exemplar-
based. They can obtain satisfactory results even for huge holes
in some cases. The basic idea of these methods is to first match
the patches in the unknown region with the ones in the known one
to find the potential suitable patches and then copy or synthesize
the matched ones in the known region under some constraints
in color, texture, and structure (Criminisi et al., 2003). These
methods are always involved in two issues: (i) how to search
for the fittest patches for the image region to be completed; (i-
i) how to synthesize the patches to keep visual coherence. More
specifically, these exemplar-based methods can be further divid-
ed into two categories. Some methods (Jia and Tang, 2004, Drori
et al., 2003, Efros et al., 1999, Jia and Tang, 2003, Criminisi et
al., 2003) first matched the patches in the unknown region with
ones in the known one, and copy those matched patches in the
known one to complete the unknown one. The approach pro-
posed by (Sun et al., 2005) requires the user’s interactions to
point out the structure in the missing part to guide the completion
process. Another category of exemplar-based methods (He and
Sun, 2014) formulate the image completion problem in a graph-
based optimization framework. Rather than directly matching
patches, they rearranged the patch locations under a Markov ran-
dom field (MRF) energy optimization framework with some com-
pletion constraints. Especially, (He and Sun, 2014) proposed a
graph-cuts-based optimization method based on the statistics of
similar patches, which is one representative of the state-of-the-
art image completion algorithms. Their proposed method first
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matched similar patches in the image and found that the statis-
tics of these offsets are sparsely distributed. Referring to dom-
inant offsets as labels to be optimized, (He and Sun, 2014) de-
fined a MRF energy function, which was optimized via graph
cuts (Boykov et al., 2001). The final image completion was im-
plemented with the guidance of the optimized label map. In gen-
eral, these exemplar-based methods are able to be more suitable
for filling huge holes in images, in which the image structural
information plays an important role.

Although the state-of-the-art image completion algorithms can
generate satisfactory completion results in most cases, the ground
bottom area in a360◦ panorama to be completed is usually large
with severe distortion, which makes existing image completion
algorithms very challenging or even impossible for completing it.
In this paper, we propose a novel unified blending framework for
image completion, especially completing panoramas with a view
angle of360◦. The whole framework is comprised of five main
steps as shown in Figure 1. Firstly, we reproject the cylindric-
projection360◦ panorama onto the ground perspective plane con-
taining the whole occluded region to be completed, which greatly
reduces the distortion and makes the exemplar-based image com-
pletion methods feasible. Secondly, inspired by the method pro-
posed by (He and Sun, 2014), we formulate the image comple-
tion problem in an improved graph cuts optimization framework
based on the statistics of similar patches by strengthening the
boundary constraints in the smooth and data energy terms. Third-
ly, to further eliminate image luminance differences and color de-
viations and conceal geometrical parallax among the optimally s-
elected patches for completion, we propose to first apply the glob-
al luminance compensation followed by applying a multi-bland
image blending algorithm for perfect image mosaicking from the
completed patches and the originally reprojected image. Fourth-
ly, we back-project the completed and blended ground bottom im-
age into the cylindrical-projection panorama. Finally, to further
reduce artifacts and keep the good resolution in the panorama,
we propose to apply an image feathering on the original panora-
ma and the back-projected one.

The remainder of this paper is organized as follows. The whole
unified panorama completion framework will be detailed intro-
duced in Section 2. Experimental results on some representative
non-panoramic images and streetview and indoor panoramas are
presented in Section 3 followed by the conclusions drawn in Sec-
tion 4.

2. OUR APPROACH

Our proposed unified blending framework for panorama com-
pletion will be introduced in the following five subsections. In
Section 2.1, we first introduce a theoretical foundation that we
can reproject a360◦ panorama onto the ground perspective plane
containing the whole occluded region. Inspired by the method
proposed by (He and Sun, 2014), the proposed image completion
method under an improved graph cuts optimization framework
will be presented in Section 2.2. To generate perfect completion
results, we first perform a global luminance compensation opera-
tion on all the optimally selected patches for completing and the
original background image and then apply a multi-bland image
blending on all luminance corrected patches and the originally
reprojected image, which can greatly eliminate image luminance
differences and color deviations, and conceal geometrical paral-
lax among the optimally selected patches. These two operations
are introduced in Section 2.3. The back-projection is the reverse
process of panorama perspective projection and they share the
same theoretical foundation. The completed and blended image

Figure 3. An illustration of two rotation processes to get a per-
spective projected image from a cylindrical-projection panorama.
Along the arrow: original sphere coordinate systemS−X1Y1Z1,
rotatingϕ about theY1 axis to getS−X2Y2Z2, rotatingω about
theX2 axis to getS −X3Y3Z3, and final projection process.

is back-projected to the cylindrical-projection panorama, which is
introduced in Section 2.4. Finally, to further reduce artifacts and
keep the good resolution in the panorama, we propose to apply an
image feathering on the original panorama and the back-projected
one, which is introduced in Section 2.5.

2.1 Panorama Perspective Projection

To reproject a360◦ panorama onto the ground perspective plane,
the main work is to find a transformation from a pixel on the
cylindrical-projection panorama to the corresponding pixel on the
perspective projection image. We introduce a virtual sphere co-
ordinate system as a transition of this problem. As shown in Fig-
ure 2, a pixelA on a360◦ panorama has a simple correspondence
with the pixelA′. These two corresponding pointsA andA′ are
linked by two longitude and latitude angles(θ1, θ2). The pointA′

also has three-dimensional coordinates(XS , YS, ZS) in this vir-
tual sphere coordinate system. From the virtual sphere to the re-
projected perspective image, it needs getting through two rotation
processes with two rotation angles(ϕ, ω) and one perspective
transformation as shown in Figure 3. The specific rotation angles
(ϕ, ω) denote the sight direction looking at the occluded bottom
region of a panorama. If we denote the three-dimensional per-
spective coordinates(XP , YP , ZP ), according to the principles
of rotation transformation, the perspective transformation can be
formulated as:





XP

YP

ZP



 = RϕRω





XS

YS

ZS



 , (1)

where(XP , YP , ZP ) denotes the perspective projected point from
the point(XS , YS, ZS) in the panorama, andRϕ andRω stand
for two rotation matrices with the rotation anglesϕ andω, re-
spectively. When reprojecting the panorama onto the ground per-
spective plane, apart from the sight direction, the field of view
and the focal length should also be specified properly to obtain a
projected image in a suitable size to contain the whole occluded
bottom region.

2.2 Image Completion via Graph Cuts

Recently, (He and Sun, 2014) proposed a graph-cuts-based image
completion algorithm, which is one representative of the state-of-
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Figure 1. The flowchart of the proposed unified blending framework for panorama completion.

Figure 2. The perspective projection transformation from a cylindrical-projection panorama to a virtual sphere.

the-art image completion algorithms and achieves great perfor-
mances in filling huge holes in images. Similarly, we formulate
the image completion problem in such a graph cuts optimization
framework based on the statistics of similar patches but with two
improvements strengthening the boundary constraints.

(He and Sun, 2014) first matched patches in the known region
of the image using a Propagation-Assisted KD-Trees (He and
Sun, 2012). Then, they calculated dominant offsets based on
these matched patches. These dominant offsets present the self-
similarities of the image, which are referred as a set of labels to
be optimized in graph cuts. After that, they defined a Markov
random field (MRF) energy function as follows:

E(L) =
∑

x∈Ω

Ed(L(x)) +
∑

(x,x′)|x∈Ω,x′∈Ω

Es(L(x), L(x
′)), (2)

whereΩ stands for the unknown region to be completed,x de-
notes a point inΩ, (x,x′) denotes a pair of four-connected neigh-
bouring points, andL refers to the label map, which assigns each
unknown pixelx ∈ Ω a labelL(x). Each label corresponds to
one of the pre-selected dominant offsets. If a labeli is assigned
to the pixelx, i.e.,L(x) = i, it means that the color ofx will
be completed by that of the pixel atx+ oi whereoi denotes the
offset coordinates of the labeli.

In (He and Sun, 2014), the data energy termEd in Eq. (2) is
defined as:

Ed(L(x)) =

{

0, if the labelL(x) is valid forx,

+∞, if the labelL(x) is invalid forx.
(3)

Figure 4. An illustration of an unknown region to be completed
with a dilation operation: (Left) the original missing part; (Right)
the dilated result.

And the smooth energy termEs is defined as:

Es(L(x),L(x
′)) =‖I(x+o(L(x)))−I(x+o(L(x′)))‖2+

‖I(x′+o(L(x)))−I(x′+o(L(x′)))‖2,
(4)

whereI(·) denotes the color values of a pixel in the imageI, and
o(·) denotes the offset coordinates of some label.

For the data energy term, we think its penalty is so weak to con-
strain label optimization. Although the unknown region has been
expanded by one pixel to include boundary conditions, the im-
posed boundary constraints still fail to get satisfactory results in
some cases. Hence, we propose to further strengthen the con-
straint of the data energy. As shown in Figure 4,Ω1 is the miss-
ing region to be completed and we expand it toΩ2 with a simple
dilation operation. LetΩ3 be the extra region caused by dilation,
i.e.,Ω3 = Ω2 − Ω1. Different from setting the labels of pixels
in Ω1, all pixels inΩ3 are assigned with a new label at an off-
set(0, 0). In this way, we further optimize the whole expanded
regionΩ2. We impose boundary constraints by considering the
differences between the optimized output and the original data in
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Ω3. The data energy term is modified as follow:

Ed(L(x))=











DS , if x ∈ Ω3,

0, if x ∈ Ω1 andL(x) is valid forx,
+∞, if x ∈ Ω1 andL(x) is invalid forx,

(5)

whereDS is used to measure the difference ofΩ3 before and
after optimization and imposes important boundary constraints.
Here, we consider both color intensities and gradient magnitudes
in DS , which is defined as:

DS =‖I(x + o(L(x)))− I(x)‖2+

‖∇I(x + o(L(x)))−∇I(x)‖2

where∇I stands for the gradient map of the imageI.

For the smooth energy term, only color intensities are considered
in (He and Sun, 2014). When the image of the scene is com-
plex enough, it may find a pixel that has a similar color but is
not suitable for the missing pixel anymore. As we know, gradient
contains more information about image structure. So, we com-
bine it with color intensities to construct our smooth energy to
reduce the artifact, which is defined as:

ES(L(x), L(x
′)) = Ecolor

S + α× Egradient
S , (6)

whereα is a weight parameter to balance color intensity and gra-
dient terms (α = 2 was used in this paper),

Ecolor
S =‖I(x+ o(L(x)))− I(x+ o(L(x′)))‖2+

‖I(x′ + o(L(x)))− I(x′ + o(L(x′)))‖2,
(7)

and

Egradient
S =‖∇I(x+ L(x))−∇I(x+ L(x′))‖2+

‖∇I(x′ + L(x))−∇I(x′ + L(x′))‖2.
(8)

With both improved data and smooth energy terms, the total en-
ergy function can be optimized in a graph cuts energy optimiza-
tion framework with a publicly available multi-label graph-cuts
library 1. The optimized output is a label mapL, which assigns
each unknown pixel with an offset label.

2.3 Image Blending

Different labels guide the pixels in the unknown region to be com-
pleted to find the optimally corresponding one at different parts
of an image. Different patches generated by the optimal label
map maybe result in luminance differences, color deviations, and
even geometrical parallax among the finally completed image re-
gion, as shown in Figure 5. To greatly alleviate these issues, we
choose to apply a multi-bland image blending algorithm (Burt
and Adelson, 1983) for perfect image mosaicking from the com-
pleted patches and the originally reprojected image.

To make use of the multi-bland image blending algorithm, we
first generate the label mask map for each single label. Then, we
expand these label mask maps with a dilation operation to make
them having overlaps, which is the basic requirement of using this
blending algorithm. For each expanded label mask map, we indi-
vidually generate its corresponding image according to the patch
offset the label refers to. Figure 6 presents three selected label
mask maps with their corresponding sub-images. Especially, we
refer to the whole background mask, which is not required to be

1Available at http://www.csd.uwo.ca/faculty/olga/

Figure 5. An illustration of the optimal label map (Left) and
its correspondingly completed image region at the bottom of a
streetview panorama.

Figure 6. The mask maps corresponding to three labels in the top
row and the corresponding sub-images in the bottom row.

completed, as another label and the background of the uncomplet-
ed projected image as a sub-image, as shown in the last column in
Figure 6. In this way, we not only blend sub-images generated by
different labels and but also blend them with the background to
suppress the seams between completed patches and the original
background image.

However, while the luminance differences between neighboring
patches or one between completed patches and the original back-
ground image are very apparent, only applying a multi-bland im-
age blending is not enough to eliminate the artifacts. In these
extreme cases, we choose a simple gain model as the luminance
refinement model to correct those patches used for completion
before performing the multi-bland image blending. As for each
pair of adjacent sub-imagesPi andPj , as illustrated in the bot-
tom row in Figure 6, we transfer them to thelαβ color space, in
which thel channel denotes the main luminance component. The
difference betweenPi andPj after the adjustment can be written
as:

eij = (aiµ(Pi)− ajµ(Pj))
2 + α((ai − 1)2 + (aj − 1)2), (9)

whereµ(·) denotes the mean luminance of valid pixels in some
sub-image,α is a fixed weight for preserving the average variance
of the images after adjustment. andai andaj stand for the gain
coefficients ofPi andPj , respectively. Considering the joint ad-
justment for all the pairs of adjacent sub-images in allN labels,
the total difference can be written as:

E =
∑

i=1...N,j=1...N
Pi andPj are adjacent

eij . (10)

We aim to find such a set of coefficientsA = {ai}
N
i=1, which

minimizes the total difference between each pair of images in
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Figure 7. An illustration of obvious artifacts in a completed
panorama by just back-projecting the completed image region in
the ground perspective plane.

overlaps. It can be achieved by solving Eq. (10) through the linear
least square algorithm.

Combining the luminance adjustment under a gain model and a
multi-bland image blending algorithm can improve the luminance
consistency of the completed projected image, even when the lu-
minance difference is very large at the beginning, and generate a
perfectly completed image as seamless as possible.

2.4 Back-Projection to Panorama

After mosaicking the completed image region, we back-project it
onto the original panorama model to fill the occluded region at
the bottom of the panorama. In Section 2.1, we have described
the transformation from the cylindrical-projection panorama to
the perspective projected image. Back-projection is its reverse
process. By invertingRϕ andRω, the transformation of back-
projection can be formulated as:





XS

YS

ZS



 = R
−1
ω R

−1
ϕ





XP

YP

ZP



 . (11)

2.5 Panorama Feathering

When we back-project the whole mosaicked image region onto
the panorama, the resolution has declined in the area that would
be covered when the whole projected image is back-projected
onto the panorama. Thus, we would just back-project the com-
pleted image region corresponding to the missing one rather than
back-projecting the whole mosaicked image. However, just back-
projecting the completed image region would cause an obvious
artifacts in the finally completed panorama due to different reso-
lutions between the back-projected image region and the original
panorama. In addition, it also introduces another issue. Although
the blending result on the projected image is perfect, it changes
the luminance and color of the image regions close to the com-
pleted region but not inside it due to that the multi-band blending
adjusts the whole image in the whole. As shown in Figure 7, if we
only back-project the completed image region to the panorama,
there exist obvious artifacts in the finally completed panorama.

The above mentioned two issues can be efficiently solved by ap-
plying a simple feathering on the original panorama and the com-
pletely back-projected one. As shown in Figure 8, we do feath-
ering by adjusting the color intensities between linesA andB
where the lineA denotes the boundary of the occluded region
to be completed and the lineB is far away fromA with a fixed
range. Given a pixelx between the linesA andB, the color
intensities after feathering are calculated as follows:

Ip(x) = α× I
o
p(x) + (1− α) × I

b
p(x), (12)

whereIp, Iop, and I
b
p stand for the feathered panorama, the o-

riginal one, and the back-projected one completely from the mo-
saicked image in the ground perspective plane, respectively, and

the feathering coefficientα is calculated as:

α = d(x,A)/(d(x,A) + d(x,B)),

whered(x,A) andd(x, B) represent the vertical distances from
the pixelx to the linesA andB, respectively.

3. EXPERIMENTAL RESULTS

To sufficiently evaluate our proposed unified blending framework
for panorama completion, we tested our algorithm on a set of
representative streetview and indoor360◦ panoramas, provided
by Baidu and Tencent.

Recently, (He and Sun, 2014) proposed a graph-cuts-based image
completion algorithm which is considered as one state-of-the-art
method. However, their proposed method only considers color
intensities in the definition of MRF energy function and its con-
straints upon boundary areas are too weak to obtain some satis-
factory results in some cases. To prove that our improvements do
work well even in challenging cases, we tested it on some repre-
sentative non-panoramic images. Figure 9 shows the completion
results on two images with obvious self-similarities but with s-
light deviations to some extent. From Figure 9, we observed that
the completion results generated via our improved graph cuts is
better than the original method proposed by (He and Sun, 2014).
The misplacement between the whole completed image region
and the boundary one of the original background image was ob-
viously reduced as shown in the first row in Figure 9. Also, the
misplacement between different patches inside the completed im-
age region was alleviated to some extent as shown in the second
row in Figure 9. This improvement benefits from strengthening
the boundary and gradient constraints in our improved graph cuts
optimization framework.

Figure 10 shows the comparative results with a multi-band blend-
ing operation and without it applied in the ground perspective im-
ages of the bottom regions of three streetview panoramas, from
which we observed that the proposed blending strategy greatly
eliminates the image luminance and color deviations, and also
conceals small misplacements. The used luminance gain mod-
el calculated the gain coefficients through the linear least square
algorithm and adjusted the luminance of all the patches (i.e., sub-
images) according to their own gain coefficients. Figure 11 shows
comparative results, from which we observed that our used lumi-
nance compensation strategy is able to correct all the completed
patches and the original background image into a more consistent
luminance. In some extreme cases with severe luminance differ-
ences, directly applying the multi-band image blending would not
work very well. In this condition, we first performed the lumi-
nance compensation, whose advantage is illustrated in Figure 12.
From Figure 12, we observed that the combined strategy slight-
ly improves the blending result than just applying the multi-band
blending.

Panorama feathering is a post-processing work to suppress the ar-
tifacts on the completed panoramas. Figure 13 shows the compar-
ative results on three streetview panoramas before and after feath-
ering. From Figure 13, we observed that our proposed panorama
feathering strategy can obviously eliminate the artifacts in the fi-
nally completed panoramas.

Figure 14 shows two finally completed panoramas by our pro-
posed unified framework, from which we observed that the com-
pleted results are very satisfactory as a whole not only for indoor
panoramas but also for outdoor ones.
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Figure 8. An illustration of the feathering area in a panorama.

Figure 9. Comparisons between our improved graph cuts optimization and the original method proposed by (He and Sun, 2014): input
images with black mask regions to be completed, the completion results by our method and the original one, from left to right.

Figure 12. Comparative results of performing image blending
without luminance compensation in the top-right corner and com-
bining two methods in the bottom-right corner

4. CONCLUSION

In this paper, we propose a unified framework for efficiently com-
pleting streetview and indoor360◦ panoramas due to the lack of
bottom areas caused by the occlusion of the acquisition platform.
The whole unified framework is comprised of five main stages.
Firstly we reprojected the panorama onto the ground perspec-
tive plane containing the whole occluded region to be completed.
Secondly, the image completion problem was solved by formulat-
ing it in an improved graph cuts optimization framework. Thirdly,
we proposed to apply the luminance compensation and a multi-
bland blending operations to greatly eliminate the luminance d-

ifferences of different patches used for completion, which has
great effect in completing streetview and indoor360◦ panoramas
with complex lighting conditions. Fourthly, we back-projected
the completed and mosaicked ground perspective image into the
cylindrical-projection panorama. Finally, we did feathering on
the completed panorama to further reduce artifacts in the panora-
ma. This proposed unified framework is helpful to quickly com-
plete a perfect and completed360◦ panorama. Experimental re-
sults on a large amount of representative non-panoramic images
and panoramas demonstrate the efficiency and robustness of our
proposed panorama completion algorithm. Although the satisfac-
tory results can be achieved in most cases, the current framework
is not very feasible for the ground projection images with severe
perspective distortion or with very cluttered backgrounds, which
will be further studied in the future. In addition, we implemented
the current completion optimization strategy with a single CPU,
which can be further improved with multiple CPU cores and even
multiple GPU ones.
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Figure 10. Comparative image completion results without applying a multi-band blending operation in the top row and with applying
it in the bottom row.

Figure 11. Comparative results without the luminance compensation in the top row and with it in the bottom row.
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Figure 13. Comparisons of three completed streetview panoramas before feathering (top images) and after feathering (bottom images).

Figure 14. Two finally completed panoramas by our proposed unified framework.
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