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ABSTRACT: 

 

Building outlines are needed for various applications like urban planning, 3D city modelling and updating cadaster. Their automatic 

reconstruction, e.g. from airborne laser scanning data, as regularized shapes is therefore of high relevance. Today’s airborne laser 

scanning technology can produce dense 3D point clouds with high accuracy, which makes it an eligible data source to reconstruct 2D 

building outlines or even 3D building models. In this paper, we propose an automatic building outline extraction and regularization 

method that implements a trade-off between enforcing strict shape restriction and allowing flexible angles using an energy 

minimization approach. The proposed procedure can be summarized for each building as follows: (1) an initial building outline is 

created from a given set of building points with the alpha shape algorithm; (2) a Hough transform is used to determine the main 

directions of the building and to extract line segments which are oriented accordingly; (3) the alpha shape boundary points are then 

repositioned to both follow these segments, but also to respect their original location, favoring long line segments and certain angles. 

The energy function that guides this trade-off is evaluated with the Viterbi algorithm.  

 

 

1. INTRODUCTION 

Building outlines provide substantial information for the urban 

environment and are therefore needed to map urban variation and 

change. Typical applications are urban planning, city modelling 

and disaster management. Manually extracting building outlines 

or other urban features to keep data sets up to date is time and 

cost consuming. 

 

Airborne images and laser scanning have been a major data 

source for building outline extraction. Automating methods, 

achieving more accurate results, faster processing of large data 

sets and transferability to other regions of interest are of main 

interest in ongoing research. Today’s airborne laser scanning 

technology can produce dense 3D point clouds with high 

accuracy, which makes it an eligible data source to reconstruct 

2D building outlines or even 3D building models. 

 

Building extraction from LIDAR point clouds can be divided into 

four parts, i.e. (1) classify the point cloud to separate building 

points from ground, tree, and other urban feature points, (2) 

isolate individual buildings, (3) determine approximate hulls of 

boundary points, and (4) generalize/regularize building outlines 

(Kim and Shan, 2011). Regularization of building outlines is 

needed because initial building outlines from LIDAR point 

clouds are noisy and jagged. Depending on the requirements of 

the application, a generalization is often used to eliminate small 

details. 

 

This paper focuses on the regularization of extracted building 

points from a LIDAR point cloud. The regularization is driven by 

an energy minimization evaluated by the Viterbi algorithm 

(Viterbi, 1967). The proposed approach enables a reconstruction 

of building outlines with more than one main orientation and 

different angles by utilizing different methods to generate input 

for the energy function. 

 

Section 2 gives an overview of related work in the field of 

regularizing building outlines mainly from airborne laser 

scanning data but also with examples from airborne images. 

Section 3 introduces the principles and methods used for the 

proposed approach in detail. Section 4 shows the formulated 

energy terms in detail. Section 5 examines experimental results 

of the algorithm tested on the ISPRS benchmark data set from 

Toronto. Conclusions and an outlook are given in Sections 6. 

 

 

2. RELATED WORK 

A good introduction to previous research in the field of 

regularization of building outlines is given by Jwa et al. (2008). 

A comparative analysis of four representative methods including 

Douglas-Peucker’s algorithm, Local Minimum Description 

Length, Feature Based Model Verification and Rule-based 

Rectification is conducted. They also propose a geometric 

regularization based on Minimum Description Length (MDL) 

called Geometric MDL (GMDL). This method tries to find the 

optimal building polyline by adding a global directional 

constraint. 

 

Huang and Sester (2011) utilize a hybrid method to extract and 

reconstruct building footprints. They first segment the 3D point 

cloud with a 3D Hough transform and then use the acquired 

information, i.e., roof heights and ridges as additional parameters 

for the statistical reconstruction of the building footprint with 

Reversible Jump Markov Chain Monte Carlo (RJMCMC). The 
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proposed method only considers simple rectangular shapes and 

therefore has to be adapted for shapes that are more complex. 

 

Jarzabek-Rychard (2012) applies Random Sample Consensus 

(RANSAC) to detect straight lines in a height image derived from 

a LIDAR point cloud. Regularization is then performed by 

merging close parallel line segments and adjusting angles 

according to a mean direction calculated from the longest line 

segments. Rectangularity and parallelism are used as hard 

constraints and therefore different orientations or angles are not 

considered. 

 

Similar to the proposed method in this paper Fazan and Dal Poz 

(2013) present a building roof extraction based on snakes and 

dynamic programming, but performed on airborne images. An 

energy function is used to optimize the building outline and to 

refine the results. A drawback of the proposed method is that the 

weighting functions favor right angles and therefore only work 

for buildings with simple rectangular shapes. 

 

Another approach based on energy minimization is presented by 

He et al. (2014). The alpha shape algorithm is used to delineate 

the initial building boundary, which is then simplified with an 

adapted Douglas-Peucker algorithm called Vertex-driven 

Douglas-Peucker, which utilizes energy minimization and 

focuses on the complexity of the resulting polygon. The 

regularization is then divided and tested in an explicit and 

implicit reconstruction that either focus on robustness and 

accuracy or completeness and topological correctness. 

 

An exhaustive overview of current research regarding building 

extraction from airborne laser scanning data is also provided by 

Tomljenovic et al. (2015). 

 

 

3. PROPOSED APPROACH 

An overview of the proposed approach to extract and regularize 

building outlines is summarized in Figure 1. As this papers 

primary focus lies on the regularization by energy minimization, 

the first two steps of the proposed workflow (classification of 

point cloud and building point extraction) are only mentioned but 

not laid out in detail. 

 

 
Figure 1. Workflow for regularizing building footprints. 

 

For the regularization of building outlines, the alpha shape 

boundary points are considered as observations in a Markov 

Chain model. All extracted and delineated information (e.g. 

Hough transform line segments and corner point hypotheses) is 

then used as input for computing the transition probabilities with 

an energy formulation covering geometric properties suited for 

building outlines. The energy is then evaluated with the Viterbi 

algorithm to propose the optimal states for a regular building 

outline. 

 

3.1 Building boundary points 

The first step in creating an outline for a specific building starts 

with the generation of an approximate hull to extract all bounding 

points. The alpha shape algorithm (Edelsbrunner et al., 1983) is 

used for the given building points and is known to produce 

reliable building boundary points while preserving small details 

(Shahzad and Zhu, 2015, Dorninger and Pfeifer, 2008). Alpha 

shapes are a generalization of the convex hull of a point set but 

have the advantages of being able to be used for both convex and 

concave shapes and extracting polygons with interior and exterior 

boundaries (Shen et al., 2011). The alpha value can be adjusted 

to adapt the algorithm to different point cloud densities. As we 

are only interested in the boundary points, all remaining points 

are disregarded for further processing. 

 

3.2 Line segment hypotheses 

To add a first hypothesis about the approximate orientation of the 

regularized building outline we use the well-known Hough 

transform to detect line segments that represent the main 

directions of the building (Guercke and Sester, 2011, Duda and 

Hart, 1972). The main idea behind Hough transform is to perform 

a line detection in a parameter space, also called Hough space. In 

this parameter space, a line is no longer described as a line but by 

its parametric representation, in this case the normal 

parameterization as shown in this equation: 

 

𝑑 = 𝑥𝑖 cos 𝛼 + 𝑦𝑖 sin 𝛼 (1) 

 

where  d : distance from the origin 

 𝛼 : direction of the line normal, restricted to [0, 180] 
 𝑥𝑖 , 𝑦𝑖 : point coordinates 

 

The Hough space is defined by the variables 𝛼 and 𝑑. Each point 

is transformed into a sinusoidal curve in the Hough space. The 

curves of collinear points intersect in the Hough space in one 

point. To find these intersections the Hough space is discretised 

according to a predefined angle and distance resolution. The 

resolution of each interval is a compromise of computation speed 

and accuracy. The resulting raster is also called Hough 

accumulator. Each grid cell, also called bin, counts how many 

curves are passing through. Bins with a high count correspond to 

a high confidence of a detected line segment. By thresholding the 

results, we can assure that bins with a small count are rejected 

and only bins with a favoured count are used for further 

processing. 

 

 
Figure 2. Detailed view of alpha shape boundary points (red) and 

detected line segments by adapted Hough transform (blue). 

 

For our purposes, the Hough transform is slightly adapted as we 

are only interested in line segments aligned to the dominant 
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directions of a building. First, the Hough transform is used to 

delineate line segments. The longest line segment is then used to 

define the first dominant direction. Then all other aligned line 

segments (𝑎𝑛𝑔𝑙𝑒 ∈ {45°, 90°, 135°, 180°}) are searched for and 

all boundary points in close proximity (< 0.1𝑚) are removed. 

The Hough transform is then repeated with the reduced point list 

until no more dominant orientations are found. Figure 2 shows an 

excerpt of the Hough transform applied to the boundary points of 

an alpha shape. Additionally, a minimum length threshold of 

1.5 m is used to reject small line segments that would disturb 

further processing. 

 

3.3 Merging line segments 

As shown in the previous chapter, the Hough transform can 

detect more than one line segment for a given set of points. An 

iterative line segment grouping based on parallelism and 

proximity followed by merging grouped line segments is used to 

reduce a group to one or more average line segments from which 

we can later compute intersection points. 

 

First, the longest line segment 𝑙𝑙𝑜𝑛𝑔 is added to 𝐿𝑚𝑒𝑟𝑔𝑒 and 

removed from the set of all detected line segments. Then each 

line segment in the set of remaining line segments 𝐿𝑟𝑒𝑚𝑎𝑖𝑛 is 

checked for parallelism to 𝑙𝑙𝑜𝑛𝑔 followed by computing the 

perpendicular distance. If the distance is smaller than a given 

threshold, it is added to the set of line segments to be merged 

𝐿𝑚𝑒𝑟𝑔𝑒 and removed from 𝐿𝑟𝑒𝑚𝑎𝑖𝑛. When all line segments are 

processed, line segments in 𝐿𝑚𝑒𝑟𝑔𝑒 are further examined to see if 

they can be combined. For this, an average line is computed 

based on all given line segments in 𝐿𝑚𝑒𝑟𝑔𝑒 weighted by their 

length to function as a base line. Then a line tracing is started 

with the longest line segment. If other line segments overlap or 

are closer than 2 m a union is performed and the minimum and 

maximum extent of the longest line segment is changed 

accordingly. The computed extents are then projected on the 

average line to create the combined line segments. Figure 3 

shows an example of four parallel line segments that are merged 

to one average line segment where a short gap is filled. One 

advantage of using all line segments in a group is that building 

objects like porches or balconies with small disparities to the 

building outline are all assigned to one base line. This 

information can later be used by the energy evaluation to align 

parallel or collinear line segments. 

 

 
Figure 3. Line segments from Hough transform (blue) are merged 

to one or more collinear line segments (red). 

 

After merging, the overall process continues by emptying 𝐿𝑚𝑒𝑟𝑔𝑒 

and selecting again the longest line segment from 𝐿𝑟𝑒𝑚𝑎𝑖𝑛 and 

searching for close line segments. The process stops when 

𝐿𝑟𝑒𝑚𝑎𝑖𝑛 is empty.  

 

To know which line segments are adjacent to each other and for 

faster processing in subsequent steps, the resulting line segments 

are sorted. This is done by starting with an endpoint of the longest 

line segment and searching for the closest start point of any other 

line segment. The endpoint of the closest line segment is then 

used for the next search and so on. 

 

3.4 Corner point hypotheses 

Next to boundary points and line segment hypotheses, possible 

corner points of the building outline add important information 

for reconstruction. On the one hand hypothetical corner points 

give information where a building wall probably ends and on the 

other hand give information where the dominant direction of a 

building changes and therefore hard angle constraints in further 

processing can be lowered. 

Intersecting each consecutive merged line segment from the 

previous step results in a set of corner point hypotheses for 

further processing. However, it is possible that two consecutive 

line segments are parallel and therefore never share an 

intersection point. This usually happens when the Hough 

transform fails to detect a line segment because there were not 

enough boundary points to support the line segment or detected 

line segments were too short and were therefore rejected by given 

thresholds.  

 
 

(a) (b) 

Figure 4. Special cases for adding corner points (red) for (a)  

Z-shape and (b) for U-Shape with missing line segment (dotted). 

 

In two cases, supplementary corner points are added when a line 

segment is probably missing between two detected parallel line 

segments: (1) the line segments form a Z-shape or (2) a U-Shape 

(Figure 4). For the first case, the extent from each line segment 

to the dropped foot of the perpendicular from the other line 

segment is computed. At the midpoint of each extent, a possible 

corner point is added. Figure 4 (a) illustrates how the first case 

overcomes a region of few alpha shape boundary points that lead 

to a missing line segment. For the second case, only the extent 

from the shorter line segment to the dropped foot of the 

perpendicular from the longer line segment is used to add one 

hypothetical corner point. Figure 4 (b) illustrates this case. 

 

3.5 Energy evaluation 

The Viterbi algorithm is a dynamic programming approach to 

compute the most likely sequence of observations given a 

specific Markov Chain (Viterbi, 1967, Forney, 1973). It is widely 

used for many applications like speech recognition, bio-

informatics or digital communication. To apply the Viterbi 

algorithm the Markov model is formulated as follows: 

 boundary points of the computed alpha shape are the 

given sequence of observations 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 

 we search for the most probable corresponding 

sequence of hidden states 𝑍 = 𝑧1, 𝑧2, … , 𝑧𝑛 

 transition probabilities are defined as a transition 

matrix 𝐴𝑖𝑗, where 𝑎𝑖𝑗 is the probability of moving from 

state 𝑖 to state 𝑗. 

 

For each observation a state grid is created, that relates to several 

potential candidates for each building outline point. To discretize 

the search space for all candidate hypotheses, the grid dimension 

is limited to the input data. Each observation is assigned to one 

merged line segment and its corresponding Hough line segments. 

After assignment, the states are computed with the following 

rules: 

 the observation point is projected on each assigned line 

and a state grid with a specific resolution is created 

 if a corner point is in close proximity of the observation 

point, an additional state grid is created around the 

corner point 
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The grid resolution is variable and depends on the point density 

of the point cloud. State points that superpose each other are 

removed to reduce complexity and time for the later energy 

computation. A clipped example of a resulting state grid is given 

in Figure 5. The four blue points represent alpha shape points, the 

blue lines are Hough line segments and the green line is the 

corresponding merged line, red points are the states. The bold red 

point is a corner point hypothesis and therefore an additional state 

grid is added to the far left alpha shape point. 

 
Figure 5. Example of a search space (red points) for four 

observations (blue points). 

 

 

4. ENERGY FORMULATION 

The proposed energy formulation has been developed with an 

emphasis on regularizing simple rectangular shapes, but also 

allowing angles to differ from 45° and 90°, when the underlying 

observation supports the change in main orientation. The 

proposed energy function is divided in three individual terms 

each with an emphasis on a specific geometric property: 

 

𝐸 =  𝛼𝐸𝑑𝑖𝑠𝑡 + 𝛽𝐸𝑎𝑛𝑔𝑙𝑒 + 𝛾𝐸𝑙𝑒𝑛𝑔𝑡ℎ (2) 

 

where  𝛼, 𝛽, 𝛾 : weight factors 

 

The distance term 𝐸𝑑𝑖𝑠𝑡 keeps the solution close to the input 

observation; the angle term 𝐸𝑎𝑛𝑔𝑙𝑒 penalizes undesired angles; 

the length term 𝐸𝑙𝑒𝑛𝑔𝑡ℎ is used to prevent too many changes of 

direction and to keep the resulting polygon as simple as possible 

by preferring long line segments. The influence of each term is 

determined by weight factors 𝛼, 𝛽, 𝛾. Depending on the input 

observations, the weight factors can be adjusted. In the presented 

experiments in Section 5 the weight factors are determined 

empirically but specific assumptions can be postulated 

beforehand. Both angle and length term are always weighted 

higher than the distance term, because the search space is 

relatively small and a too high weight on the distance term would 

fix the result to the original observation point. The angle and 

length term are mostly weighted equally as both terms are 

independent on the observation and each term should influence 

the regularization. Each term is explained in detail in the 

following sections. 

 

4.1 Energy distances term 

The distance term is used to increase the energy for estimated 

building outline points with a high distance from the observed 

point (boundary alpha shape point). A simple squared distance 

between both input points is computed:  

 

𝐸𝑑𝑖𝑠𝑡(𝑧, 𝑥) = ∑|𝑧𝑖 − 𝑥𝑖|2

𝑛

𝑖=1

 (3) 

 

where  𝑥𝑖 , … , 𝑥𝑛 : observed (alpha shape) points 

 𝑧𝑖 , … , 𝑧𝑛 : state grid points 

 

4.2 Energy angle term 

The angle term is used to weight occurring angles between each 

consecutive state and its corresponding line segment. By adding 

a specific weight, we favor certain angles but also allow 

unexpected angles in special cases. With this lenient function, we 

can avoid hard constraints: 

𝐸𝑎𝑛𝑔𝑙𝑒(𝑙) = ∑ 𝐴(𝑙𝑖 , 𝑙(𝑖+1)𝑚𝑜𝑑 𝑚 )

𝑚

𝑖=1

 

 

(4) 

 

𝐴(𝑙1, 𝑙2) = {

0 𝑓𝑜𝑟 ∠(𝑙1, 𝑙2) ∈ {180°}

1.0 𝑓𝑜𝑟 ∠(𝑙1, 𝑙2) ∈ {90°}

1.25 𝑓𝑜𝑟 ∠(𝑙1, 𝑙2) ∈ {45°, 135°}

𝜏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 

where  𝑙𝑖 , … , 𝑙𝑚 : line segments 

 

The weight factor 𝜏 should be adapted to the given data set e.g. 

in relation to the point density. If the value is set too low, changes 

in direction occur more frequent and disturb the overall 

regularization. In this study it is at least the doubled value of the 

weight given for the set of angles {45°, 135°}. 

 

4.3 Energy length term 

Including the length of a generated line segment to the energy 

leads to better results, because many short line segments are less 

likely in building outlines: 

 

𝐸𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) = ∑ 𝐿(𝑙𝑖)

𝑚

𝑖=1

 

 

(6) 

 

𝐿(𝑙) = 𝑒
1

|𝑙| (7) 

 

An exponential function is used for a smooth transition between 

the resulting energy for small and long line segments. 

 

 

5. EXPERIMENTAL RESULTS 

The regularization has been tested on the ISPRS benchmarking 

data set from Toronto with an average point density of about 

6 points/m² (Rottensteiner et al., 2012). It consists of many large 

high-rise buildings that often cast shadows and occlude important 

building parts.  

 
Figure 6. Overview of Toronto test area colorized by height. 

 

Figure 6 shows an overview of the test area with more than thirty 

buildings. Figure 7 shows the results of the building outline 

regularization. Figure 8 gives some examples of buildings with 
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more complex outlines outside the test area along with 

intermediate steps. Buildings (i) and (ii) show, that smaller 

indentations are removed but the overall shape remains intact. 

More complex shapes are shown with buildings (iii) and (iv). 

Overall, the proposed approach produces good results but can fail 

when the point density is too low or important building parts (e.g. 

smaller walls) are not represented in the data. Other important 

influences on the result are size and resolution of the search 

space. A bigger search space often leads to better results but also 

increases the processing time intensely. As He et al. (2014) note, 

the sensor scanning pattern also directly influences the results. 

The scanning pattern often leads to missing boundary points of 

roofs and therefore the line segment delineation with the Hough 

transform fails (for example building 6 in Figure 7). 

 

Preliminary tests on a data set with a higher point density than 

the ISPRS data set showed an increased accuracy of the resulting 

outlines and an overall increased number of correctly extracted 

outlines. 

 
Figure 7. Results of the building outline regularization for the 

Toronto test area. 

 

 

(i) 

    

(ii) 

    

(iii) 

    

(iv) 

    

 

(a) Extracted building 

points 

(b) Alpha shape  

boundary points 

(c) Extracted lines from 

Hough transform and corner 

point hypotheses 

(d) Regularized  

building outlines 

Figure 8. Results with intermediate steps for buildings from the Toronto data set. 
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6. CONSCLUSION AND OUTLOOK 

In this paper, an automated algorithm to regularize building 

outlines from LiDAR point clouds based on energy minimization 

has been shown. The energy function that guides this trade-off is 

evaluated with the Viterbi algorithm. 

 

If the method can extract sufficient information from the 

boundary points of a building, the proposed approach shows good 

results for point clouds with a point density greater than 6 

points/m². The overall shape of buildings is preserved while 

small anomalies are eliminated. 

 

An advantage over other methods is that the presented approach 

allows more than one main orientation in buildings and can 

therefore represent shapes that are more complex. 

 

We see the proposed approach as a first step towards a full 

processing pipeline to regularized 3D building roof outlines. To 

accomplish this task further testing on different datasets is 

planned and an evaluation with reference building outlines is 

needed. One aim is to include symmetries to the regularization 

process to consider recurring building shape parts. The next step 

would be to include several new energy terms to contemplate 3D 

features. Slope and topology of roof segments are, for example, 

suited for further examination. 
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