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ABSTRACT: 

 

Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from 

indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The 

incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale 

ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame 

stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time 

capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation 

using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing 

appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and 

parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for 

example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. 

The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and 

keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo 

baseline constraint in pose graph optimization (PGO) leads to significant improvements. 
 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

In recent years the research for autonomous UAS has focused 

on indoor navigation without benefit of global navigation 

satellite systems (GNSS). On-board stabilization and 

autonomous navigation of multi-rotor UAS in GNSS-denied 

environments require the handling of fast flight dynamics solely 

based on indirect measurements. Six degrees of freedom (DOF) 

UAS ego-motion estimation is usually tackled by the fusion of 

IMU-outputs with further measurements, e.g. from compass, 

barometer and ultrasonic, using extended Kalman (Haykin, 

2001) or particle filtering (Ristic et al., 2004). Nevertheless, 

pose estimation based on these sensors is known to be affected 

by high drift rates. Estimating the ego-motion from the input of 

a single or multiple cameras is denoted as VO (Nistér et al., 

2004). Especially in case of slow motion, IMU measurements 

tend to drift whereas VO is able to produce better pose 

estimation results (Carrillo et al., 2012) due to complementary 

measurement principles. Hence, several systems which 

incorporate cameras were proposed in the past (Achtelik et al., 

2009; Huh et al., 2013; Schmid et al., 2013; Brockers et al., 

2014). Besides sensor fusion, SBA (Lourakis, 2010), keyframe 

selection (Klein and Murray, 2007), tracking of natural 

landmarks (Tardif et al., 2008) and loop closing techniques like 

simultaneous localization and mapping (SLAM) (Bailey and 

Durrant-Whyte, 2006; Durrant-Whyte and Bailey, 2006) are 

common approaches to reduce VO estimation uncertainties and 

drift rates. 

 

Motivated by the challenge of choosing the best method or 

combination of these methods, we examine and directly 

compare the impact and value of different approaches for VO 

drift reduction and enhancement. First, we propose a straight-

forward frame-to-frame stereo VO chain based on carefully 

chosen components. Second, we modify and further extend this 

chain by incorporating well known methods, like keyframe 

selection and SBA, and measure the impact of each 

modification. The following strategies as well as their 

combinations are evaluated: feature bucketing, outlier filtering, 

keyframe selection, SBA and pose-graph optimization (PGO). 

Experiments are conducted using the New Tsukuba (Martull et 

al., 2012) and KITTI (Geiger et al., 2012) benchmark datasets 

as well as own stereo data. 

 

In the remainder of this paper, VO optimization strategies are 

reviewed in section 2. A description of our proposed stereo VO 

method is presented in section 3 and the experimental results 

are described in section 4, followed by a discussion and 

concluding remarks in sections 5 and 6. 

 

2. RELATED WORK 

VO generally involves the following main steps: (1) image 

acquisition and optional pre-processing, (2) feature detection, 

(3) feature matching (or tracking), (4) motion estimation and (5) 

optional optimization. The most obvious drawback of standard 

stereo frame-to-frame VO (steps 1-4) is the lack of control 

mechanisms using available information obtained during 

processing. For example independently estimated paths of the 

left and right stereo camera are likely to be different and could 

further be constrained and enhanced by incorporating the stereo 

baseline constraint. In this section, relevant aspects and state-of-

the-art approaches for the enhancement of frame-to-frame VO 

are reviewed.  
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2.1 Distribution of Feature Points  

In order to avoid unfavorable spatial resection configurations, 

different strategies with the goal of a uniform-like image point 

distribution are available. In (Nistér et al., 2006) a non-maxima 

suppression of Harris points is applied for each 5×5 pixel 

neighborhood. The number of detected features is limited based 

on local density instead of a typically used global corner 

response threshold. Furthermore, features are detected in 10×10 

buckets of the image. The authors of (Achtelik et al., 2009) use 

a feature pruning technique in order to reduce computational 

costs and enhance the feature tracking. The feature set is 

reduced by computing the distance between all possible feature 

pairs, eliminating the feature with the smaller score (Harris 

corner-response) if the distance is less than a specified 

threshold. In (Mei et al., 20011) it was demonstrated that 

especially in case of images containing vegetation their 

quadtree-based feature distribution approach outperforms the 

globally thresholded Harris corner response. (Chen and Chiang, 

2015) is a further example for subdividing the images into non-

overlapping rectangles in which features are detected 

independently. 

 

2.2 Number of Feature Points 

The number of feature points has a major impact on the quality 

of VO results (Strasdat et al., 2010) and more (reliable) features 

provide more stable motion-estimation results. In (Nistér et al., 

2006) up to 5000 points per image are used. According to a rule 

of thumb stated in (Fraundorfer and Scaramuzza, 2012), 1000 

features is a good number for an image with 640×480 pixel. In 

(Achtelik et al., 2009) the initial set is reduced to around 150 

points. The authors of (Nannen and Oliver, 2012) point out that 

it is impractical to individually find the best number of points 

according actual constraints of computational speed and 

accuracy, average point quality, or average amount of overlap 

between the images. A setting of 100 points per image quickly 

emerged as the practical optimum in this study. 

 

2.3 Keyframe Selection 

Especially with high image acquisition frame rates or slow 

motion in relation to the distance to the observed scene, 

triangulated 3D points from multiple frames tend to have large 

uncertainties. Based on the standard deviation of triangulated 

3D points, significantly wrong pose estimation results together 

with the corresponding images can be identified and discarded. 

Another motivation for selecting keyframes is to save 

computational loads for optimization by reducing the data to a 

representative sample set of all information. As pointed out by 

(Scaramuzza and Fraundorfer, 2011), keyframe selection is a 

very important step in VO and should always be done before 

updating the motion state. In (Warren, 2015) a frame-striding 

technique is proposed to actively reduce the number of 

processed frames based on knowledge related to the behavior of 

a fixed-wing UAS. Since multi-rotor platforms enable much 

more complex manoeuvres, this technique is not suitable here. 

Instead of avoiding degenerated camera motion configurations, 

as for example in (Pollefeys et al., 2002), or in (Thormählen et 

al., 2004) a criterion for selecting the keyframe pairing based on 

the expected estimation error of initial camera motion and 

object structure is proposed. In (Bellavia et al., 2015) keyframes 

are selected according to the observation that 3D points related 

to low temporal flow disparity matches have a higher 

uncertainty when compared to 3D points with larger temporal 

disparities. 

2.4 Landmark Tracking  

According to (Nistér et al., 2006) VO drift cannot be avoided 

without using landmarks. SLAM-approaches try to estimate a 

global, consistent robot path including loop-closing or 

landmark matching. Since triangulated 3D-point-based 

approaches often suffer from uncertainties in depth, the authors 

of (Olsen et al., 2003) among others use natural landmarks and 

reject those who move the most.  

 

Loop closing requires a suitable landmark description as well as 

an efficient data organization. A global landmark database using 

histogram of oriented gradients (HOG) descriptors and a 

hierarchical k-means clustering-based vocabulary tree is utilized 

in (Zhu et al, 2007). In contrast to traditional structure-from-

motion techniques, where features between all frames 

exhaustively are attempted to match, (Warren, 2015) utilizes the 

vocabulary-tree-based openFABMAP (Glover et al., 2012) 

library for loop closing. Recently (Lynen et al., 2015) 

demonstrated that large-scale, real-time pose estimation and 

tracking can be performed on mobile platforms by employing 

map and descriptor compression schemes together with efficient 

search algorithms. 

 

2.5 Multiple Frame Feature Tracking 

Instead of tracking known 3D landmarks, several approaches 

use information related to the tracked 2D image points in order 

to reject unstable features. In (Nistér et al., 2006), a sub-track-

wise refinement of feature tracks including firewall-based 

propagation error avoidance was proposed. In (Badino et al., 

2013) a strategy of incorporating the whole history of tracked 

2D points to obtain a single, improved estimate for the 2D 

points in the current frame is proposed. The method is able to 

efficiently reduce ego-motion drift while maintaining high inter-

frame motion accuracy. In (Han and Choi, 2014) this approach 

was further improved for real-time applications using high 

speed tracking and least squares optimization. 

 

2.6 Utilizing the Baseline Constraint  

The relative orientation of two stereo views in absolute 

orientation (AO) techniques is obtained based on the matching 

of 3D point clouds (for example in (Carrillo et al., 2012)). In 

contrast, spatial resection using perspective from n points (PnP) 

methods use 3D-2D point correspondences, where the 2D 

points from only one of the two available stereo frames are 

typically used. Due to dead-reckoning, the independently 

estimated path of the left and right camera may differ. A 

balanced reprojection error score involving both stereo frames 

and the known relative orientation was used in (Nistér et al., 

2006). This generalized method for 3D-2D motion estimation 

based on 2D image points from extrinsically calibrated stereo 

cameras (non-concurrent rays) was proposed in (Nistér et al., 

2004). 

 

2.7 Pose Refinement Techniques 

In time window-based or local SBA the last n camera poses or 

keyframes are refined based on 3D-2D point correspondences. 

Since the intrinsic camera parameters, poses and the 3D points 

are optimized using a least squares minimization, this method is 

not robust against outliers. Another approach is the estimation 

of relative poses not only based on consecutive frames but also 

between all possible pairs of the last n frames. Choosing the 

best combination among them, for example based on the mean 
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reprojection error, actually represents a type of keyframe 

selection. In (Olson et al., 2006) a posterior iterative but fast 

global alignment of the pose graph is proposed. Compared to 

other approaches, like for example extended Kalman filtering, 

better trajectories in less computational time could be estimated. 

Nevertheless, instead of doing posterior optimization, a 

window-based PGO during the flight would be more helpful for 

navigation tasks. A general C++ framework for graph 

optimization was proposed in (Kümmerle et al., 2011), since the 

optimization of graph-based non-linear error functions has 

shown to be applicable to many problems (for example SBA, 

PGO and SLAM). A performance comparable to 

implementations of state-of-the-art approaches for the specific 

problem was observed.  

 

2.8 Outlier Removal 

The accuracy of relative pose estimation as well as optimization 

depends on the quality of features and their matches. Removing 

outliers in a stereo frame based on the epipolar constraint is a 

simple and effective approach. A popular method for additional 

outlier removal in consecutive, i.e. temporal, stereo frames is 

the RANSAC scheme in the relative pose estimation step. A 

problem of RANSAC is that it tends to favor degenerated 

configurations. In (Frahm and Pollefeys, 2006) a framework 

that estimates the correct relation even for (quasi-)degenerate 

data (QDEGSAC) is proposed. The trifocal geometry can also 

be exploited for feature matching, since it defines a point 

constraint instead of the epipolar geometry of image pairs that 

only defines an ambiguous line constraint. The computational 

costs for three images in (Heinrichs et al., 2008) are not 

significantly larger than for two images. But the third image 

helps to identify and eliminate wrong image matches and 

disambiguates path estimation in critical configurations. In 

further VO optimization (step 5) only inliers should be used. 

Triangulated points with a high standard deviation may 

additionally be excluded. 

 

3. STEREO VO AND ENHANCEMENT STRATEGIES 

The final goal of this study is to derive an efficient and accurate 

VO workflow for real-time navigation tasks (Figure 1).  

 

 

 

Figure 1. General VO workflow and the relation to enhance-

ment strategies as discussed in section 2 

In the following, our proposed frame-to-frame stereo VO chain 

is presented. Furthermore, in section 3.2 a selection of the most 

promising enhancement strategies in terms of real-time on-

board UAS stereo VO are identified. The VO chain is 

implemented in C++ using the OpenCV library. 

 

3.1 Frame-to-Frame VO 

In monocular VO solely based on 2D information, the relative 

orientation can only be estimated up to an unknown scale 

factor. Therefore, we use a calibrated stereo camera system 

enabling a calibrated relative pose estimation. The stereo 

scheme is known to exhibit less drift than the monocular one in 

case of small motions (Scaramuzza and Fraundorfer, 2011). 

 

Several different feature detectors based on corners, regions or 

blobs offering rotation-, scale- and affine invariants are 

available. For a choice the expected surrounding conditions 

have to be considered carefully. Typical light-weight UAS 

camera frame rates range around 100 Hz inducing fairly small 

relative viewpoint and scale changes. Furthermore, multi-rotor 

platforms tend to align horizontally during slow indoor 

manoeuvres. Amongst many, the Harris or Förstner feature 

detector (Harris and Stephens, 1988; Förstner, 1994) provide 

interest points that are relatively stable under small to moderate 

image distortions (Schmid et al., 2000). Since they offer a high 

robustness, repeatability and – particularly important for VO – 

sub-pixel localization accuracy while being moderately 

computational efficient they are used here. 

 

SIFT (Lowe, 2004) is a very powerful but also computationally 

expensive feature descriptor, e.g. for structure-from-motion and 

3D reconstruction applications, i.e., where large pose changes 

are expected. In case of small motions the KLT optical flow 

tracker (Lucas and Kanade, 1981; Tomasi and Shi, 1994) is a 

common choice to track sparse feature sets in image sequences. 

The features to track only have to be detected once in the first 

image circumventing further feature detection steps as well as 

descriptor computation and matching. Since standard KLT 

assumes small pixel displacements, we use the pyramidal 

version (Bouguet, 2000), which also allows larger 

displacements and is robust to the presence of image blur 

caused by motion. As stated above, feature points don’t have to 

be detected in each frame individually and the expensive 

descriptor computation and matching is not necessary. On the 

other hand efficient adding of new features is required. We 

found empirically that adding new interest points leads to good 

results when the absolute number of tracked feature points is 

less than 75 % of the initially found number of points. 

 

Relative pose changes can in general be estimated using AO or 

PnP approaches. As pointed out in the early days of VO (Nistér 

et al., 2004) and (Alismail et al., 2010), PnP approaches tend to 

be more accurate than AO, since the image reprojection error 

instead of the 3D feature position error is minimized 

(Fraundorfer and Scaramuzza, 2012). Using image-based 

quantities (2D coordinates), the usually introduced uncertainty 

effects in depth cancel to a large amount (Nistiér, 2006). For 

better performance, we use the efficient PnP (EPnP) solution 

proposed by (Lepetit et al., 2009) in conjunction with the well-

known RANSAC scheme for outlier detection. 

 

Given a calibrated stereo camera rig, our VO method 

sequentially processes every incoming stereo image pair in the 

following manner. The initial absolute pose of the stereo system 

is defined as the global coordinate origin represented as 
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where R0 is a 3×3 identity matrix representing the absolute 

orientation and T0 is a three element zero vector representing 

the stereo camera position (left camera is defined as reference). 

In each iteration the four images of two consecutive frames  

(t and t+1) are transformed to line-preserving normal images 

based on the known camera matrices, radial distortion 

coefficients and relative orientation. Interest points and the 

pyramidal KLT tracker are used for finding and recovering 

corresponding points in all four images. Stereo normal images 

enable outlier removal based on thresholding y-coordinate 

differences of matching candidates. Then, metric 3D 

coordinates of all points in frame t are triangulated. Using the 

3D-2D correspondences in the left image of frame t+1, the 

EPnP solver estimates the relative pose changes R and T. The 

pose update can be obtained using the relative rotation ΔR = RT 

and translation ΔT = -RTT change: 
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3.2 Selection of Enhancement Strategies 

For our experiments the following enhancement strategies of the 

above described basic workflow were identified. In order to 

achieve a uniform-like distribution of feature points a simple 

bucketing approach is used, in which interest points are 

independently detected in each rectangular region. This may be 

valuable for example in case of images containing vegetation or 

moving objects. A rejection of moving points by RANSAC is 

more likely when we ensure a uniform-like point distribution 

which covers more rigid parts of the scene. Further outliers may 

be removed by thresholding the reprojection error obtained by 

projecting triangulated 3D points of frame t into frame t+1 

using the projection matrix estimated by EPnP. This is of 

special interest when optimization, i.e. SBA, is used. 

 

To reduce uncertainties, for example in case of small motions, 

we use a simple keyframe selection method similar to 

(Alcantarilla et al., 2012). The current frame t+1 is a new 

keyframe, when the accumulated translation or rotation with 

respect to the last keyframe exceeds a defined threshold. 

 

Optimization can be achieved using bundle adjustment. In order 

to keep computational efforts low, usually a time window-based 

adjustment using the latest n frames is applied. We use the fast 

and efficient simple SBA (SSBA) implementation described in 

(Zach, 2014) for our experiments. 

 

PGO (Olsen et al., 2006; Kümmerle et al., 2011) is a general 

concept that can be applied for solving several problems 

including SBA and SLAM. One drawback of SBA is the 

sensitivity to outliers due to the least squares minimization. 

PGO offers an easy way to optimize graphs without any 2D and 

3D point observations. On the other hand, trying to optimize a 

pose chain without any further constraints will not affect the 

graph at all. One approach to introduce more constraints could 

be achieved by a window-based optimization using all possible 

transitions (edges) between the current n poses (vertices) 

instead of just using transitions between consecutive poses. As 

this requires the estimation of all corresponding relative 

orientations, we decided to introduce selected keyframes as 

further constraints. Furthermore, the stereo baseline constraint 

can be introduced, optimizing the path of the left and right 

camera simultaneously. PGO is often used for offline posterior 

optimization. Similar to SSBA, PGO is applied in a time 

window-based manner in this study. 

 

4. EXPERIMENTAL RESULTS 

4.1 Datasets and Evaluation Criteria 

Experiments were conducted using the stereo benchmark 

datasets New Tsukuba with daylight illumination (Martull et al., 

2012) and the KITTI stereo sequence 00 (Geiger et al., 2012). 

Additionally, an own dataset acquired with a manually carried 

stereo system consisting of two BlueFox-MLC200wC cameras 

with a resolution of 752×480 pixels, a field of view of 100° and 

a maximum framerate of 90 Hz was tested. The baseline of the 

system is around 18.5 cm. Examples of each dataset are shown 

in Figure 2. 

 

 

Figure 2. Example images from New Tsukuba (upper left), own 

stereo data (upper right) and KITTI (bottom) 

 

For the evaluation we used mean values of the error metrics 

proposed in (Geiger et al., 2012) expressing the errors in 

rotation and translation as a function of different defined 

trajectory lengths. A maximum number of 750 additional 

features per frame was added to the currently existing set in 

order to ensure an average of around 1000 features. In all 

configurations features were removed when the y-coordinate 

difference of homologous points in a stereo frame was larger 

than 0.5 pixels (epipolar constraint). 

 
4.2 New Tsukuba Dataset 

The simulated sequence consists of 1800 stereo frames (30 Hz) 

moving along a complex known trajectory within an indoor 

office environment. The last 80 frames contain few textures and 

a large moving object. If not explicitly mentioned, these frames 

are omitted in the experiments, since the proposed workflow 

assumes rigid scenes. The following configurations were tested: 

(a) basic frame-to-frame VO (BVO), (b) feature bucketing (BT) 

using 3×2, 12×8 and 24×16 non-overlapping rectangles, (c) re-

projection-based outlier removal (OR) with a reprojection 

threshold of 0.5 pixels, (d) OR + BT, (e) keyframe selection 

(KS), (f) KS + BT, (g) KS + window-based SSBA, (h) KS + 

window-based SSBA + BT, (i) KS + PGO and (j) KS + PGO + 

BT. The window size for SSBA and PGO was set to n=20. 

Based on own empirical observations, a new keyframe was 
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initialized when the accumulated translation and rotation 

exceeded 150 mm or 5 degrees, respectively. Additionally, a 

new keyframe was defined when the number of tracked features 

was lower than 50 % of the points in the last keyframe in order 

to ensure enough point correspondences. Following the 

approach in (Badino et al., 2013), the evaluation path lengths 

were defined as (1, 2, …, 8) meters. The resulting translation 

and rotation errors are summarized in Table 1. The selected 

trajectories are shown in Figure 3. 

 

Configuration New Tsukuba: Mean translation and 

rotation errors r and t 

 r [deg/m] t [%] 

BVO 0.0207 4.0276 

BVO all frames 0.0288 6.9974 

BT 3×2 0.0206 3.8811 

BT 12×8 0.0208 4.4118 

BT 24×16 0.0208 4.2010 

OR 0.0207 3.9961 

OR + BT 3×2 0.0206 3.5935 

KS 0.0218 3.5452 

KS + BT 3×2 0.0224 3.3382 

KS + SSBA 0.0243 5.2437 

KS + SSBA + BT 3×2  0.0242 4.9192 

KS + PGO 0.0213 3.7622 

KS + PGO + BT 3×2 0.0211 3.8166 

Table 1. Mean translation and rotation error rates for Tsukuba: 

the lowest error rates are highlighted 

 

Our basic VO method yields accurate trajectories of good 

quality. A mean rotation error of 0.021 deg/m is comparable 

good to the value of ~0.02 deg/m in (Badino et al., 2013) 

obtained using their baseline stereo VO method in which also 

the KLT tracker is utilized. Our translation error is even ~2 % 

lower. The best result in terms of mean rotation and translation 

errors could be obtained by applying outlier removal and 

bucketing (OR + BT 3×2) as well as keyframe selection and 

bucketing (KS + BT 3×2), respectively. 

 

 

      Figure 3. Selected result trajectories for New Tsukuba 

4.3 KITTI Dataset 

The first KITTI stereo sequence (00) containing 4541 stereo 

image pairs with a size of 1241×376 pixels was used for the 

evaluation. The 10 Hz sequence contains real world data 

acquired from a driving car. Infrastructure but also vegetation 

and moving objects, like pedestrians and vehicles, are 

contained. Compared to the New Tsukuba dataset, these moving 

objects are much smaller and the rigid parts of the scenes are 

well textured, so that we used the complete sequence. The 

following configurations were tested: (a) BVO, (b) BT using 

6×2, 24×8 and 48×16 non-overlapping rectangles, (c) OR with 

a threshold of 0.5 pixels, (d) OR + BT (6×2 and 24×8), (e) KS, 

(f) KS + BT, (g) window-based SSBA, (h) window-based 

SSBA + BT with n=20, (i) PGO and (j) PGO + BT with n=5. A 

new keyframe is initialized, when the accumulated translation 

and rotation exceed 5 m or 5 degrees, respectively. Since the 

motion of the camera system is much faster and the frame rate is 

lower compared to Tsukuba, SSBA was tested without KS here.  

 

Configuration KITTI: Mean translation and 

rotation errors r and t 

 r [deg/m] t [%] 

BVO 0.0096 1.9490 

BT 6×2 0.0086 1.9035 

BT 24×8 0.0088 1.9333 

BT 48×16 0.0088 1.9923 

OR 0.0099 1.9756 

OR + BT 6×2 0.0089 1.9119 

OR + BT 24×8 0.0082 1.8693 

KS 0.0086 2.4589 

KS + BT 6×2 0.0073 2.0124 

KS + BT 24×8 0.0088 2.5675 

SSBA 0.0124 2.7092 

SSBA + BT 6×2 0.0126 2.8027 

PGO 0.0083 1.8682 

PGO + BT 6×2 0.0067 1.5961 

Table 2. Mean translation and rotation error rates for KITTI 

sequence (00): the lowest error rates are highlighted 

 

 

             Figure 4. Selected result trajectories for KITTI 
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Since keyframe selection has shown to decrease the 

performance in terms of translation, PGO was applied in order 

to optimize the left and right camera path simultaneously using 

the stereo baseline constraint (section 3.2). Following the 

suggestions of the dataset providers, the evaluation path lengths 

are defined as (100, 200, …, 800) meters.  

 

According to Table 2 and Figure 4, our basic VO method again 

provides quite accurate results. The achieved mean translation 

and rotation errors of 1.95 % and 0.0096 deg/m are comparable 

good with respect to those reported for the KLT-based 

benchmark method in (Badino et al., 2013) (t ≈ 1.7 % and r ≈ 

0.011 deg/m). Please note that the results of Badino et al. were 

obtained using all 11 KITTI sequences. OR and BT (OR + BT 

24×8) decreased the translation error to 1.87 %. KS and BT 

reduced the rotation error to 0.073 deg/m. However, the 

significantly best result in terms of both errors could be 

obtained by PGO + BT 6×2. 

 

4.4 Own Dataset 

Our outdoor dataset consists of 1243 grayscale stereo image 

pairs. The trajectory describes a closed loop around the Digital 

Bauhaus Lab in Weimar.  

 

Configuration Loop closure errors: coordinate differences 

(end - start) and absolute distance S  

 dX [m] dY [m] dZ [m] S [m] 

BVO -0.791 0.139 2.294 2.444 

BT 3×2 0.069 1.922 1.197 2.266 

BT 6×4 -0.109 1.674 1.639 2.592 

OR -0.070 0.595 2.517 2.588 

OR+BT 3×2 0.225 3.327 1.470 3.644 

KS -1.124 0.502 3.970 4.156 

KS+BT 3×2 -0.041 1.429 1.418 2.014 

PGO 0.070 1.463 1.492 2.091 

PGO+BT 3x2 -1.030 -0.005 1.766 2.045 

Table 3. Loop closure values in X, Y, and Z for our own dataset: 

the lowest value S is highlighted  

 

 

          Figure 5. Selected result trajectories for own data 

Since no ground truth data is available here, we use the loop 

closure expressed in coordinate differences of the start and end 

position as evaluation criterion. The following configurations 

were tested: (a) BVO, (b) BT using 3×2 and 6×4 buckets, (c) 

OR with a threshold of 1.5 pixels, (d) OR + BT 3×2, (e) KS, (f) 

KS + BT, (g) window-based PGO (baseline constraint) with 

n=5. A new keyframe is initialized, when the accumulated 

translation and rotation exceed 50 cm or 5 degrees, respectively 

(found empirically). The corresponding loop closure results are 

listed in Table 3. 

 

The coordinate differences significantly differ and it was not 

possible to obtain absolute distances S below 2 m. Furthermore, 

the trajectories tend to drift in height, since only positive values 

for dZ were observed. KS+BT 3×2 yields the lowest absolute 

difference. However, it remains unclear which of the method is 

the best. The trajectories in Figure 5 exhibit significant 

differences and therefore also demonstrate that additional 

criterions should be used for the evaluation of data without 

ground truth information. 

 

5. DISCUSSION 

The experimental results presented in section 4 show that the 

quality of VO results in this study mainly depend on the 

components chosen for frame-to-frame VO and partially can be 

enhanced incorporating additional strategies and optimization 

steps. A further important factor is the characteristic of each 

dataset or application.  

 

Processing the New Tsukuba dataset turned out to be 

challenging due to unconstrained camera manoeuvres, 

illumination changes, fast rotations combined with low textured 

image content as well as an opening door at the end of the 

sequence. After excluding this moving object, our basic VO 

chain is able to obtain quite accurate results. Processing all 

frames increased the mean errors r and t significantly (Table 1). 

A rough bucketing using 3×2 rectangles turned out to be useful 

in combination with OR as well as KS. The simple KS method 

leads to a significant gain in translation (0.48 %) and reduced 

the set of used poses to around 800.  A critical point in KS is 

the tracking of features. In order to ensure a successful relative 

pose estimation, we had to increase the number of feature points 

by a factor of two in order to ensure that enough features are 

available. Nonetheless, pose change estimation using EPnP in a 

RANSAC scheme sometimes failed in our tests. The reason for 

this is that too many features were identified as outliers due to 

the epipolar constraint. This indicates that KLT provides a good 

tracking in consecutive frames with small pose changes, but 

tend to accumulate small location inaccuracies in case of 

tracking points over multiple frames. Similar to this, also OR 

pruned too much features in our tests with KS. Optimization of 

the keyframe poses using SBA downgraded the results – even 

with filtering of 3D points, which exceed a standard deviation 

in X, Y or Z of 15 mm. The main reason is that in our current 

basic implementation the optimized 3D coordinates obtained by 

SBA were not used in the following estimations. This will be 

improved in future works. Another reason may be the above 

mentioned accumulated inaccuracies from KLT. Since the 

constraints introduced in PGO are solely related to the selected 

and estimated keyframe poses, the results can obviously only be 

improved within the range of the quality of KS. For the New 

Tsukuba dataset, our approach outperforms the method 

proposed in (Bellavia et al., 2015). Furthermore, a better 

rotation accuracy than reported in (Badino, et al. 2013) could be 

achieved. Using an Intel i7 CPU with 8 cores and 32 GB RAM, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-511-2016

 
516



 

minimum and maximum average computational times per frame 

of 0.16 s (BVO) and 0.32 s (KS+SSBA) were measured. 

 

The KITTI dataset 00 was less challenging compared to New 

Tsukuba, due to the constrained and forward directed motion on 

a plane and the well textured images. Nonetheless, decreasing 

both, translation and rotation error, was only possible using BT 

or PGO. BT (6×2) reduced r and t by 0.001 deg/m and 0.05 %, 

respectively. The reason for this might be twofold. First, in BT 

stable, locally thresholded features have a better chance to 

survive in case of natural image content, e.g., vegetation, which 

is known to yield larger corner responses but might not be 

static. Second, with a more uniform-like distribution features 

detected on moving objects have a better chance to be filtered 

out by RANSAC. On the other hand the experimental results 

show that choosing a good bucket size is not trivial. Applying 

KS and BT together, the mean rotation error could be reduced 

to 0.0073 deg/m, but in turn the translation error increased 

slightly compared to BVO. However, due to the fast motion of 

the camera and the relatively low frame rate, KS is not required. 

The significantly best results could be obtained by introducing 

the stereo baseline constraint with PGO. Minimum and 

maximum average computational times per frame were 

measured in a range of 0.13 s (BVO) and 0.38 s (PGO+BT). 

 

Our dataset was challenging because of the discontinuous 

trajectory as a result of manual image acquisition while 

walking. Other challenging properties of the sequence are 

repeated patterns (e.g. grids), reflective and translucent surfaces 

as well as large untextured image areas (pavement). However, 

this represents a realistic scenario and is therefore important to 

investigate. The obtained results (Table 3) are not satisfactory 

and the trajectory plots (Figure 5) indicate that a loop closure 

itself is not enough for the evaluation of data without ground 

truth information. Hence, for accurate indoor navigation tasks 

the method has to be further investigated. 

 

6. CONCLUSION AND OUTLOOK 

In this paper, a frame-to-frame VO chain is proposed. 

Furthermore, several different strategies of VO enhancement 

and optimization are reviewed. Five different strategies (feature 

bucketing, outlier removal, keyframe selection, window-based 

bundle adjustment and window-based pose graph optimization) 

were tested in different combinations. The results demonstrate, 

that the proposed VO method is able to yield accurate results 

within short computational times, even using our basic 

implementation. However, especially the results obtained using 

real own data demonstrate the complexity and difficulty of VO. 

 

The proposed baseline VO chain provides better results than 

initially expected. The additionally incorporated and evaluated 

approaches for VO enhancement further improved these results. 

The most significant improvements could be achieved using 

BT, KS and PGO introducing the stereo baseline constraint. We 

expect comparable good improvements with SBA when 

optimized 3D coordinates from preceding frames are used. Of 

course each additionally added component in VO also leads to 

more free parameters to be defined in advance. This may affect 

the transferability to other datasets. 

 

The discussion in section 5 indicates several different threads 

for further progress. Multi-frame feature integration (Badino et 

al., 2013) could help to improve the location accuracy of 

tracked features. In order to avoid (quasi-)degenerated 

configurations in relative pose estimation, QDEGSAC (Frahm 

and Pollefeys, 2006) should be utilized. The very simple 

keyframe selection used in this study should be replaced by an 

adaptive version. Here, the feature temporal flow (Bellavia et 

al., 2015) is a promising approach. The detection of moving 

objects may be another task for future works, for example based 

on the dense scene flow (Alcantarilla et al., 2012). Finally, VO 

results should directly be coupled with IMU and other 

measurements, for example using the well-known Kalman filter. 
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