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ABSTRACT: 

 

In this article a method for reconstructing atmospheric cloud surfaces using a stereo camera system is presented. The proposed camera 

system utilizes fish-eye lenses in a flexible wide baseline camera setup. The entire workflow from the camera calibration to the creation 

of the 3D point set is discussed, but the focus is mainly on cloud segmentation and on the image processing steps of stereo 

reconstruction. Speed requirements, geometric limitations, and possible extensions of the presented method are also covered. After 

evaluating the proposed method on artificial cloud images, this paper concludes with results and discussion of possible applications for 

such systems. 

 

 

1. INTRODUCTION 

1.1 Motivation 

The reconstruction of objects visible on the open sky is an 

attractive topic for both practical applications related to aerial 

navigation or detection, and applied scientific fields of 

meteorology, astronomy, even photogrammetry. While the 

hardware setups that perform the measurement and provide data 

for such applications are changing from range scanners to active 

light measurement devices, the use of relatively simple, passive 

camera systems still hold some benefit as well as challenges. 

Over the last three decades many kinds of sky imagers have been 

developed. In the 1980’s the main goal was to detect the whole 

sky cloud coverage. The first whole sky digital imager was 

developed in 1984 (Johnson, 1989). This device captured digital 

images at blue and red wavelengths using a charge injection 

device (CID). By processing this data, the first automated cloud 

detection algorithm was developed which could identify each 

individual pixel as opaque cloud, thin cloud or no cloud. 

Following the daylight sensors development was begun in the 

early 90’s on devices which could compute the coverage day and 

night. Most of the devices were applied fish-eye lens with 180° 

field of view. The detectors have changed over the time: from 

CID devices, to grayscale CCDs, to RGB CCD sensors (Shields, 

2013). 

 

1.2 Cloud Detection History 

Detecting clouds on sky images is a challenging task. The general 

cloud cannot be described by its shape, contour or structure. 

Color is the most informative property in segmentation of clouds 

in the sky. 

Many different types of color based segmentation method can be 

found in the literature. The main difference between the 

techniques is their respective color model. The first approaches 

used special types of cameras which could detect light at specific 

wavelengths (Johnson, 1989). These wavelengths were near the 

blue and red colors. After the common CCD sensors become 

widespread the standard RGB color space was applied. The ratio 

(R/B) or difference (R-B) of the red and blue channels was used 

in the early 2000’s (Long, 2006; Calbó, 2008). In 2014 a 

systematic analysis was published (Dev, 2014) to determine 

which color channels are the best for segmenting clouds. This 

study includes other color models: HSV, YIQ, CIE. The results 

point out that the S channel of the HSV color model is one of the 

most promising channels for cloud segmentation. A proposal for 

a new candidate of color features, used for cloud segmentation, 

is discussed in the cloud segmentation chapter. 

 

1.3 Stereo Reconstruction 

The use of stereo or multi-view reconstruction of outdoor scenes 

has been well studied in past decades. These advancements 

combined with the development of cameras optics, sensors and 

continuously growing processing power contributed to the 

realization of many practical applications. Many applications 

target the reconstruction of surfaces (Salman, 2010) often from 

wide baseline images (Megyesi, 2006). The use of spherical 

stereo (Kim, 2013) has also been introduced to utilize the fish-

eye lens cameras. However, the application of such passive stereo 

methods to reconstruct atmospheric cloud surfaces has not been 

addressed before. 

 

1.4 Contents of the Article 

This article presents a camera system and a method to reconstruct 

atmospheric clouds. Section 2 discusses the details of the camera 

setup. Section 3 summarizes 3D reconstruction, discusses 

specialties of cloud surface reconstruction from stereo fish-eye 

cameras, and presents details for the proposed reconstruction 

algorithm: 

1. Cloud segmentation 

2. Dense matching 

3. Post correspondence filtering 

4. Gap filling 

Section 4 focuses on the special problem of segmenting 

atmospheric clouds as a necessary step for the reconstruction 

algorithm. An analysis of the geometric limitations of the 
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proposed system and discussion on scalability is in section 5. 

Results are presented in section 7 and conclusions are drawn in 

section 8. 

 

2. CAMERA SETUP 

To capture clouds on the whole sky a special type of imaging 

system is required. The most efficient solution is to apply wide 

field of view (FOV) cameras that are able to observe the sky 360° 

horizontally and 180° vertically. These omnidirectional optical 

systems can be divided into two types: dioptric and catadioptric 

systems. Catadioptric systems consist of mirrors and lenses and 

are usually equipped with a downward-looking camera. These 

systems have a blind spot (behind the camera) and thus are not 

ideal for observing the whole sky. Dioptric systems, on the other 

hand, use an upward-looking camera equipped with a fish-eye 

lens that provide a large FOV without a blind spot but often have 

lower resolution on the sides of the image. 

 

2.1 Geometry 

To use a camera system for reconstruction purposes, a model is 

needed to determine what describes the projection of the camera 

world points to image points. The Pinhole camera is the most 

simple and most commonly used model in computer vision. The 

model contains a camera center and an image plane (see Figure 

1-a). The scene points are mapped to the image plane by a line 

crossing the camera center. Since this model presumes that scene 

points are in front of the image plane, it cannot handle the special 

cases emerging with wide FOV. If the FOV is wider than 180° 

then the scene points could be on both sides of the projection line 

so the pinhole model is clearly not applicable. 

 

 
 

(a) (b) 

Figure 1. (a) Pinhole camera model. (b) Spherical camera model 

 

On the other hand, the spherical projection model (Li, 2008) (see 

Figure 1-b) defines the unit sphere as the image coordinates 

which are mapped to a plane and can account for a 180°+ FOV. 

The scene point 𝑋𝑠 is projected to a point P on the image sphere 

by normalizing the projection vector pointing from the projection 

center (𝑂𝑠) to the scene point. The unit vector 𝑃 = [
𝜃
𝛼

], can be 

projected to image point 𝑝 using the following formula: 

 

 𝑝 =  [
𝑟
𝛼

] = [
𝑓(𝜃) 0

0 1
] [

𝜃
𝛼

] (1) 

 

where 𝑟 is the distance from the optical center on the image and 

𝑓(𝜃) is the focal length given as a function of 𝜃. 
According to projective geometry (Hartley, 2003) a single 

camera is only enough to identify the ray coming from the 

reconstructed object. To reconstruct the 3D position of the 

objects multiple cameras are needed. The object positions can be 

identified through triangulation discussed in section 3.1. 

 

2.2 Proposed Setup 

The distance between the cameras (baseline distance) should be 

determined during the camera system planning. The baseline 

distance has an effect on both the precision of the triangulation 

and on the ambiguity of the atmospheric cloud matching (see 

section 3.3). Maximum triangulation precision can be achieved if 

the angle of the projection rays is near perpendicular. Assume 

that the clouds are in the 1000-5000 m height range the baseline 

of the cameras should be 2000-10000 m. However, such 

distances are impractical both technically, and from the image 

processing perspective. Images taken with this baseline distance 

show too much geometric and photometric distortion, which 

makes the matching of cloud pixels unfeasible. In order to create 

a practical setup, a compromise baseline distance should be found 

to fit both criteria. 

Two Canon T3i cameras are used with Sunex SuperFisheye™ 

lenses to capture images. The cameras are installed on the top of 

a three story building to ensure the obstruction-free viewpoints 

(see Figure 2). Stands are applied to fix the cameras in face up 

position to the sky and are spaced 90 m apart. Synchronous 

capturing is essential in the case of moving objects so the camera 

system was synchronized with a common shooting signal. 

Images were taken in every 15 seconds. 

 

 
(a) (b) 

Figure 2. (a) Camera positions on the top of a three story building. 

(b) Camera installation on the roof 

 

2.3 Calibration 

The main goal during the camera calibration process is to 

estimate the parameters of the projection model. The spherical 

model; which can be described by Equation 1, the center of the 

unit sphere 𝑂𝑠 and focal length 𝑓(𝜃), these parameters still need 

to be determined. Through analysis of pictures from a known 

object, which has markers on different angles, these parameters 

can be estimated. 

A calibration bowl, which is painted with concentric circles of 

uniform thickness, was posed in front of the camera (see Figure 

3). By detecting the circles on an image and calculating the radius 

from the projection center the intrinsic parameters of the camera 

can be estimated. 

The extrinsic parameters describe the position and orientation of 

the cameras. The 185° field of view makes it possible to see the 

other camera on the image. Using this fact, the orientations of the 

cameras can be estimated. In the current experiment, the distance 

of the cameras were measured with GPS. These estimated 

extrinsic parameters are refined manually using known marker 

positions. 
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(a) 

 
(b) 

Figure 3. Calibration bowl 

 

2.4 Rectification 

The goal of the rectification process is to transform the images 

using the intrinsic and extrinsic calibration data not just to fit 

perfectly to the spherical camera model but also to align the 

horizontal axis of the images with the baseline. After such image 

transformation the reconstruction can simply utilize the epipolar 

constraint i.e. each raster line of the stereo image pair will fall in 

the same plane (see Figure 4). 

 

 
 

(a) (b) 

Figure 4. Mapping the spherical image to the rectified image 

 

The rectified images look as if the images were taken from 

cameras which were facing in exactly the same direction. 

According to the epipolar constraint, the projections of objects 

are found on the same horizontal line in each of the images (see 

(Salman, 2010) for details). This property can be exploited during 

the matching step of the reconstruction. Figure 13 shows an 

example of rectification. 

In the case of the spherical model, the spherical image can be 

mapped directly to a rectified image. The epipolar curves on the 

sphere are transformed into parallel lines (as can be seen on 

Figure 4). The x Axis of the rectified image represents θ from 0 

to π and the y Axis represents α from 0 to 2π (Li, 2008). 

 

3. 3D RECONSTRUCTION 

The goal of 3D reconstruction is to calculate the 3D coordinates 

of real 3D points that are visible on multiple images. To 

understand the reconstruction of multiple points let us first 

discuss triangulation, the technique used to calculate the 3D 

coordinate of a single point. 

 

3.1 Triangulation 

Consider Figure 5. Let P be a real world image, and let Pl and Pr 

be P’s detected projections on the rectified images of the left and 

right cameras respectively. Note that P lies on the intersection of 

lines connecting Cl with Pl and Cr with Pr. To calculate the 3D 

position of P the intersection of these lines must be calculated. 

 

 

Figure 5. Triangulation 

 

It must be noted that if the camera calibration is erroneous, then 

the position of P will also be misplaced due to the wrong real 

world position of Cl and Cr. Also, if the rectification is not perfect 

and the captured images do not match the spherical model, then 

Cl, Pl, Cr Pr will not be coplanar, therefore the Cl-Pl and Cr-Pr 

lines will be skew. In these situations the 3D point that minimize 

the summed distance to the two lines can be used instead of the 

intersection. In practice SVD can be used to find the closest point 

by employing the least squares method. More information can be 

found about triangulation in (Sonka, 2008; Hartley, 2003). 

To provide input to triangulation, it is clear that the accurate 

position of Cl and Cr must be known as well as the identities of 

the Pl and Pr projections of P. Depending on the number of 

reconstructed points, like P, determines whether Sparse or Dense 

Reconstruction should be used. Locating corresponding image 

points (like Pl and Pr) on the rectified images is a matching 

problem, and shall be discussed next. 

 

3.2 Sparse Matching 

In sparse matching, selected image points with distinguishable 

properties are identified and corresponding points on the other 

images are found knowing that correspondences should have 

similar properties. The properties used to match in this case can 

be one or more feature descriptors like SIFT (Lowe, 2014), SURF 

(Bay, 2006) or MSER (Matas, 2002) just to list a few. These 

feature detectors propose candidate points and provide a reliable 

and distortion tolerant description that can be matched even in 

the wide baseline setup. To summarize, sparse matching provides 

a limited number of reliable points that can be used to reconstruct 

larger object structures, provide seed points for more dense 

approaches, and to verify or even auto correct calibration. 

Nevertheless, sparse matching is not suitable to reconstruct 

surfaces or dense volumes. For these purposes, dense matching 

is applied. 

 

3.3 Dense Matching 

In dense matching the goal is to identify the projection of as many 

3D points as reliably possible. The problem is that many of the 

target 3D points may be occluded, ambiguously distorted or have 

uninformative neighborhood; but a point set dense enough to 

reconstruct surfaces and large volumes still needs to be identified. 

Proposed solutions to overcome these problems include 

distortion invariant template matching (Megyesi, 2006; Mindru, 

2004) and enforcing local neighborhood constraints in the energy 

function when searching for the most probable pixel positions. 

Often energy minimization frameworks or region growing 

methods are applied to limit the search and to handle 

homogenous areas. 

Dense matching is a time consuming task, but many methods can 

be sped up by course to fine approaches (e.g. pyramid based 
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processing), using a priori information from sparse matching, or 

performing feature based segmentation to limit the set of 

reconstructed points. 

 

3.4 Dense Matching of Cloud Pixels 

In the previous section 3D reconstruction was discussed in 

general. This section proposes a 3D reconstruction solution that 

is suitable to match cloud pixels. This solution needs to analyze 

the visibility of the object, their texture, and any observable 

distortions.  

Geometric distortion: This type of error often occurs on wide 

baseline camera images as a result of the large change of 

perspective. In general, a planar surface suffers a perspective 

distortion that can be locally approximated by an affine 

transformation. There are dense matching methods that 

compensate this transformation (Megyesi, 2006) but to do so 

usually have performance costs. It can be said that the distortion 

is usually larger when the object distance is comparable to the 

baseline and if the surface normal is not facing the cameras. 

Neither of these conditions are typical in the setup mentioned 

here (see Figure 6); therefore, neglecting the geometric distortion 

is not a major mistake. 

 

Photometric distortion: This type of error occurs when the 

camera sensitivities are set differently or the reflected light is 

different from the two cameras. This is especially problematic for 

clouds near the sun. In this application prior sun position 

information was used to mask sun region and avoid photometric 

distortion problems. 

Infinity, Occlusion, Homogeneity, Ambiguity: these problems 

are the typical bottle necks for all stereo algorithms, and are 

generally difficult to handle. Their presence in the current 

scenario must be evaluated.  

Infinity: Outdoor scenes often contain background objects at 

infinity. In this case pixels belonging to the sky are impossible to 

match, so they must be excluded from the matching. This can be 

achieved by applying Cloud Segmentation (discussed in section 

4). 

Occlusion: Since the typical object distances are multiples of the 

baseline, it is rare that clouds of different elevations are missed 

due to occlusion. Also, the bottom cloud surfaces show only 

limited 3D properties so occlusions within the same surface are 

typically limited. However, some minor cloud areas can be 

occluded this way so occluded pixels need to be detected. The 

suggested method to filter out bad correlations due occlusion is 

the Left-Right consistency or Stable Matching post correlation 

filter (Sara, 2002). 

Homogeneity: The borders of the clouds are generally well 

textured. Unfortunately, the textured-ness of the cloud surfaces 

depends on the resolution level of our cameras. At higher 

resolution, the texture is less obvious, and can be ambiguous. 

This problem can be handled by Pyramid Matching. Matching is 

applied on the lowest resolution, then the results are refined on 

each pyramid level. Also, segmenting the cloud using texture 

based segmentation has a positive effect on the matching. 

Ambiguity: Cloud regions that are well textured are unique in the 

majority of cases; therefore, this problem need not be handled 

separately. 

 

3.5 Proposed Algorithm 

To address the above issues the following algorithm steps are 

proposed: 

1. Atmospheric Cloud segmentation 

This step is crucial for handling problems of both Infinity 

and Homogeneity. This step is detailed in section 4. 

2. Dense matching 

Using Pyramid based template matching addresses 

Homogeneity and Ambiguity. 

- Define a set of resolutions and the lowest resolution 

where information is visible. 

- Perform template matching on the lowest resolution. 

- Propagate and refine matching results on higher 

resolutions. 

3. Post correspondence filtering  

To filter out false positives arising from Occlusion and 

Ambiguity apply a Left-Right consistency check: 

- Match from left image to right image. 

- Match from right image to left image. 

- Keep consistent matches from the two results. 

4. Gap filling 

This step is often required if the cloud segmentation or 

the post correlation filtering produces missing pixels. 

Disparity information for the missing pixels can be filled 

from lower resolution matching of the Pyramid or by 

interpolating the neighboring consistent matches. 

 

The result of this matching algorithm is illustrated in Figure 14 

and 15. Figure 14 shows a disparity image which marks the 

displacement along the epipolar line with grey levels. 

 

4. ATMOSPHERIC CLOUD SEGMENTATION 

One crucial problem of reconstruction is how to prevent 

reconstruction of objects at infinity. In generic scenarios this 

requires the analysis of the matching results. In our application 

pixels at infinity are more easily separated because the majority 

of these pixels belong to the uncovered sky. These sky pixels can 

be separated prior to the reconstruction thus preventing matching 

on them. On a general sky image there are objects falling into five 

categories: 

1. Sky pixels 

2. Cloud pixels 

3. Ground pixels 

4. Sun (and Sun halo) pixels 

5. Other airborne object pixels 

 

In this application the intent is to reconstruct the cloud pixels; 

therefore, the rest must be detected and excluded. 

      

Figure 6. Matching Clouds pixels: detailed view of a cloud region from stereo images 
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Ground pixels can vary in intensity and texture but separation is 

possible through applying geometric constraints (reconstructed 

ground objects can be ruled out by their elevation). Sun halo can 

be ruled out if the position of the sun is known; otherwise, these 

pixels are difficult to separate. Pixels belonging to the other 

airborne object category are difficult to separate because their 

texture, color, and intensity properties are unknown; and their 

position is indistinguishable from the clouds. Fortunately, the 

other airborne object pixel’s size and rare appearance makes 

them statistically irrelevant. The problem that remains is the 

segmentation of the cloud pixels from sky pixels. Having 

evaluated several properties, it was found that the best separating 

feature is saturation. Examples can be seen in Table 1. 

 

 

 

 

Table 1. Saturation Histograms from HSV and HSL color models 

 

Sky image segments (Table 2) and cloud image segments (Table 

3) are shown in the tables below with the registered values belong 

to the center pixel of the sample image. Histograms for specific 

features are shown in Table 1. These histograms can be used for 

automatic saturation based thresholding if the classes are 

distinctly separable. From the different saturation version the 

HSL Saturation values were found to be most effective; therefore, 

segmentation was based on this property. See Figure 14 as an 

example of segmentations. 

 

 

Non-Cloud 

Images 
    

HSV 

Saturation 
28 31 22 22 

HSL 

Saturation 
19 19 26 29 

Table 2. Saturation values for non-cloud image regions 

Cloud 

Images 
    

HSV 

Saturation 
3 4 1 11 

HSL 

Saturation 
6 4 2 6 

Table 3. Saturation values for cloud image regions 

 

5. GEOMETRIC LIMITATIONS 

In the analogous case (presuming perfect camera calibration) the 

objects can be reconstructed at any distance with no error. In 

practice, the precision of the reconstruction highly depends on 

the resolution of the images and on how accurately the object 

pixels can be identified. See Figure 7-a, for illustration. Let 𝐶𝑟 

and 𝐶𝑙 be the camera centers of the right and left cameras, 

respectively, for a given baseline. The 𝑋 scene point was 

triangulated using the intersection of the projection rays form the 

camera centers towards the point. Suppose the projected rays 

beyond the level of a pixel cannot be determined. 𝑋 can then only 

be determined up the certainty defined by the bordering lines of 

those pixels thus forming a 3D quantization error hexahedron. 

 

  

(a) (b) 

Figure 7. Illustration of wide baseline 

 

The 2D representation of this hexahedron is a quadrilateral (see 

Figure 7-b) resembling a parallelogram area. Inside this area 𝑋 

could be located anywhere. The worst case is when the real point 

is in the farthest corner but it is detected in the middle. The 

longest diagonal of the parallelogram shows the possible error 

range of the triangulated point. This error is minimal, when this 

hexahedron is close to a cube. In 2D this happens when 𝑋𝐶𝑙 and 

𝑋𝐶𝑟 are perpendicular. 

 

To analyze the behavior of the longest diagonal error indicator, 

the error values has been calculated for a set of points in a 3D 

cube around proposed camera setup. Using the proposed 90m 

baseline distance, the longest diagonals were calculated for each 

integer 3D position on a 3000x3000 m plane at different elevation 

levels. Sample results can be seen on Figure 8 (blue color 

represents lower error, red represents higher error). 

Since for each 3D position, the accuracy is determined by the 

angle of the lines connecting the point the two camera centers, 

the space between the cameras at lower elevations has the best 

accuracy. Results are worse if the angle to the baseline is lower. 

Figure 8-a shows this effect. At lower elevation (500 m) and 

longer distances (1500 m) the angle to the baseline is small. In 

0

0,005

0,01

0,015

0,02

0,025

1

14 27 40 53 66 79 92

10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

P
ro

b
ai

lit
y

S values

HSV Saturation Histogram

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

1

14 27 40 53 66 79 92

10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

P
ro

b
ai

lit
y

S values

HSL Saturation Histogram

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-49-2016

 
53



 

these cases the parallelogram is very thin and the diagonal is long. 

If the elevation is increased (see Figure 8-b and Figure 8-c), the 

error becomes more uniform.  

Using the proposed 90m baseline, the tests show that on the range 

of 1000-2000 m elevation (where the clouds will be detected) 

90% of the area has maximum 4 m triangulation error. In this 

cloud reconstruction application these results are acceptable. 

 

Figure 8. Triangulation error on different elevations.  

O_l, and O_r are the camera centers.  

(a) 500m, (b) 1000m, (c) 2000 m 

 

Using geometric considerations it can be deduced that the 

baseline minimizing the geometric error is the double of the 

altitude of interest (e.g. 1000m for clouds at 500m). However, 

longer baseline will also generate perspective distortion typical 

on wide baseline images, preventing conventional stereo 

matching to work effectively. The practical trade-off between 

geometric accuracy and matching reliability will require yet 

lower baseline. The reliability of a reconstruction algorithm also 

depends heavily on the scene so if we constrain our 

reconstruction to only clouds higher than 500m we arrive at a 

probable optimum baseline range between 500m & 1000m. To 

test one of these limits, we generated artificial cloud images using 

larger baseline, evaluated the results (see Section 6.) and came to 

the conclusion that using a 500m baseline the matching is still 

possible. 

 

6. EVALUATION 

We presented a camera setup and proposed a pipeline for 

reconstructing atmospheric cloud images, addressing the special 

problems of this application environment. The major features of 

this pipeline being Atmospheric Cloud Segmentation, Pyramid 

Matching, Consistency Filtering and Gap filling. To evaluate the 

combined efficiency of the pipeline we generated, two sets of 

input images with known scene geometry. One set of images was 

using synthetic Random Dot Stereo (RDS) images and another 

set was using a template of typical cloud images placed in a 

planar structure at different elevation levels. The first set is used 

to evaluate the reconstructed related steps without evaluating 

color segmentation, while the second set can be used to evaluate 

reconstruction efficiency of the whole pipeline.  

 

6.1 Evaluation using Pyramidal Random Dot Stereo images 

 

In general, the purpose of using RDS images is that it has unique 

information content around each pixel, allowing nearly perfect 

matching. RDS texture can be placed on any known scene 

structure providing ground-truth and allowing evaluation of 

reconstruction algorithm. However the RDS images need to be 

designed to match the application requirements. For the current 

application traditional RDS textures are ineffective as we apply 

matching on different scale levels. The information content on 

lower resolutions of the RDS is often lost. To use RDS for 

Pyramid Matching, we introduce Pyramidal Random Dot Stereo 

Images (PRDS). To generate these PRDS images we need to 

understand what the minimal physical size of a square is, which 

can be distinguished at different pyramid levels of the algorithm. 

With this knowledge, we can generate and upscale a low 

resolution RDS image, then randomly modify its pixel values. 

We can do this in multiple iterations to get a PRDS image. An 

example of that image can be seen in Figure 9. 

 

  

(a) (b) 

Figure 9. Pyramidal Random Dot Stereo Image (PRDS) 

 

6.2 Evaluation results on Artificial Cloud images 

 

To test the whole pipeline we also need to test the reconstruction 

combined with the Atmospheric Cloud Segmentation. For this, 

we generated artificial cloud images using a cloud template, 

which can be replicated on a planar structure. The period of the 

replication must be larger than the maximum disparity range on 

all levels. The planar structure can be positioned in different 

 
(a) 

 
(b) 

 
(c) 
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elevations to gain information on the accuracy of the algorithm 

w.r.t altitude or distance from the camera. A sample artificial 

cloud image can be seen in Figure 10. 

 

  

(a) (b) 

Figure 10. Artificial Cloud Image 

(a) Cloud template, (b) Planar structure 

6.3 Evaluation Results 

 

In our evaluation, we generated both PRDS and Artificial Cloud 

Images to test the reliability of the whole pipeline. The generated 

images replicated templates on a plane at different elevation 

levels, as if taken from cameras at increasing baseline. After 

running the reconstruction, histograms were created for the 

altitude of the reconstructed points. Since for each artificial point 

we know the correct elevation, any divergence from the ground-

truth is the result of matching errors described in Section 3.3. A 

sample elevation histogram combining 5 different elevation 

levels can be seen in Figure 11. On this chart, we can see the 

percentage of the reconstructed points for each elevation, 

different colors indicate results for images on different elevation. 

We can see that the majority of the reconstructed points are 

within meters of the ground truth elevation, and only a small 

percentage of the reconstruction is erroneous. Based on these 

charts we concluded that the noise generated by the matching 

errors is acceptable. Visualized results of the reconstructed 

artificial point sets can be seen in Figure 15. The template cloud 

is recognizable as well as the repetitive structure of the input. 

 

 

 
 

Figure 11. Histogram of the reconstructed points per elevation 

 

7. RESULTS 

This section reviews sample results generated from images 

acquired by our camera setup and using the proposed algorithm 

on those images. Starting from original images, the results are 

ordered as follows: rectification, segmentation, and reconstructed 

3D points.  

The proposed and installed stereo camera system captures images 

as seen on Figure 12. The fish-eye lens maps the sky to a round 

image. 

After the calibration process, which was discussed in Section 2.3, 

the original images can be rectified (see Figure 13). 

Before the reconstruction step the cloud pixels have to be 

segmented from the background. The threshold level of the 

saturation is set to include cloud colors and also sky parts which 

might be covered with thin cloud (see the result on Figure 14). 

For visualization of the 3D point cloud a disparity map is shown 

(epipolar displacement is converted to gray level) and a custom-

made application rendering of each 3D point on top of the re-

projected sky dome image. 

 

8. CONCLUSIONS AND FUTURE WORK 

A method to reconstruct clouds in 3D from two fish-eye lens 

cameras has been shown. The suggested method applies spherical 

camera model for rectification. After cloud segmentation, it uses 

dense stereo matching to generate point clouds. The matching 

and segmentation problems of cloud pixels was discussed and an 

algorithm that handles the problems relevant to this application 

was proposed. The effectiveness of the matching has been 

demonstrated on both artificial images with ground-truth and on 

real images. The reconstruction of 3000x3000 images run within 

2 seconds on a Core i7 processor making it feasible to reconstruct 

clouds from image streams. Further optimization is possible. 

This cloud reconstruction method can be used to model and track 

clouds on the sky. This can be beneficial to many applications 

ranging from space research to meteorology. The cloud positions 

can also be used to calculate and track the cloud motion which 

also may have wide applications. Further improvements are 

possible by extending the stereo camera system to a multi view 

system. 
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Figure 12. Original Images 

0%

10%

20%

30%

40%

50%

500 1000 1500 2000 2500 3000 3500

P
er

ce
n

ta
ge

 o
f 

re
co

n
st

ru
ct

ed
 p

o
in

ts

Elevation [m]

Histogram of Reconstructed Points 
Per Elevation

1000m 1500m 2000m

2500m 3000m

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-49-2016

 
55



 

 

  

Figure 13. Rectified Images 

 

  

Figure 14. Result of segmentation (left) and result of dense 

matching (right). Brighter pixels indicate larger disparities.  

 

 

 

 

 
 

Figure 15. Visualization of the reconstructed artificial clouds 
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