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ABSTRACT:

Road databases are essential instances of urban infrastructure. Therefore, automatic road detection from sensor data has been an
important research activity during many decades. Given aerial images in a sufficient resolution, dense 3D reconstruction can be
performed. Starting at a classification result of road pixels from combined elevation and optical data, we present in this paper a five-
step procedure for creating vectorized road networks. These main steps of the algorithm are: preprocessing, thinning, polygonization,
filtering, and generalization. In particular, for the generalization step, which represents the principal area of innovation, two strategies
are presented. The first strategy corresponds to a modification of the Douglas-Peucker-algorithm in order to reduce the number of
vertices while the second strategy allows a smoother representation of street windings by Bezir curves, which results in reduction – to
a decimal power – of the total curvature defined for the dataset. We tested our approach on three datasets with different complexity.
The quantitative assessment of the results was performed by means of shapefiles from OpenStreetMap data. For a threshold of 6 m,
completeness and correctness values of up to 85% were achieved.

1. INTRODUCTION AND RELATED WORK

For a large number of both civil and military applications, roads
are an essential part of urban infrastructure. Hence, their de-
tection and modeling represent an important step on the seman-
tic reconstruction process of urban terrain in combined optical
and elevation sensor data. However, especially in urban envi-
ronment, extraction of road networks from airborne sensor data
is a challenging task. The main challenges are made up by the
variety of appearances and road types (sidewalks, tunnel entries,
bridges, railways, etc.), occlusions (tree crowns or moving ve-
hicles), shadows, and many others. In particular for the case of
elevation maps obtained from aerial images via multi-view dense
matching (Hirschmüller, 2008, Rothermel et al., 2012), outliers
in street areas which are caused by moving objects and homoge-
neous road texture are often present.

From the extensive surveys, such as (Mena, 2003), different strate-
gies for extraction of roads from the available sensor data can be
adopted. In the case that an initialization of the vector representa-
tion for the road network is available, fully-automatic approaches
to improve its geometrical correctness by means of snakes whose
data term is calculated from the input images (Butenuth and Heip-
ke, 2012) and even 3D laser point clouds (Boyko and Funkhouser,
2011) were proposed. In (Klang, 1998, Turetken et al., 2013), po-
sitions of road junctions are detected and used as seed points for
an active contour model or as graph nodes. The connections be-
tween graph nodes can be determined by searching tubular struc-
tures in (Turetken et al., 2013) in 2D or 3D data, after which
the topology is modified within a non-local optimization process.
However, it remains not always clear what happens to geome-
try (smoothing curvilinear segments, dealing with their intersec-
tions, etc.). Regarding structurally-coherent solutions, (Chai et
al., 2013) introduce a method for line-network recovering in im-
ages by modeling junction point processes. The approaches of
(Hinz and Baumgartner, 2003, Hinz, 2004) already permit a rep-
resentation of road nets as 2D polygons (level of detail 2). In the
first approach, lines obtained from the images and elevation data
are grouped into stripes. Finally, road segments and whole net-

works for roads are iteratively obtained from these stripes. The
second approach is a sophisticated scale- and context-dependent
procedure in which typical relationships between different object
classes are exploited. If one is interested in extraction and vec-
torization of the centerlines of roads, three main strategies can be
observed.

First, the phase-coded-disk-based approach of (Clode et al., 2007)
must be mentioned. Here, a coarse filtering of ALS data by rel-
ative elevation, intensity and local point density is performed. A
binary image R for road class is thus obtained. Next, the convo-
lution of R with a complex-valued filter is carried out in order to
extract thick line parameters: centerline, orientation, and width.
Following the local maxima of response magnitude (ridges), the
coordinates of the centerline pixels are retrieved. Considering the
width values, overlapping patches can be found and the topol-
ogy can be determined. For classification, it is not clear how
this method can handle sudden changes of elevation, for exam-
ple, for roads around tunnels. Furthermore, during the contour
tracing step in noisy data, the main problem is to find a bal-
ance between the “next” pixel according to the thick line ori-
entation and the “next” pixel with respect to the course of the
ridge. Second, Hough transform is employed, for example, by
(Hu et al., 2014). In this work, the classification result is required
only implicitly. The mean-shift segmentation is applied on the
ground pixels which are computed by a simple method. Their 3D
coordinates are extended by several features, such as planarity.
Then, the isolated road pixels are eliminated with a tensor vot-
ing procedure. Only pixels with neighbors forming salient one-
dimensional patterns are supposed to remain. Hough transform is
finally applied to extract arks from these pixels. In this approach,
the classification is considered not only during the step of ground
points extraction, but also in order to compute the features sep-
arating road pixels from the rest. The problem are false alarms
by the one-dimensional structures other than streets. Here, not
only some training data, but also a better classification of pixels
should improve the situation significantly. Finally, we mention
skeletonization and medial-axis-based methods as in (Gerke and
Heipke, 2008, Mena, 2006, Miao et al., 2013) where fitting of a
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smooth curve is aimed, and (Noris et al., 2013), where minimal
spanning trees of points near the centerline are analyzed; these
points on the centerlines are obtained by clustering of salient (e.g.
with respect to their gradient) pixels. In (Mena, 2006), starting
from the binary image R representing road pixels, the road cen-
terlines are supposed to have the same distance to at least two
points of R. This method is very sensitive to the classification
results. Every concavity in R leads first to short, superfluous seg-
ments and, additionally, to zigzag-like, improbable street courses.
The first way to improve the performance is to put some effort for
a better classification result. However, working with 2D regions
in a non-local optimization process is computationally expensive.
Additionally, even the pioneering approach on road classification,
stemming from (Wegner et al., 2015), cannot prevent that in final
result, some trees occlude parts of roads. Because of these two
reasons, the second way, namely, a post-processing routine of the
remaining roads appears to be a promising method.

In this paper, we propose a vectorization procedure for extraction
of road networks from a binary road class map. The vectorization
procedure is somehow similar to (Miao et al., 2013), but its main
focus lies on post-processing of the results of thinning. During
an iterative filtering step, all branches of the skeleton are ana-
lyzed on their necessity and relevance. The unnecessary branches
are evidently deleted. Afterwards, in a generalization step, two
strategies are proposed: first, we consider a modification of the
algorithm (Douglas and Peucker, 1973). The modified algorithm
rectifies the line courses, however performs an additional check
to force the rectification to traverse the segmentation results of
road class. Within the second approach, the high curvature and
ragged course of roads is reduced by performing a transforma-
tion of roads into (rational) Bzier curves under consideration of
the segmentations for road class. The Bzier curves are discretized
to retrieve the correspondence with the road segments.

The paper is structured as follows: in Sec. 2, we refer to the pre-
liminaries on extraction of (N)DSM, DTM, as well as classifica-
tion results since this knowledge is important to understand our
vectorization algorithm, which will be given in Sec. 3. The post-
processing of the resulting road net will be covered in Sec. 4. We
show in Sec. 5 computational results for three datasets and give a
summary and some ideas for future work in Sec. 6.

2. PRELIMINARIES

Aerial and even UAV-images are a very suitable input for an urban
terrain reconstruction procedure. The resolution of such images
is rather high compared to airborne laser point clouds and the
problem of occlusions is mitigated by means of many redundant
views. First, image orientation is performed by a state-of-the-art
method, e.g. Bundler, (Snavely et al., 2010). Then, computation
of a 3D point cloud and finally, creation of a DSM (digital surface
model) and an orthophoto takes place by the dense reconstruction
pipeline (Rothermel et al., 2012). From DSM, the ground model,
also denoted as digital terrain model (DTM), is obtained by the
procedure (Bulatov et al., 2014a), Sec. 2.1. The difference be-
tween DSM and DTM is denoted as NDSM (normalized DSM).

Two different classification methods as basis for our vectoriza-
tion procedure are explained in the following. First, subdivision
of terrain into several classes (building, tree, grass area, and road)
is performed by a procedure similar to that described in (Lafarge
and Mallet, 2012). Several measures – relative elevation, pla-
narity, normalized difference vegetation index (NDVI), satura-
tion measure, and entropy – are computed for each pixel. The
first two measures are applied on the NDSM while the three lat-
ter measures are applied on the orthophoto. Note that in order

to mark vegetation pixels, the green channel can be taken instead
of the near infrared color for computing NDVI. Hence, trees in
shadows tend to belong to the building class while the grass areas
in shadows tend to belong to the road class. Then, these mea-
sures are collected into energy data terms for all classes. For
example, the data term for road pixels should combine a low
NDSM and NDVI value, while planarity and saturation values
should be high. A smoothness term penalizing differences of la-
bels between neighboring pixels is added to the energy function
for which a strong local minimum is found using a non-local op-
timization method, such as (Hirschmüller, 2008). The resulting
label map is post-processed by the median filter. Unfortunately,
the classification results have several short-comings. First, there
are further objects that are rarely to find in the dataset (earth hills,
vehicles, street-lamps, fences, etc) and which, in general, cannot
be easily assigned to the “clutter” class of (Lafarge and Mallet,
2012). Second, the linear truncated function, originally applied
to convert the measures into the data term, was not suitable for
our problem and was replaced by a sigmoid-like function asymp-
totically approaching 0 and 1. However, the parameters of such a
function are not always easy to choose since they often vary over
the terrain and should better be subject of a training procedure.

Recently, a pioneering approach for extraction of road pixels from
an orthophoto, optionally supported by an elevation map, was
proposed by (Wegner et al., 2015). The main innovation of this
approach is a global minimization of an energy function with an
asymmetric smoothness term. This term heavily exploits the fact
that the probability that a path of N � 2 patches of a class A is
interrupted by a path of the complementary class (not A) is ex-
tremely low if A is the road class. The approach consists of four
main steps. In the first step, image segmentation into superpixels
is performed. This is done for compression of image informa-
tion. It is a balance act between keeping the output as rectangular
grid structure and preserving boundaries between the objects in
the image. In the second step, the data cost, that is, the like-
lihood of a superpixel to belong to the class road, is specified
using predefined filter banks and elevation information. In the
third step, minimum cost paths are formed between superpixels
of very low data cost. This is done in order to identify poten-
tial roads even though a little number of paths’ superpixels is oc-
cluded and therefore exhibits high data energy. These paths are
input of the non-local optimization based on Conditional Random
Fields (CRFs) which makes up the fourth, final step of the proce-
dure. The penalty term for such a path is high if it is interrupted
by superpixels belonging to the class non-road. A conventional,
symmetric 2-clique term penalizing differences of classes of ad-
jacent superpixels is added as well. Because there are only two
classes, optimization on such CRF with graph cuts yields a global
minimum of the energy function in a reasonable time.

The method performs rather well in identifying the road class,
and its short-comings mostly result from the NDSM which was
computed by a local method. There are also some trees straddling
into the road class and sometimes occluding very narrow paths.
However, even this excellent classification needs a vectorization
for road representation in most visualization and simulation soft-
ware applied for city modeling tools, urban planning, training
and simulation of rapid response tasks, and many others. The
problem of road vectorization, that is, converting road pixels into
1-dimensional shapefiles (polylines, level of detail, LOD1) will
be the topic of the following section.

3. MAIN ALGORITHM ON VECTORIZATION

As visualized in Fig. 1, the vectorization process consists of five
main steps. In the first step, preprocessing of the binary image
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R representing the road class is performed by means of morpho-
logical operations followed by filling small holes in R (mostly,
left by cars) and deleting small isolated segments of R. This is
done by applying a clean filter – that is, labeling and suppress-
ing regions of too small areas – first on the complement of R and
then, on the image R itself. In the second step, we perform thin-
ning, that is morphological skeletonization of the resulting image
R̄. As a result, the new binary image is created where only pixels
belonging to the medial axis are set to one. After this, these pix-
els are collected into a set of polylines using the polygonization
method (Steger, 1998). However, every concavity and protrusion
of the binary image R reflects in a polyline which leads to a high
number of short polylines and, since we wish every polyline to
represent a road segment, to a very noisy and barely plausible
road network. Consequently, the fourth step of our vectorization
routine, filtering polylines, will be described in the remainder of
the section while the final step, generalization, will be explained
in Sec. 4.

Figure 1: Filtering polylines. Top: assessing segments and junc-
tions, bottom: updating topology. See text for more details.

Note that in general, it is not enough to filter out short road seg-
ments because some of them may connect to other polylines or
bear other important functionality. Together with the geometry,
the topology of every polyline as a part of the road net is relevant.
In most applications, too short dead-end (terminal) roads are un-
necessary and should be deleted. Therefore we calculate for ev-
ery polyline not only geometry attributes, like length, width, and
principal direction, but also topological properties. By comput-
ing nearest neighbors for every endpoint of the road, and assess-
ing the number of neighbors within the distance of one pixel, we
decide whether a putative road endpoint is a terminal one or be-
longs to exactly one junction. For every junction, we store its
approximate position, the activity status as well as the three road
segments incident with it in an additional array. At the begin-
ning, all junctions are set active. As for calculation of geometric
attributes for polylines, we determine the length, the dominant di-
rection of a road, as well as its approximate width. The dominant

direction results from the principal component analysis (PCA)
of the vertices forming the course of a road. The first principal
component determines the vector of the dominant direction u of a
road while the second (perpendicular) direction u⊥ is used to de-
termine the road width. For each vertex of a road, we measure the
mean width of both rays starting at it and running parallel to u⊥

that lie in the segmentation result using the algorithm of (Bresen-
ham, 1965). The weighted average of these values yields the total
value of the road width. To exclude invalid values of widths as it
happens at roads on the image boundary or big plazas, we ignore
single-vertex widths below or above predefined values (1 m and
40 m). It must be stated that the determination of the dominant
direction by means of PCA does not make much sense for arc-
shaped roads. Thus, also the width values for this kind of roads
may become incorrect; hence, stabilizing of road width computa-
tion will be part of our future work.

The geometry of a putative road segment is defined to be reli-
able if the width is bounded between two thresholds (around 3
m and 30 m in urban scenes) and the length exceeds 5 m. These
thresholds depend on the definition of what a road segment is
which is mostly given by the application. For example, it does
not make sense to include the short ways between house entries
and main streets into any road database. In a different example,
a large parking lot, especially with several trees, provides a large
number of road segments which are not necessary. Since we are
interested in eliminating the short terminal segments, we define
the topology of a putative road object to be reliable if its both
ends are incident with an active junction.

The iterative filtering procedure of road objects includes two mod-
ules. In the first module, all road segments which are not reliable
both with respect to geometry and topology are set inactive. At
the same time, all junctions with less than three active incident
roads are declared inactive. In the second module, we update
the geometry and the topology. All inactive road segments and
junctions are deleted. However, for all inactive junctions with ex-
actly two active incident polylines, these segments are merged,
and their geometric and topological attributes are recalculated.
It is clear that already the first module can be implemented as
an iterative procedure. However, the number of its subsequent
applications must be small, because without a regular update of
geometry and topology, good roads may become partly deleted
(for example, in Fig. 2, without updating geometry and topology,
first polylines 1, 2, 4, and 9, and finally, the polyline 3 would
be deleted). The remaining active road segments represent the
output of our vectorization procedure.

Figure 2: Filtering polylines. Top: assessing segments and junc-
tions, bottom: updating topology. See text for more details.
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4. GENERALIZATION

After the superfluous parts of the medial axis have been deleted,
the main problem is the course of the remaining roads. It is of-
ten wriggled as a consequence of objects bordering and overlap-
ping roadsides. For example, there could be convexities caused
by pavements spuriously added to the road class and concavities
caused by trees occluding roads. Some problems can be miti-
gated by morphological operations; however, the resulting mask
of road areas still remains ragged. The particular difficulty of any
straightening method is that it is not easy to establish a cost func-
tion and hence to assess the quality of a putative improvement.
Theoretically, it is clear that straight road courses are desirable;
so are right angles in the junctions. However, not in all situations,
these improvements are correct. We present two strategies for
generalization of road segments previously obtained. In Sec. 4.1,
the modified Douglas-Peucker algorithm will be explained while
in Sec. 4.2, we present the method based on approximating poly-
lines by Bzier curves.

4.1 Generalization Based on the Modified Douglas-Peucker
Algorithm

The key idea of the method (Douglas and Peucker, 1973) is to bi-
sect recursively the polyline P = {p1, p2, ..., pn}. We first obtain
the furthest vertex from the edge connecting the endpoints of P:

d = d j = max
i

(‖pi, p1 pn‖) , j = argmax
i

(‖pi, p1 pn‖) . (1)

If d does not exceed a threshold dmax, the generalization is con-
cluded by connecting p1 and pn. Otherwise after bisection, the
same procedure is applied on the two partial polylines {p1, p2, ..., p j}
and {p j, p j+1, ..., pn}. This algorithm is rather fast and it is global
since it starts by considering first the whole polyline and subse-
quently narrowing the search range. This can also be a disad-
vantage of the method. Deleting – without a previous check – a
large amount of points in the polyline can lead to problems, such
as topological inconsistencies and – in particular, for our task to
determine road courses – connecting vertices penetrating an ob-
stacle. Therefore, the classification result should be considered
additionally to the distance between p j and p1 pn. We consider a
thin rectangle U over the straight line p1 pn and check to which
extend – compared to its total area – U belongs to the road class.
The width of U corresponds to the safety distance from the road
centerline to the non-road class. In order to narrow the search
ranges for x ∈U , an image fragment corresponding to the bound-
ing box of P should be considered for further computation. Now,
for a second threshold tmin, 0≤ tmin� 1, the generalization takes
place if and only if

d j < dmax and ∑
x∈U

c(x)> (1− tmin) ∑
x∈U

1, (2)

where we chose dmax and dmin (the width of U) to be 10 m and
0.5 m, respectively. The first, intuitive choice of the weights c(x)
could be one if the class of the pixel x is road class and zero other-
wise. However, in this second criterion, c(x) can be modified for
the case we have a classification result not only for the class road,
denoted as strong road class, but for other classes, targeting full
urban terrain reconstruction. We can assume that a road segment
could partly pass under a tree or a large vehicle, and denote the
tree and vehicle class as a weak road class, however not under the
grass area or a building. A possible weight function

c(x) =

 1, x ∈ strong road class
0.5, x ∈ weak road class

0 otherwise
(3)

can be further improved in the future, by computing approximate
tree crowns positions by means of a state-of-the-art algorithm,
(Eysn et al., 2015), extracting information about gates in build-
ings, etc.

4.2 Generalization Based on the Curvature of Road Seg-
ments

The idea of the second, alternative generalization module is to ob-
tain smoother routes, by approximating the course of every road
segment P= {p1, p2, ..., pn} by Bzier curves. The curves are able
to represent the road course itself and furthermore to smooth their
routes. The Bzier curve is discretized at l equidistant points while
l should be big enough to guarantee a smooth outline but suffi-
ciently small to be in the order of the elements of the road polyg-
onal chain. We take l = max(n,11) as suitable. All points are
equally weighted at the beginning. Each discretized Bzier curve
is a new polygonal chain B = {b1,b2, ...,bl}. If B runs through
a “forbidden area”, which can be the complement of either the
strong or the weak road class as defined in the previous section,
we first determine the edges e j = b jb j+1 of B that traverse this
area by means of the Bresenham algorithm. For each such edge,
we compute its midpoint m j and determine the k nearest neigh-
bors of m j among {p2, ..., pn−1}. The number of these neighbors
is bounded by k≤ 3 because three is the minimum number of ver-
tices needed to form a turn. The reason to take only inner neigh-
bors is that the positions of endpoints of a road segment remain
unchanged by the Bzier curve. Finally, we increase the weight-
ing of the determined nearest neighbors of mi by one and repeat
these steps until the rational Bzier curve of P no longer penetrates
the “forbidden area”. Note that the positions of junctions remain
fixed – since they are endpoints of single polylines – and hence,
there is no need to adjust the neighboring road segments.

5. RESULTS

5.1 Datasets and Qualitative Assessment

The first dataset we processed was a DSM sampled from 647
frames of the UAV-borne video sequence over the village Bonn-
land in Southern Germany. The orientation of these frames was
performed by means of the Bundler software (Snavely et al., 2010)
while the computation of the 3D point cloud and DSM is based
on the SURE software described by (Rothermel et al., 2012) with
modifications indicated in (Rothermel et al., 2014). The reso-
lution of this dataset was around 0.1 m and an area of about
0.6×0.2 km2 was covered; (the relevant information for this and
other datasets is noted in Table 1). Because the effect of shad-
ows was mitigated by using a high amount of input images and
by not very high buildings, the extraction of pixels of the road
class was a result of threshold decision (by NDSM and NDVI
value). The shortcomings of this data are the pathways around
the roads, which are separated by thin walls of around 0.5 to 1 m
height. Some of these walls were not reconstructed during DSM
extraction, others were filtered out through the preparation step
of Sec. 3.

The second dataset represents a rather large fragment of the urban
area of the city of Munich (Germany). Also here, the reconstruc-
tion pipeline SURE produced accurate results for the DSM and
the orthophoto. However, because of many shadowy areas, the
results of classification are noisy. Additional problems emerged
in the areas around tunnels, where the problem of 2.5D charac-
ter of the classification results becomes evident. We were able to
discard some of the polylines because their neighboring vertices
exhibit too high slopes in DTM, however, not for those with an
obstacle in between of the vertices.
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Figure 3: Results for the dataset Bonnland. Top row: road segments drawn into the orthophoto. Bottom row: detailed result plotted
into the orthophoto (left) and the corresponding fragment for the classification mask (black: building class, white: road class, gray:
remaining pixels, middle). Bottom right, another example for the method based on Bzier curves. See text for more details.

The third dataset is a part of the inner city of Graz, Austria. It
was provided by the authors of (Wegner et al., 2015) together
with classification results. The road class was extracted very
accurately, therefore many short road segments were built dur-
ing the computation of the skeleton. While the short terminal
segments were successfully eliminated during our filtering pro-
cedure, the loops built small obstacles, could not be completely
avoided. Since these loops are usually not needed for the road
databases, the future approach should include recognition of the
content of these loops followed by the suitable generalization.

We show in Figs. 3, 4 and 5 the resulting road nets obtained by
our procedure for the datasets Bonnland, Graz and Munich, re-
spectively. In all these images and subimages, yellow + orange,
blue and green polylines represent the results after applying the
algorithm steps of Secs. 3, 4.1, and 4.2, respectively. Dashed
lines always denote the polylines discarded in the filtering step
of Sec. 3. Red polylines in Fig. 3 denote the road maps obtained
from the free geographic data.

As we can see in Figs. 3-5, using Bzier curves as approxima-
tion for the initial road segments R leads to much smoother road
courses. However, this happens at cost of increasing number of
street vertices. The method works locally; it does not degrade the
visual result even in the case of incorrect positions of junctions,
small, non-oversmoothed obstacles, etc. In the image bottom
right of Fig. 3 as well as for the most straight streets in the datasets
Graz and Munich, the jagged road course can be smoothed very
well. However, as shown in Fig. 4, situation 1, the resulting roads
can come up arbitrarily near to the forbidden areas if no care
is taken (for example, by morphological operations). Thus, this
method is more susceptible to the positions of junctions. On the
contrary, the generalization based on the modification of (Dou-
glas and Peucker, 1973) produces a strong compression of results
abiding, at the same time to the classification result. This can be
seen in situation 2 of Fig. 4, where the actually straight, but partly
occluded by trees, segment was kept straight as much as possible
by modified procedure of (Douglas and Peucker, 1973). How-
ever, as one can see in the case of the small obstacle in Fig. 4,

situation 3, if the choice of dmax in Sec. 4.1 is too generous, the
topology of the road network is slightly changed; it depends on
the applications if such a generalization is desired. It can be
concluded that the method based on Bzier curves has its main
advantage in the case of winding streets, while the modification
of (Douglas and Peucker, 1973) performs especially well for the
long polylines affected by noise.

5.2 Quantitative Evaluation

The focus of the quantitative evaluation of street networks is two-
fold. First, we wish to see the overlap of our result with the
ground truth data, and second, the effects of the generalization
shall be shown. With respect to the first goal, geo-referenced
OpenStreetMap (OSM) data were selected as our ground truth
and transformed into the coordinate system of the datasets. For
the dataset Munich, a geo-referencing transformation was avail-
able while both other datasets were geo-referenced interactively.
The typical geometric measures for the quality of estimated poly-
lines are completeness and correctness.

In order to measure the correctness for every putative road seg-
ment P, we must assess which part of it lies near a street S in a
shapefile. The search for candidates is performed by comparing
bounding boxes. Next, equally sampled vertices of P are pro-
jected onto the edges and vertices of a candidate. The confirmed
vertices are those for which the minimal distance lies below a
threshold t, between 40 and 60 pixel. An edge is said to be con-
firmed if its endpoints are confirmed. We say that P is either
completely or partially confirmed if either all or, respectively, at
least one edge of P are confirmed. The correctness measure is
the sum of lengths of all completely confirmed road segments di-
vided by the length of all road segments. We denote this measure
by q(P|comp conf) and record it in Table 1 together with the num-
ber of completely confirmed polylines n(P|comp conf). To obtain
the completeness, one could simply permute shapefile and road
net. Since S often extends beyond the image domain or lies in
the areas where data is not reliable, we decided to compute the
number of partially confirmed streets n(S|part conf). Additionally
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Figure 4: Results for the dataset Graz. Left: road segments drawn into the orthophoto. Top row, middle and right: detailed view
of the results of two generalization methods superposed with the classification mask. Bottom row, middle: Functionality of modified
procedure (Douglas and Peucker, 1973) in situation 3. Right: results of vectorization procedure superposed with the orthophoto.

Table 1: Results on correctness, completeness (for t = 60 pixels), and generalization performance for all three datasets. In the second
row: resolution, area covered in km2, number of polylines, and number of streets in the shapefile for each dataset.

Dataset: Bonnland Graz Munich
Properties: 0.1,0.2×0.6,213,11 0.25,0.25×0.25,923,1173 0.2,0.95×1.2,720,977

Gen. method None DPm Bz None DPm Bz None DPm Bz
n(P|comp conf) 61 62 64 788 794 788 663 667 660
q(P|comp conf) 0.24 0.25 0.30 0.88 0.89 0.89 0.91 0.92 0.91
n(S|part conf) 11 11 11 976 960 962 685 666 670
q(S|part conf) 0.85 0.85 0.85 0.81 0.79 0.80 0.73 0.71 0.72

∑n 2496 827 3074 12626 2615 15627 8164 2091 10955
κ̄, in ◦ 238 54 55 358 30 60 231 31 59

Figure 5: Results for the dataset Munich. Left: road segments drawn into the orthophoto. Top row, middle and right: detailed view of
the results superposed with the orthophoto. Bottom row: middle and right: detailed results superposed the classification mask.
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to this measure, the sum of the lengths of confirmed edges di-
vided by the sum of lengths of all shapefile segments is denoted
as q(S|part conf) and shown in Table 1.

As for the second goal, since both position and activity status of
junctions do not change, there are no alterations in the topology
and the global geometry. Thus, changes in completeness and cor-
rectness between the original and generalized road networks are
not significant enough. Since the generalization affects the local
geometry, its changes can and should be tracked. While the gen-
eralization algorithm of Sec. 4.1 aims to reduce the total number
of vertices, this parameter – denoted by ∑n – will be reported
in Table 1. For the smoothing routine described in Sec. 4.2, the
goal was to minimize the curvature of the output road segment.
Hence, our second measure κ̄ is the average number of curva-
tures κ(P) over all polylines. The curvature κ(P) of a polygon
P = {p1, p2, ..., pn} is defined, according to (Milnor, 1950), by
the sum of angles αi between the straight-forward direction of a
polygon edge pi−1 pi and its successor pi pi+1 for all inner ver-
tices of P:

κ(P) =
n−1

∑
i=2

αi, αi ∈ [0,180] (4)

From Table 1, we see that the most important completeness mea-
sure is roughly the same for all datasets. It is slightly higher for
the dataset Bonnland, since it is a simple dataset of a rural region,
with eleven main roads to be confirmed. As a consequence, the
values for correctness suffer (see next paragraph). The results for
the dataset Graz, with its highly complicated road system, are of
almost the same completeness but much higher correctness. It
could further be observed that by decreasing the threshold t, the
completeness of Bonnland data falls below that of Graz: build-
ings further away from the roads contribute to a more wriggling
course. Overall, the main explanation for the differences is that
only for Graz data, the classification result was computed with
the one of the best state-of-the-art approaches on road data clas-
sification. Further, minor reasons are: uncertainties in the geo-
referencing, differences in resolution, and the errors in shapefiles,
often present in urban data. Especially it could be observed for
the Munich data, in which, additionally, many shapefile streets
close to buildings were not confirmed.

The measure for correctness is biased mainly because the def-
inition of street is not explicit; especially in the dataset Bonn-
land, merely main roads are contained in the shapefile. However,
especially for quick response applications, the sideways, secret
paths for persons and vehicles, etc., are of essential importance
and should not be suppressed. Besides, uncertainties in the geo-
referencing of both shapefiles and sensor data processing results
affects negatively both completeness and correctness. In our pre-
vious work (Bulatov et al., 2014b), the road networks from free
geographic data, sensor data evaluation results, as well as super-
position of both, were analyzed for the dataset Bonnland first by
the statistical reasoning approach based on Dempster and Shafer
theory (Ziems, 2014) and finally by interactive analysis of both
incorrect and unknown segments, see (Bulatov et al., 2014b), us-
ing the textured urban terrain model. Through the automatic ver-
ification step, there were many unknown segments (since they
exhibit too high curvature or are too short compared to standard
GIS roads). The interactive verification step indicated that all
questioned segments correspond to valid paths in the dataset.

Finally, we have seen that the average curvature of all streets
can be reduced by a decimal power by applying the modified
algorithm of (Douglas and Peucker, 1973) and the generaliza-
tion method based on Bzier curves. These produce a slightly in-
creased number ∑n of vertices while the former method reduces

∑n to a value of 20 to 25 % without affecting much the course of
the roads.

6. SUMMARY AND FUTURE WORK

We presented a fully automatic approach for the road vectoriza-
tion and generalization. Starting from the sensor data, a binary
image reflecting classification results is first obtained. During
vectorization, a geometrically and topologically consistent road
network could be created while during the generalization step,
we succeeded to reduce the total curvature and the number of ver-
tices. To do this, two modules were introduced: a modification
of the approach (Douglas and Peucker, 1973) and Bzier curves.
Both of these procedures are forced to adhere to the classifica-
tion result. However, a differentiation between the strong and
the weak road classes have been made: the former was used for
road detection and the latter for extending search range during the
generalization. We have seen that the quality of road networks de-
pends on the classification result: the asymmetric approach due to
(Wegner et al., 2015) has yielded better, stabler results than those
based on threshold decision or a symmetric classification similar
to (Lafarge and Mallet, 2012). A more extensive analysis for clas-
sification methods and their parameters for a fixed dataset should
follow. As for vectorization, the major short-comings lie firstly in
the unnecessary loops and, finally, in the unchanged, often unfa-
vorable positions of junctions, whose simultaneous optimization
with considering rectangularity and cardinalities of convergent
streets should be considered in the future.
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