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ABSTRACT: 

 

Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or 

abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at 

unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. 

Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite 

image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while 

few methods focus on estimating reliability (or confidence level) of the detected disturbances in image time series. To this end, this 

paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, 

through analysis of full temporal information laid in time series data. The method consists of three main steps. (1) Segmenting and 

modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST). (2) Forecasting and detecting 

disturbances in new time series data. (3) Estimating reliability of each detected disturbance using statistical analysis based on 

Confidence Interval (CI) and Confidence Levels (CL). The method was validated by estimating reliability of disturbance regions 

caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate 

reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%. 

 

 

1. INTRODUCTION 

Normally, the status of land cover is inherently dynamic and 

changing continuously at the temporal scale. However, 

disturbances (anomalies or abrupt changes) of land cover — 

caused by nature, biogenic factors or anthropogenic activities — 

occur worldwide at unknown time and locations. Detecting and 

estimating disturbances of land cover are important for resource 

managers to monitor land cover dynamics over large areas, 

especially where access is difficult or hazardous (Pickell et al., 

2014). Satellite remote sensing images provide consistent 

observation of land cover over large areas at high frequencies, 

allowing monitoring the status of land covers  (Hutchinson et al., 

2015). Therefore, detecting disturbances of land cover in satellite 

image time series is crucial for risk warning and assessment 

(Verbesselt et al., 2012).  

 

Recently, several time series analysis methods have been 

developed for near-real-time or online detection of disturbances 

in satellite image time series.  For example, some online change 

detection methods use Extended Kalman Filter (Kleynhans et al., 

2011) and Gaussian Process (Chandola and Vatsavai, 2011). A 

few near-real-time disturbance detection methods are based on 

harmonic models (Verbesselt et al., 2012; Zhou et al., 2014; Zhu 

et al., 2012), and nonlinear least square (Anees and Aryal, 2014). 

Generally, these methods consist of two main steps, i.e., fitting 

historical time series with some model and then detecting 

disturbances in new data according to discrepancies between true 

observations and predictions of the model. 

                                                                 
*  Corresponding author 
 

However, despite the utility of these disturbance detection 

methods, the detection results are usually only flagged with 

Disturbance/Not disturbance, and they could not tell the 

reliability (or confidence level, e.g., 90%) of individual detected 

disturbance. As disturbances of land cover at different areas may 

have different significances, the reliability of each of the detected 

disturbances would be a basis for assessing risk grades and 

distributions. 

 

To this end, this study proposes a method for estimating 

reliability of disturbances detected in satellite image time series 

based on statistical analysis. The method was validated with a 

case study for estimating reliability of unexpected flooding areas 

detected in MODIS image time series. 

 

2. METHOD 

The method consists of three steps: time series modelling, time 

series forecasting and disturbance detection, and reliability 

estimation. The time series data is extracted from satellite image 

time series pixel by pixel. 

 

2.1 Segment and Model a Time Series 

A seasonal time series 𝑌𝑡  (𝑡 = 𝑡1, … , 𝑡𝑛) can be decomposed into 

three components — trend, season and residuals — by a season-

trend model. Many times a satellite time series data does not 

varies regularly and may have different patterns at different time 

intervals. Break points between pairs of these patterns or time 

intervals can be estimated using Bai and Perron (2003) (BP), 
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adapted in the Breaks For Additive Season and Trend (BFAST) 

approach based on iterative regression with piecewise season-

trend models (Verbesselt et al., 2010).  

 

The estimated break points, supposed with number b, separate 

𝑌𝑡 into 𝑃 = 𝑏 + 1 segments. For each segment, at time interval 

from 𝑡
(𝑝−1)

 to  𝑡
(𝑝)

, 𝑝 = 1, … , 𝑃 , the time series data can be 

regressed with a season-trend model: 

 

𝑌𝑡 =  𝛼𝑝 + 𝛽𝑝𝑡 + ∑ 𝑎𝑝,𝑘 sin(
2𝜋𝑘𝑡

𝑓

𝐾

𝑘=1

+ 𝛿𝑝,𝑘)  + 𝜀𝑡 ,   

                      𝑡
(𝑝−1)

≤ 𝑡 < 𝑡
(𝑝)

  

(1) 

 

where 𝛼 and 𝛽 are respectively the intercept and slope of linear 

trend component, 𝑎𝑘 , 𝛿𝑘  and 𝐾  are respectively the amplitude, 

phase and order of harmonic season component, 𝑓  is the 

frequency of time series data (e.g., 23 observations in a year) 

(Verbesselt et al., 2010). The season-trend model can be 

estimated by: 
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

x β

x

β

 (2) 

where 
β

is parameters vector which can be estimated using 

ordinary least squares (OLS). 

 

Among the piecewise models, the last one (i.e.,  𝑝 = 𝑃 ) can 

represent the recent pattern of the time series data, of which the 

time interval (𝑡
(𝑃−1)

≤ 𝑡 ≤ 𝑡𝑛 ) is called stable history period 

(Verbesselt et al., 2012). Therefore, the recent pattern of the time 

series data can be represented by the season-trend component of 

the last fitted model (for an illustration please see the time series 

data from 2009 to 2013 in Figure 1, here 𝑡𝑛 = 2013):  

 

𝑌̂𝑡 =  𝑌𝑡 − 𝜀𝑡 =
T
tx β

,  𝑡
(𝑃−1)

≤ 𝑡 ≤ 𝑡𝑛  (3) 

 

2.2 Detect Disturbances in New Time Series Data 

Under normal conditions — if there is no land cover disturbance 

or anomaly — the pattern of satellite time series data would 

persists, i.e., the last season-trend model in the stable history 

period would hold true for new time series data (i.e., 𝑡 > 𝑡𝑛). 

Otherwise, if a disturbance appears in the new data, the 

disturbance data will, to some extent, deviate from the expected 

pattern, i.e., the last fitted season-trend model 
T
tx β

(Equation 3). 

For illustrations, please see the time series data from 2013 to 

2014 in Figure 1 and Figure 2.  

 

 

 
Figure 1. Illustration of segmenting and modelling a time series data before 2013 and forecasting data in 2014 with season-trend model. 

 

 
Figure 2. Illustration of detecting disturbances (anomalies or abnormal changes) according to the discrepancies between observations 

and predictions. 
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Therefore, disturbances in the new time series data can be 

determined based on discrepancies between true observations 

(𝑌𝑡 , 𝑡 > 𝑡𝑛) and the predictions of the last season-trend model. 

The predictions is generated by:  

 

𝑌̂𝑡 =  
T
tx β

, 𝑡 > 𝑡𝑛   (4) 

 

A disturbance is detected at the Significance Level 𝛼 (e.g., 0.01) 

if 𝑌𝑡 is beyond a Confidence Interval (CI) of the predictions 𝑌̂𝑡:  

 

𝑌𝑡 ∉ 𝐶𝐼𝑡: [𝑌̂𝑡 − 𝑧[𝛼/2]𝜎, 𝑌̂𝑡 +  𝑧[𝛼/2]𝜎]                 (5) 

 

where 𝜎 is standard deviation of the regression residuals (𝜀𝑡) for 

the last season-trend model, 𝑧[𝛼/2] is cut-off z-value so that the 

area to its right under the standard normal curve is 𝛼/2, given 

that 𝜀𝑡  follows the normal distribution 𝑁(0, 𝜎) . The desired 

Significance Level 𝛼 is not determined by the time series data but 

is set empirically. The smaller the Significance Level is (e.g., 

0.01), the bigger the cut-off z-value is (e.g., 2.576) and less 

disturbances will be detected, and vice versa. Table 1 lists some 

commonly used Significance Levels and the corresponding cut-

off z-values. 

 

2.3 Estimate Reliability of Each Disturbance 

The reliability of each detected disturbance can be estimated by 

measuring its Confidence Level (CL) The CL of a disturbance 

indicates how much reliability or confidence to put on this 

disturbance. It is defined as: 

 

𝐶𝐿𝑡 = 1 − ∫
1

√2𝜋

∞

|𝑧𝑡|
𝑒−

𝑧2

2 𝑑𝑧  = 1 − 𝑃[ 𝑧 > |𝑧𝑡| ]
  

 (6) 

𝑧𝑡 =
(𝑌𝑡−𝑌̂𝑡)−𝑢

𝜎
  

                                                (7) 

 

where 𝑢  and 𝜎  are respectively the mean value and standard 

deviation of the regression residuals (𝜀𝑡) for the last season-trend 

model (see Equation 3),  𝑧𝑡 is called observed z-value which is 

hypothesized to follow standard normal distribution, 𝑧  is a 

continuous random variable representing possible results of 𝑧𝑡, 

and 𝑃[𝑧 > |𝑧𝑡|] is the probability of obtaining a result of z that is 

more extreme than what was actually observed of 𝑧𝑡.  

 

The greater the absolute value of observed z-value (|𝑧𝑡|), the 

more likely it is a small probability event, and we are more 

confident to take it as a disturbance. Some commonly used CL or 

reliability and the corresponding observed z-values are listed in 

Table 1.  

 

Significance 

Level 𝛂 

Cut-off  

z-value 𝐳[𝛂/𝟐] 
Observed  

z-value |𝒛𝒕| 
Reliability 

/ CL (%) 

0.2 1.282 0.842 80 

0.1 1.645 1.282 90 

0.05 1.960 1.645 95 

0.01 2.576 2.326 99 

0.001 3.291 3.090 99.9 

0.0001 3.891 3.719 99.99 

Table 1. Some common Significance Level and the 

corresponding cut-off z-value, observed z-value, and reliability. 

 

3. DATA AND EXPERIMENT 

The study area covers the Tongjiang section of Heilongjiang 

River (between southeast Russia and northeast China, covering 

about 6,000 km2 with roughly 120 km by 50 km. There is no 

significant land cover change except that a big flood occurred in 

summer 2013. The riverbank was broke on August 23, causing 

severe flooding over large areas (Figure 3). 

 

The experimental data are 16-day composited 250m spatial 

resolution Normalized Difference Vegetation Index (NDVI) 

images from satellite Terra/MODIS (23 images per year). NDVI 

indicates vegetation status with higher values for green 

vegetation (e.g., 0.2 – 0.8) and lower values for non-vegetation 

and particularly water bodies (e.g., -0.2 - 0.2). The NDVI image 

time series covering the Tongjiang section of the Heilongjiang 

River of China spanning from February 2000 to 2014 were 

collected from and subset on the LAADS Web 

(http://ladsweb.nascom.nasa.gov). It should be noted that cloud-

removal or data-smooth was not conducted because after our 

inspection, we found that for transient flooding areas in MODIS 

NDVI images, the corresponding Vegetation Index Quality 

information in Quality Assurance (QA) dataset tends to be 

flagged with ‘Cloud’.  The left images in Figure 4 show some of 

the MODIS NDVI images. 

 

 
Figure 3. The reference 30-meter Landsat-8 OLI image showing 

the severe flood after riverbank break. 

 

Some satellite images with higher spatial resolution (30-meter) 

were selected as reference images. The multi-spectral ETM+ and 

OLI images from Landsat-7/8 covering the study area from 2012 

to 2013 were collected from the Earth Explorer website 

(http://earthexplorer.usgs.gov). The reference image for the 

severe flooding period in 2013 after mosaic is shown in Figure 3. 

The dates of the reference images during the severe flooding are 

2013/09/18 and 2013/09/27, in the 17th compositing period of 

the MODIS NDVI images (see Figure 4(e)).  

 

To validate the results of anomaly detection from MODIS NDVI 

image time series, a reference map of anomaly region from the 

reference images was produced. At first, for distinct classes in 

each image (i.e., water, forest, cropland, vegetative wetland, 

built-up area, cloud and cloud shadow, residual gaps), we 

visually selected more than 5% pixels in each class as sample 

data. Then, each of the four images is classified using a 

supervised classification method Support Vector Machine (SVM) 

(Pal and Mather, 2005), resulting in two water maps for the year 

2012 and 2013. Finally, the reference anomaly region was 

derived from the two water maps by subtracting the water map in 

2012 from the water map in 2013. The reference images before 

2012 were not used here because there was not big flood for this 

period so that we use the image in 2012 to represent all the images 

before 2012. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-549-2016

 
551

http://ladsweb.nascom.nasa.gov/
http://earthexplorer.usgs.gov/


 

 

 
 

Figure 4. The MODIS NDVI image time series (a-f) during flooding period and the estimated reliability of the detected disturbance 

regions (unexpected flooding areas) (g-l). The number in parenthesis indicates the sequence number of the 23 16-day compositing 

period. 
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As is shown in Figure 4(a-f), in the study area, a big flood 

occurred during the summer of 2013 (from 2013(13) to 2013(18), 

13 indicates the 13th image of 23 images per year). In this 

experiment, the 23 images in 2013 are taken as new image time 

series for disturbance detection and reliability estimation, while 

all the image time series before 2013 (not shown in this paper) 

are used for modelling. The disturbances to be detected are 

mainly unexpected flooding areas (in contrast to permanent and 

seasonal flooding areas). 

 

4. RESULTS AND DISCUSSION 

Disturbances in each of the 23 images were detected and the 

reliability (Confidence Level) of each disturbance was estimated. 

Figure 4 shows the MODIS NDVI images during the flooding 

period from 2013(13) to 2013(18) and the estimated reliability of 

the detected disturbances in each image. Comparing to the left 

images, the detected disturbance regions clearly show the 

dynamic spatial-temporal changes of the unexpected flooding 

areas, including the coming (a), expanding (b-d) and receding (e-

f) of the flood. Note that the values of CL are actually continuous; 

they are sliced here just for contrast, red colour for highest level 

(>99.99%) and yellow for lowest (> 95%). Due to difficulties to 

distinguish between flooding and humid vegetation areas 

especially as the flood recedes, some detected disturbances have 

low CL (e.g., yellow areas in Figure 4(g, l)), and we have low 

confidence to say these areas were already or still flooded at that 

moment. The estimated reliabilities can reflect the possibilities 

we are able to identify the flooding areas in the MODIS NDVI 

images. 

 

 
Figure 5. The detection accuracies and the detection reliabilities 

versus the estimated reliabilities. 

 

 

The results demonstrate the effectiveness of the method, i.e., 

estimating reliability of disturbances detected in satellite image 

time series. The robustness of the method is intrinsic because, for 

one thing, the recent pattern of time series data is automatically 

identified using BFAST to avoid influences of past disturbances. 

For another, the higher the variability (𝜎) of time series data, the 

broader the Confidence Interval (CI) will be and the Confidence 

Levels (CL) of disturbances will achieve low values (see 

Equation 6 and 7). In this way, false detections would be properly 

reduced and reliabilities would be greatly improved. The results 

also reveal an advantage of the method that it can eliminate 

expected changed areas (e.g., seasonal river water areas) from 

disturbance regions (e.g., unexpected flooded areas) by analysing 

full temporal information of satellite time series. 

 

However, since the method detects disturbances in each image 

based on the discrepancies between predications and 

observations in that individual image, the method is sensitive to 

single/discontinuous strong noises and in fact, some detected 

disturbance may be a strong noise caused by cloud-covering or 

aerosol for example. Therefore, cloud-removing or noise 

reduction should be conducted before using the method to detect 

disturbances and estimate their reliabilities. 

 

5. CONCLUSION 

This study proposed a statistical analysis method for estimating 

reliability of disturbances detected in satellite image time series. 

The method detects disturbances based on discrepancies between 

true observations and predictions of a regression model. At the 

meantime, the reliability of each detected disturbance is 

estimated based on the statistical distributions of the 

discrepancies. The method was validated by a case study to 

estimate reliability of disturbance regions caused by severe 

flooding using MODIS NDVI image time series.  

 

By analysing full temporal information, the method can detect 

disturbances in satellite image time series with high accuracies 

and meanwhile estimate reliability of each disturbance with low 

error. The method is independent of land cover types and it can 

be applied to various kinds of seasonal satellite image time series. 

However, it should be noted that the method is sensitive to 

single/discontinuous strong noise, so that some noise reduction is 

recommended to do beforehand. The method is now being 

improved to resistant to single strong noise by taking advantage 

of adjacent or continuous temporal information of the time series 

data. 
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