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ABSTRACT: 

 

Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the 

fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, 

occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and 

await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on 

dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper 

penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to 

generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity 

discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity 

changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically 

handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost 

aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury 

stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method. 

 

1. INTRODUCTION 

Stereo matching is the problem of recovering corresponding 

points from different image views, and is one of the indispensable 

ingredients for 3D exploitation of imagery in the fields of 

Photogrammetry and Computer vision. Many different stereo 

vision algorithms have been proposed. An overview of state-of-

the-art methods can be found in the Middlebury Stereo 

benchmark (Scharstein and Szeliski, 2002). Current stereo 

matching techniques can be categorized into pixel-wise, local and 

global algorithms. Pixel-wise matching methods simply take an 

optimal disparity for each image component. (Birchfield and 

Tomasi, 1999). Local algorithms aggregate the support from the 

neighboring pixels in a constrained region to determine the 

disparity without considering neighboring connections. These 

methods may suffer from a lack of smoothness and fail when 

support regions of pixels contain repetitive patterns, disparity 

discontinuities, and occlusions. Studies, such as adaptive 

windows (Kanade and Okutomi, 1994; Scharstein and Szeliski, 

2002), multiple windows (Hirschmuller et al., 2002), and image 

segmentation (Gerrits and Bekaert, 2006), tended to adapt the 

shape and size of the support region or adjust the support weights 

of the region pixels near depth discontinuities to improve 

disparity estimates. The adaptive-window method finds an 

optimal window based on the local variation of intensity and 

disparity, while the multiple-window method calculates the 

correlation with nine pre-defined windows and selects the 

disparity with the smallest matching cost. These methods, 

nevertheless, are not suitable for arbitrarily shaped depth 

discontinuities due to utilizing a rectangular window. Besides, 

studies, such as Xu et al. (2002) who resolved adaptive support 

weights by radial computations; Yoon and Kweon (2006) who 

assigned a support weight to the pixel in a support region based 

on color similarity and geometric proximity; Zhang et al. (2009) 

who used color similarity and connectivity constraints to 
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construct an upright cross local support skeleton for each anchor 

pixel, and dynamically built a shape-adaptive full support region, 

can also be found in the literature. Typically, local methods 

require less computation, and consequently less accuracy can be 

attained, as compared to employing global methods. Also, 

deciding an appropriate support region of each pixel remains an 

inevitable challenge for local stereo matching algorithms. On the 

other hand, global algorithms seek optimal pixel matches by 

minimizing a global energy function which consists of a data 

term and a smooth term to penalize inconsistent solutions and to 

enforce the piecewise smoothing assumption, respectively. The 

data term represents the coherence of a region often measured 

from image color, luminance, and texture. The smoothness term 

assigns a large penalty to those neighboring pixels conveying 

different disparity values, then the similar pixels can be merged. 

Various optimization techniques, such as graph cuts (Boykov et 

al., 2001; Wang et. al, 2013), belief propagation (BP) (Sun et al., 

2003; Felzenszwalb and Huttenlocher, 2006; Klaus et al., 2006) 

and dynamic programming (DP) (Ohta and Kanade, 1985; Gong 

and Yang, 2003; Torr and Criminisi, 2004), are often used to 

determine the local minimum of the energy function. Compared 

to local methods, global methods render better quality of the 

estimated depth, but involve high computational complexity. 

Thus, it makes them inapplicable for near or real-time 

applications. In addition, Hirschmuller (2008) proposed a 

popular semi-global matching (SGM) to achieve high precision 

depth estimation, which joints the advantages of both global and 

local algorithms and is capable of real-time demands. SGM 

approximates a global optimization by combining several local 

optimization steps. The energy function of SGM comprises a data 

term, a smoothness term for slight changes in disparity, and a 

larger smoothness term for depth discontinuities with significant 

disparity changes. Klette et al. (2011) gave tests on different 

stereo algorithms, including variants of DP, BP, and SGM, 

among which they suggested that SGM can potentially deal with 
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scenes of high-depth complexities and is the most promising. 

Numerous variants of SGM, such as PlaneFitSGM 

(Humenberger et al., 2010), wSGM (Spangenberg et al., 2013), 

SGMDDW (Michael et al., 2013), rSGM (Spangenberg et al., 

2014), iSGM (Hermann and Klette, 2013), eSGM (Hirschmuller, 

2012), and real-time implementation (Banz et al., 2010), have 

been proposed with respect to advancing the accuracy and 

computational complexity. Banz et al. (2012) evaluated four 

different penalty functions under two matching cost calculation 

manners, namely the census and rank transformation (Zabih and 

Woodfill, 1994), and concluded that the linear and inversely 

proportional penalty functions significantly outperform the 

constant and variance-based ones. Besides, for all penalty 

functions, using the census transform instead of the rank 

transform exhibits better disparity maps with less edge blurring 

because the census transform retains spatial information. 

Furthermore, image features are frequently used to assist in stereo 

matching as well (Sadeghi et al., 2008). Yang and Wang (2015) 

purported to improve an adaptive support weight approach by 

incorporating Canny edges. Poddar et al., (2015) employed 

image segmentation and feature point segment matching 

techniques for dense disparity estimation. Xiao et al. (2013) 

employed ground control points into the energy function of SGM 

(GCP-SGM) as soft constraints for aerial image applications. Zhu 

et al., (2011) expended the stereo matching technique to aerial 

and satellite image sequences. Konrad and Lan (2000) combined 

the block-based disparity estimation with feature point matching.  

 

In this paper, a hybrid-based approach is proposed to perform 

disparity estimation from rectified/epipolar stereo pairs. As 

suggested in Tian et al. (2013), matching cost is determined 

through the census transformation (CT) with the absolute 

differences (AD). A gradual strategy, involving edge constraints 

and penalty estimation, is presented to alleviate the sensitiveness 

towards the penalty parameters in cost aggregation step, and thus 

more accurate disparity estimation can be achieved. Image edges, 

which typically indicate depth discontinuities, are detected by the 

edge drawing (ED) algorithm (Akinlar and Topal, 2011) and 

treated as the edge constraint. Moreover, to shrink the potential 

disparity errors and to enhance the quality of depth estimation at 

image edges (object boundaries), this study manipulates the U-

SURF descriptor (Bay et al., 2008) to simultaneously recover the 

edge disparities, and weights both values derived from the stereo 

and U-SURF matching to find the final disparities at edge pixels. 

Notably, in this paper no post-interpolation process is applied so 

as to properly evaluate the estimated results. 

 

The rest of the paper is organized as follows: Section 2 briefly 

reviews the relevant techniques and introduces the methodology 

to address this work. Afterwards, experimental outcomes are 

exhibited in Section 3. Finally, conclusions are drawn in Section 

4. 

 

2. HYBRID-BASED STEREO MATCHING 

The study conceptually integrates algorithms of shape-adaptive 

cross-based local stereo matching and semi-global matching 

involved with a pixel-wise edge constraint to improve the quality 

of disparity estimation. The proposed method starts by 

categorizing image content into edge and interior pixels. For 

disparity initialization, the edge pixels are introduced into a U-

SURF matching process while the interior pixels are submitted to 

a gradual stereo matching process. In addition, a reasonable 

penalty estimation method as well as an image edge constraint 

are imposed on the stereo matching procedure to enhance the 

matching performance, and the edge disparity results derived 

from the two matching process are weighted for better estimation 

in depth discontinuity areas. Figure 1 shows the block diagram of 

the proposed working scheme. 

 

Epipolar image pair

CT + AD

Shape-adaptive 
cross-based 

support region

Image edge detection

Initial 
disparity map

Penalty Parameter 
estimation 

SGM cost aggregation

Initial cost 
aggregation

Edge 
constraint

U-SURF matching

Disparity map

 
Figure 1. The block diagram of the proposed method. 

 

2.1 U-SURF matching 

Edge pixels in each image are approved by ED which takes no 

parameter tuning and is capable of achieving real-time processing. 

The study constructs U-SURF descriptors for each edge pixel and 

performs 1-D matching along its epipolar line within the disparity 

search range as illustrated in Figure 2. The U-SURF descriptor 

provides a unique and robust description for the intensity 

distribution of surrounding pixels. A square region is extracted 

centered on the edge pixel and split up into smaller 4x4 square 

sub-regions from which the Haar responses weighted with a 

Gaussian are extracted. The best candidate match is found 

through the best-bin-first search (Beis and Lowe, 1997) 

identifying the nearest neighbor which is defined as the one with 

the minimum Euclidean distance from the descriptor vector. The 

probability of a correct match is determined by considering the 

ratio of distance from the closest neighbor to the distance of the 

second closest. Subsequently, a quasi-RANSAC approach 

(Stamatopoulos et al., 2012) for outlier removal is applied. 

Finally, the preliminary disparities of edge pixels are resolved.  

 

 
Figure 2. Illustration of the edge pixel matching.  

 

Notably, in order to prevent outliers, strict thresholds are applied 

to the matching ratio test and the quasi-RANSAC process. These 

thresholds can be further fine-tuned considering the percentage 

of total matched edge pixels: 

 

𝑃𝑒𝑑𝑔𝑒 𝑝𝑖𝑥𝑒𝑙 = 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑⁄                                          (1) 

 

where  𝑃𝑒𝑑𝑔𝑒 𝑝𝑖𝑥𝑒𝑙 = percentage of matched edge pixels 

            𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = number of matched edge pixels 

𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = number of detected edge pixels 

 

In this paper, we determine the threshold for ratio test as 0.6 and 

one-pixel allowance for outlier removal, an average matching 
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rate of 64.3% can be obtained, as portrayed in Figures 3(a) and 

3(b). Figure 3(c) demonstrates the matching results of the first 

170 corresponding edge pixels along their epipolar lines. On the 

other hand, missed matched edge pixels largely result from the 

occlusions and the dissimilar edge detection results of each image, 

as pointed out in Figures 3(d) and 3(e).  The yellow dots indicate 

the detected edges and the red dots present the matched edge 

pixels in Figure 3. 

 

  
(a) Left image                            (b) Right image 

 
(c) Corresponding edge pixels (the first 170 matches) 

  
(d) Enlarged look of left image    (e) Enlarged look of right image 

Figure 3. Demonstration of the edge pixel matching. 

                               

The disparities of those unmatched edge pixels are then explored 

with interior pixels as follows. 

 

2.2 Gradual stereo matching  

2.2.1 Matching cost: For accurate stereo matching, it is 

important to decide an appropriate metric function of matching 

cost for each pixel. In light of the evaluations in Hirschmuller and 

Scharstein (2009), the census transformation (Zabih and 

Woodfill 1994) proved to have the most balanced performance 

and better adaptability to intensity distortion caused by 

illuminating variation. The matching cost is decided based on the 

relationship of regions between two pixels instead of relying 

directly on the intensity values. Nevertheless, the census 

transformation is inadequate to handle image areas with little 

texture as well as repeated patterns and has a lower tolerance 

against image noise. Tian et al. (2013) suggested the absolute 

difference function with better matching effects in sparse 

textured areas and thus can be used to compensate for the 

deficiency of the census transformation. Therefore, the 

combination of these two matching energy functions is preferred 

in this paper. The integration of CT and AD matching energy 

functions can be expressed as (Tian et al., 2013): 

 

𝐶(𝑝, 𝑑) = 𝜌(𝐷𝑐𝑒𝑛𝑠𝑢𝑠(𝑝, 𝑑), 𝜆𝑐𝑒𝑛𝑠𝑢𝑠) + 𝜌(𝐷𝐴𝐷(𝑝, 𝑑), 𝜆𝐴𝐷)   (2) 

 

where  𝑑 = the presupposed disparity value 

            𝐷𝑐𝑒𝑛𝑠𝑢𝑠 = the matching cost of CT 

𝐷𝐴𝐷 = the matching cost of AD 

              

And the normalized function 𝜌(𝐷, 𝜆) is formulized as: 

 

𝐶𝑐𝑒𝑛𝑠𝑢𝑠(𝐼(𝑝)) =⊗𝑝′∈𝑁(𝑝) 𝜉(𝑝, 𝑞), 𝜉(𝑝, 𝑞) {
1   𝑖𝑓 𝐼(𝑝) < 𝐼(𝑞)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 

𝐷𝑐𝑒𝑛𝑠𝑢𝑠(𝑝, 𝑑) = 𝐷𝐻(𝐶𝑐𝑒𝑛𝑠𝑢𝑠(𝐼𝐿(𝑥, 𝑦)), 𝐶𝑐𝑒𝑛𝑠𝑢𝑠(𝐼𝑅(𝑥 − 𝑑, 𝑦)) 

𝐷𝐴𝐷(𝑝, 𝑑) = min{|𝐼𝐿(𝑥, 𝑦) − 𝐼𝑅(𝑥 − 𝑑, 𝑦)|, 𝜏}                             

𝜌(𝐷, 𝜆) = 1 − exp (− 𝐷 𝜆⁄ )                                                       (3) 

 

The 𝐼𝐿(𝑥, 𝑦) and 𝐼𝑅(𝑥, 𝑦) indicate gray values of corresponding 

pixels in the left and right images, respectively; 𝐼(𝑝)  is the 

luminance value of pixel of 𝑝 ; 𝑁(𝑝)  is the 𝑝 -centered 

transforming window; 𝑞  indicates neighboring pixels. 𝜆𝑐𝑒𝑛𝑠𝑢𝑠 , 

𝜆𝐴𝐷, and 𝜏 are prior parameters. Normalized function avoids the 

matching cost overly leaning to one certain type. 𝜆 controls the 

weights of the two matching cost, which assists in combining the 

advantages of CT and AD for a better adaptability to intensity 

distortion and noise. Details of Equations 2 and 3 can be referred 

to Tian et al. (2013). 

 

2.2.2 Initial cost aggregation: SGM cost aggregation aims to 

minimize several 1-D energy functions for a global 2-D energy 

minimization problem. Typically, a 1-D energy function 𝐸(𝐷) 

comprising a data term and a smooth term can be formulated as 

(Hirschmuller and Scharstein, 2009): 

 

𝐸(𝐷) = ∑𝑝(𝑐(𝑝, 𝐷𝑝) + ∑𝑞∈𝑁𝑝
𝑃1𝑇[|𝐷𝑝 − 𝐷𝑞| = 1]  +

∑𝑞∈𝑁𝑝
𝑃2𝑇[|𝐷𝑝 − 𝐷𝑞| > 1]                                                         (4) 

 

The data term calculates the sum of a pixel-wise matching cost 

𝑐(𝑝, 𝐷𝑝) for all pixels 𝑝 at their disparities 𝐷𝑝; the smooth term 

involves two penalty parameters ( 𝑃1 , 𝑃2 ). 𝑃1  penalizes 

neighboring pixels 𝑁𝑝 of 𝑝 if their disparity difference is equal to 

1; 𝑃2 is imposed on disparity changes larger than 1. That is, 𝑃1 

permits an adaptation to slanted or curved surfaces while 𝑃2 

preserves discontinuities as they mostly coincide with intensity 

variations. Yet, the value of 𝑃2  should be larger than 𝑃1 . 

Basically, the quality of the disparity map significantly relies on 

the two empirically determined parameters for standard SGM 

(Hermann et al., 2009). If the value of 𝑃2 is too small to smoothen 

a disparity map, most noise would remain. Conversely, the 

disparity map would be over smoothened with an extremely large 

𝑃2. Hirschmuller (2008) first introduced an adaptive 𝑃2 function 

to penalize abrupt disparity changes according to the image 

content. Banz et al. (2012) evaluated three further penalty 

functions and concluded that the negatively and inversely 

proportional to the absolute luminous intensity gradient of the 

currently processed pixels along the path significantly 

outperform the variance-based approach. However, the 

parameters involved in each function still need to be manually 

tuned with a carefully determined (try and error) step in a way 

they must be big enough to ensure sufficiently different 

configuration and small enough not to miss local minima at the 

same time.  

 

In current work, a proper penalty estimation and the edge 

constraint are introduced into the cost aggregation step to 

facilitate the disparity computation. The aggregation process 

comprising initial disparity generation, penalty estimation, and 

disparity determination is given as follows. 
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2.2.3 Initial disparity generation: The study leverages 

shape-adaptive cross-based matching approach (Zhang et al., 

2009) with the edge constraint to generate an initial disparity map. 

The edge constraint enforces the adaptive support regions not to 

cross significant disparity changes, which is appropriate for 

pixels near arbitrarily shaped depth discontinuities. The adaptive 

cross-based algorithm is performed on the interior pixels to 

search their support region in four directions (upper, lower, left 

and right). The region stretches from the central pixel until two 

consecutive pixels are not consistent in color, making the 

maximum arm length, or touching the edge pixels. Edge pixels 

are excluded from this measure. The arm length 𝑟∗ is defined as 

(Zhang et al., 2009): 

 

𝑟∗ = 𝑚𝑎𝑥𝑟∈[1,𝐿](𝑟 ∏ 𝛿(𝑝, 𝑝𝑖)𝑖∈[1,𝑟] )                   (5) 

 

where 𝑝𝑖 = (𝑥𝑝 − 𝑖, 𝑦𝑝) , (𝑝, 𝑝𝑖) ∉  edge pixels; 𝐿  is the preset 

maximum arm length. 𝛿(𝑝, 𝑞𝑖) is an indicator function evaluating 

the color similarity between consecutive pixels based on all color 

bands. 

 

𝛿(𝑝, 𝑝𝑖) = {
1, 𝑚𝑎𝑥𝑐∈[𝑅,𝐺,𝐵](|(𝐼𝑐(𝑝1) − (𝐼𝑐(𝑝2)|) ≤ 𝜏𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  
     (6) 

 

where 𝐼𝑐  is the intensity of the color band, and 𝜏𝑐  controls the 

confidence level of color similarity. Under the constraint of edges, 

the support regions of each interior pixel are reconstructed 

through whole image. The pixels (𝑣𝑝
+, 𝑣𝑝

−, ℎ𝑝
+, ℎ𝑝

− ) in Figure 4(a) 

define the horizontal segment H(p) and vertical segment V(p). 

The expansion of the combined local cross H(p) ∪  V(p) 

determines the integrated aggregation region U(p). Figure 4(b) 

demonstrates a result of support regions with the edge constraint, 

where the edges confining the support regions are colored in 

yellow. To enhance the consistency of disparity values within the 

support region, an efficient OII voting technique (Zhang et al., 

2009), which decomposes the matching cost aggregation into two 

orthogonal 1-D integration steps, is used. The disparity value has 

a maximum population within the support region is deemed as 

the result of the interior pixel. Accordingly, the disparities of 

edge and interior pixels are jointed to generate the initial disparity 

map. 

  

  
(a)                                         (b) 

Figure 4. Demonstrations of the shape-adaptive cross-based 

matching cost aggregation with the edge constraint. 

 

2.2.4 Penalty estimation: Considering the diversity of image 

content, it is not a trivial work to automatically arrange the 

penalty parameters in the cost aggregation step. This study 

presents a convenient way to estimate proper penalty parameters 

for the SGM cost aggregation. A consistency check is first done 

to rectify the initial disparity map, eliminating occlusions and 

false matches as shown in Figure 5(c). Then,  a matching cost 

ratio (𝐶𝑟) is determined for the inspected pixels. 

 

𝐶𝑟𝑖 = 𝑀𝑠𝑖 𝑀𝑓𝑖⁄ , 𝑖 ∈ 𝑁𝑖𝑝                                     (7) 

 

where  𝐶𝑟𝑖 = the ratio of matching cost 

            𝑀𝑓𝑖 = the smallest matching cost 

            𝑀𝑠𝑖 = secondary small matching cost 

            𝑁𝑖𝑝 = number of inspected pixels 

 

A larger 𝐶𝑟  of a pixel represents a higher confidence in its 

disparity estimate. Thus, a map of matching cost ratio can be 

generated as Figure 5(d). 

 

   
              (a) Left image                           (b) Right image 

   
(c) Errors pixels in black          (d) Matching cost ratio 

Figure 5. The generation of a matching cost ratio map. 

 

Consequently, confident pixels are selected if their ratios are 

larger than a threshold 𝜏𝑟. Therefore, 𝑃2 is determined from the 

confident pixels by taking the average of the differences between 

the smallest matching cost and the secondary small one. 𝑃1 is half 

of 𝑃2.  

 

{
𝑃2 =

1

𝑁𝑐𝑝
∑ (𝑀𝑠𝑖 − 𝑀𝑓𝑖)𝑖∈𝑁𝑐𝑝

𝑃1 = 𝑃2 2⁄                                
                                 (8) 

 

where  𝑁𝑐𝑝 = number of confident pixels 

 

Equation 8 gives proper penalty estimates for automated 

parameter setting in the energy function. Still, the values can be 

fine-tuned if the matching result suggests this is necessary. The 

potency of the penalty estimation is to be demonstrated in the 

evaluation section. 

 

2.2.5 Disparity determination: Standard SGM aggregates 

𝐸(𝐷) along 1-D paths from eight directions toward each pixel of 

interest using dynamic programming. As mentioned in section 

2.2.2, an over large 𝑃2 would extremely smoothen the disparity 

map. Thus, a relative smaller penalty parameter should be used 

at image edge pixels to preserve discontinuities coincided with 

intensity variations. As a result, the study imposes the edge 

constraint and applies an additional edge penalty parameter 𝑃𝑒 to 

the energy function at edge pixels as: 

 

𝐸(𝐷) = ∑𝑝(𝑐(𝑝, 𝐷𝑝) + ∑𝑞∈𝑁𝑝
𝑃1𝑇[|𝐷𝑝 − 𝐷𝑞| = 1]  +

∑𝑞∈𝑁𝑝
𝑃2𝑇[|𝐷𝑝 − 𝐷𝑞| > 1 ∩ 𝑞 ∉ 𝐸𝑝𝑠] +  ∑𝑞∈𝑁𝑝

𝑃𝑒𝑇[|𝐷𝑝 −

𝐷𝑞| > 1 ∩ 𝑞 ∈ 𝐸𝑝𝑠]                                                                 (9) 

 

where 𝑃𝑒 = penalty parameter for edge pixels 

           𝑃𝑒 = (𝑃1 + 𝑃2)/2 

           𝐸𝑝𝑠 = edge pixels 
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The value of the edge penalty parameter 𝑃𝑒  is defined as the 

average of  𝑃1 and 𝑃2. The disparity is then retrieved by a winner-

takes-all strategy. Furthermore, we weigh the resultant disparities 

of edge pixels (𝐷𝑠𝑚) with the preliminary edge disparities (𝐷𝑢𝑚) 

acquired from U-SURF matching to obtain the final disparities of 

edges, reading in Equation 10: 

 

𝐷𝑒𝑑𝑔𝑒 = 𝜆𝐷𝑠𝑚 + (1 − 𝜆) 𝐷𝑢𝑚                             (10) 

 

where  𝜆 = weight value, 𝜆 ∈ [0,1] 
𝐷𝑒𝑑𝑔𝑒 = weighted edge disparities  

           𝐷𝑠𝑚 = edge disparities derived from stereo matching 

           𝐷𝑢𝑚 = edge disparities derived from U-SURF matching 

 

Finally, the disparity map of the whole image is determined. 

 

3. EVALUATION 

The experiments aim to evaluate the effectiveness of the 

proposed hybrid-based matching method in two phases. Test 

images (Tsukuba, Venus, Teddy, and Cones) of the Middlebury 

stereo benchmark (Scharstein and Szeliski, 2008) were utilized. 

Firstly, we compared the effectiveness of the penalty estimation 

with manual configurations of (𝑃1, 𝑃2) ∈ {0.1,2;  0.01,5;  1,10} 

for disparity map generation. Figure 6 shows the proportion of 

the disparity error of the four test image. This reveals that our 

method obtains the best accuracy in both disparity discontinuity 

and non-occlusion areas. Manual setting of 𝑃2  performs well if 

carefully adjusted to the image, but quality degrades rapidly as 

these values are changed. In light of the resultant disparity maps 

(Tsukuba image, for instance) shown in Table 1, the proposed 

penalty estimation outperforms all the results inferred from the 

manual parameter setting, particularly in the region pointed out 

by the red arrow.  

 

 
(a) All image area            (b) Disparity discontinuity area 

 
(c) Non-occlusion area 

Figure 6. The proportion of the disparity error (> 1pixel). 

                         

 

 

 

 

 

 

 

Tsukuba 

  
(𝑃1, 𝑃2) = (0.01,5) (𝑃1, 𝑃2) = (0.1,2) 

  
(𝑃1, 𝑃2) = (1,10) Proposed method 

Table 1. Results of the disparity map. 

 

The study imposes the constrained shape-adaptive cross-based 

local method on the SGM to alleviate the sensitiveness towards 

the penalty parameters. Thus, we respectively jointed three 

additional local methods, namely an adaptive support-weight 

approach (ASW) (Yoon and Kweon, 2006), a fixed window-

based approach (FW), and a cross-based method (CB) (Zhang et 

al., 2009), with the SGM cost aggregation to evaluate the virtues 

of the proposed method. Table 2 shows the proportion of the 

disparity error of each set of the stereo matching methods. Table 

3 demonstrates the resultant disparity maps of the Tsukuba image, 

and the edge disparities derived from the U-SURF matching. 

 

Test image Tsukuba Venus Teddy Cones 

 Total (%) 

SGM 6.31 11.8 17.7 12.5 

FW+SGM 3.67 3.09 16.5 11.1 

ASW+SGM 3.26 2.82 15.9 10.8 

CB+SGM 2.05 1.04 12.7 9.68 

Proposed method 1.94 1.01 12.8 9.24 

 Non-occlusion (%) 

SGM 4.80 10.7 10.9 5.12 

FW+SGM 2.49 2.09 10.2 5.52 

ASW+SGM 2.27 1.93 9.42 4.14 

CB+SGM 1.48 0.62 7.74 3.17 

Proposed method 1.44 0.59 7.71 3.13 

 Disparity discontinuity (%) 

SGM 15.7 31.4 23.9 13.9 

FW+SGM 12.6 21.8 24.3 13.3 

ASW+SGM 11.1 20.6 22.7 11.9 

CB+SGM 6.52 6.64 18.7 10.8 

Proposed method 4.63 5.83 15.6 8.9 

Table 2. The proportion of the disparity error (> 1 pixel). 
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Tsukuba 

  
SGM FW+SGM 

  
ASW+SGM CB+SGM 

  
Proposed method U-SURF matching 

Table 3. The resultant disparity maps. 

 

In light of the Table 2 and Table 3, SGM results in a less smooth 

disparity map because its cost aggregation step is susceptible to 

the values of the penalty parameters. Noise is effectively reduced 

while the local methods are incorporated into the SGM. This 

proves the strategy that brings forth an initial disparity map to 

facilitate the SGM cost aggregation is practically feasible. 

Moreover, among these approaches, the proposed method 

achieves the best accuracy for disparity estimation. Because of 

the impression of the edge constraint, the disparity errors of our 

method are relatively small in particular close to the discontinuity 

area. These results also suggest that the more accurate initial 

disparity is provided, the higher quality of the disparity 

estimation can be achieved. 

 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, the effectiveness of the proposed hybrid-based 

stereo matching approach has been verified with the Middlebury 

stereo benchmark. The study presents the shape-adaptive cross-

based matching approach with the edge constraint to generate an 

initial disparity map for the penalty estimation. As a consequence, 

the sensibility of the SGM cost aggregation towards the penalty 

parameters can be alleviated. In summary, the study imposes the 

edge constraint onto the energy function of SGM and integrates 

the disparities of edge pixels, derived from U-SURF matching to 

improve the accuracy in disparity discontinuity regions. 

Moreover, the optimization in reducing computational 

complexity and further assessment will be studied in future work. 
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