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ABSTRACT: 

 

Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but 

not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building 

contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality 

assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof 

points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its 

relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. 

In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved 

snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are 

moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the 

candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. 

The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The 

average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building 

demonstrated that 77.0% of the total number of contours is updated with higher quality index. 

 

 

1. INTRODUCTION 

Buildings are the most significant component of the urban scence. 

The location information of buildings is widely applied in many 

fields, such as urban planning, land investigation, change 

detection and military reconnaissance. As an effective means to 

acquire high-resolution elevation data, airborne light detection 

and ranging (LiDAR) is increasingly frequently used in building 

detection. Considering that this technique has an obvious 

advantage on height precision，building detection based on 

LiDAR usually has a higher degree of automation, which makes 

these types of detection methods able to perform well in many 

applications (Dorninger and Pfeifer, 2008; Awrangjeb and Fraser, 

2014; Mongus et al., 2014; Niemeyer et al., 2014). 

 

Currently, the demand on building contours at a finer scale 

(especially in urban areas) has been raised in a growing number 

of studies such as urban environment quality assessment, urban 

sprawl monitoring and urban air pollution modelling. However, 

the quality of the building contours extracted from LiDAR are 

always restricted by the scan resolution of the point cloud. In 

spite of the design level of the airborne LiDAR equipment is 

continuously improved in recent years, the ground resolution of 

the point cloud still falls behind the aerial images when acquiring 

data at a similar height. This difference means that even if the 

building detection results are completely correct in LiDAR, there 

is still some room for the accuracy improvement of the contours, 

which makes the refinement of LiDAR-derived building contours 

a problem of concern. 

 

Using the edge information from images with higher resolution 

is a feasible way to perform the building contour refinement. The 
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refinement based on image straight-line features is one of the 

traditional methods (Cheng et al., 2011; Awrangjeb et al., 2013; 

Li et al., 2013; Dal Poz, 2013). By updating the initial building 

contours with the building edge line segments extracted from 

high-resolution images, more accurate contours can be obtained 

through these methods. However, these methods are generally 

too dependent on the results of line feature extraction, the false 

features and difficult-extracted features can both pose challenges 

for the refinement process. 

 

In general, the LiDAR-derived building contours should be 

simplified or regularized before being refined. Some assumptions 

including rectangularity criterion (Galvanin and Dal Poz, 2012) 

and principal orientation constraint (Cheng et al., 2011; Zhao et 

al., 2016) are frequently used for the contour simplification and 

regularization. However, since the increasing complexity of 

buildings in various applications, these assumptions may not be 

completely suitable for many buildings (as shown in Figure 1). 

Refining the building contour with an inappropriate constraint 

would probably lead to erroneous results. 

 

   
 

Figure 1. Building contours that contradict against the 

commonly-used regularization assumptions 
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Compared with the abovementioned building contour processing 

methods, the advantage of the Snake model lies in the ability of 

integrating the input data, initial estimation, optimal contour 

generation and knowledge-based constraint into a single process. 

It makes this model applied widely in building contour extraction 

and optimization. The Snake model is more often employed for 

building contour extraction with high-resolution images as a 

single data source (Peng et al., 2005; Li et al., 2012; Fazan and 

Dal Poz 2013). However, considering that this model largely 

relies on a good initial contour, refined contour with high quality 

may be difficult to obtain when only using images. Kabolizade et 

al. (2010) proposed an improved Snake model to refine the 

LiDAR-derived building contours with aerial images. In their 

approach, better results were achieved with the improved model 

than the traditional Snake model. But it should be noted that they 

only used single aerial image to perform the refinement, and the 

test objects are mainly buildings with rectangular corners.  

 

In this paper, we modified the classic Snake model to make it 

adaptable to more complicated building contours extracted from 

LiDAR. Assuming that high-precision building detection results 

have been obtained from LiDAR point cloud, the target of this 

study is to further improve the quality of building contours using 

multi-view aerial images. Our research will partly reflect the 

potential of automatically generating high-quality building 

contour based on combined utilization of airborne LiDAR and 

aerial imagery. 

 

The remainder of this paper is organized as follows. Section 2 

describes the proposed method. The experimental and evaluation 

results are presented and discussed in Section 3. Conclusions are 

given in Section 5. 

  

2. METHODOLOGY 

2.1 Traditional Snake Model 

The basic principle of Snake model is to find an optimal contour 

that satisfies the minimization constraint of internal and external 

energy, where the internal energy ensures the contour to be 

smooth and continuous, and the external energy drives the 

contour toward the edge of the target object. In the actual digital 

image processing, the contour in Snake model is discretized into 

a series of control nodes (v1, v2, v3, ⋯ , v𝑛), the energy function 

of the contour is expressed as the sum of the internal energy 𝐸𝑖𝑛𝑡 

and the external energy 𝐸𝑒𝑥𝑡 of each node: 

 

 E𝑠𝑛𝑎𝑘𝑒 = ∑(𝐸𝑖𝑛𝑡(𝑖) + 𝐸𝑒𝑥𝑡(𝑖))

𝑛

i=1

 (1) 

 

where 𝐸𝑖𝑛𝑡  is composed of the elastic energy E𝑒𝑙𝑎𝑠𝑡𝑖𝑐  and the 

bending energy E𝑏𝑒𝑛𝑑𝑖𝑛𝑔, which can be expressed as: 

 

 

E𝑒𝑙𝑎𝑠𝑡𝑖𝑐(i) = α(|𝑣𝑖 − 𝑣𝑖−1|)
2/2 

E𝑏𝑒𝑛𝑑𝑖𝑛𝑔(i) = 𝛽(|𝑣𝑖−1 − 2𝑣 + 𝑣𝑖+1|)
2/2 

E𝑖𝑛𝑡(i) = E𝑒𝑙𝑎𝑠𝑡𝑖𝑐(i) + E𝑏𝑒𝑛𝑑𝑖𝑛𝑔(i) 

(2) 

 

where α  and 𝛽  are weight values for E𝑒𝑙𝑎𝑠𝑡𝑖𝑐  and E𝑏𝑒𝑛𝑑𝑖𝑛𝑔 , 

respectively. The elastic energy aims to prevent the contour from 

being stretched, while the bending energy gives the contour a 

“restitution” force when bent or twisted, driving it to be a smooth 

curve or a straight line. 

 

2.2 Improved Snake Model 

Since most of the buildings in reality have distinct corners, which 

actually contradicts the smooth and continuous constraint of the 

Snake model. In order to better meet the requirements of building 

contour refinement, some improvements are made for the 

traditional Snake model in our approach. 

 

2.2.1 Internal Energy Term: As shown in Figure 2(a), a number 

of redundant nodes often exist on the initial building contour 

derived from LiDAR point cloud. Line simplification methods 

such as Douglas-Peucker algorithm (Douglas and Peucker, 1973) 

are generally adopted to reduce the redundant nodes. But for 

complex buildings that have many detailed edge information on 

the roof, a perfect threshold may not exist for the simplification:  

a large threshold leads to loss of the original details, while a small 

value would have little practical effect of simplification. 

 

 
(a)                                                   (b) 

Figure 2. Determination of the internal energy item. (a) The 

redundant nodes of the initial LiDAR-derived building contour. 

(b) Definition of the deviation angle. 

 

In order to preserve the details of the initial LiDAR-derived 

contour as much as possible, a relatively small threshold (0.5 m) 

is used to perform the contour simplification. Meanwhile, in this 

approach, the contour will be simplified in each iteration during 

the contour optimization process until the optimal result is 

obtained. To constrain the redundant nodes to a reasonable 

position, a measurement named deviation angle θ is introduced 

to redefine the internal energy term. Figure 2(b) shows three 

consecutive nodes of a contour, which are P𝑖−1(𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1), 

P𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)  and 𝑃𝑖+1(𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1) . The deviation angle θ𝑖 

can be calculated using the two vectors formed by these three 

nodes. Considering that the elevation difference of the roof may 

easily create an obvious angle between the adjacent nodes, only 

the 2D coordinates are used for calculating the deviation angle: 

 

 

𝑉𝑖⃗⃗ = (𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1) 

�⃗� 𝑖+1 = (𝑥𝑖+1 − 𝑥𝑖 , 𝑦𝑖+1 − 𝑦𝑖) 

𝜃𝑖 = arccos (
𝑉𝑖⃗⃗ ∙ �⃗� 𝑖+1

|𝑉𝑖⃗⃗ ||�⃗� 𝑖+1|
) 

(3) 

 

where 𝑉𝑖⃗⃗  and �⃗� 𝑖+1 are the 2D vectors calculated. 

 

The irregularity of the initial contour is mainly caused by the 

redundant nodes, the reason that these redundant nodes cannot be 

simplified is the existence of the abovementioned deviation angle. 

When the contour becomes more regular, the accumulated value 

of the deviation angles will tend to decrease gradually and 

converge to a stable value eventually. Thus, the internal energy 

term of the building contour can be represented as follows: 

 

 E𝑖𝑛𝑡 = ∑𝜃𝑖

𝑛

i=1

 (4) 
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2.2.2 External Energy Term: The internal energy term only 

provides a constraint that makes the contour become regular 

when being moved, while the definition of the external energy 

term aims at improving the contour accuracy with the use of 

external data such as aerial imagery. In our approach, the external 

energy term includes gradient energy E𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 and area energy 

E𝑎𝑟𝑒𝑎: 

 

 E𝑒𝑥𝑡 = E𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + E𝑎𝑟𝑒𝑎 (5) 

 

In general, the building contour accuracy can be improved based 

on the image edge information. The image gradient is the primary 

form of the edge information, based on which edge-point or 

straight-line features can be extracted. However, compared with 

point or line features, the continuity of gradient information 

makes it much easier to be applied in the Snake model.  

 

Since the aerial images may have large overlapping area, a same 

building would probably appear on multiple images. Due to the 

different imaging angle, building edges that cannot be completely 

captured from a single image, may be largely complemented by 

the overlapped images. Figure 5 shows the original and gradient 

images of a building on two overlapped images. It can be seen 

that there is a significant complementary effect of edge 

information between the two images. Therefore, multi-view 

images will be adopted for the contour refinement in this study. 

 

  
 (a) Original images                  (b) Gradient images 

 

Figure 3. The complementary effect of edge information between 

the overlapped images  

 

In order to calculate the gradient energy, the 3D contour should 

be projected onto the images using collinearity equation, and then 

the line segments of the contour should be rasterized. In our 

approach, the rasterization is performed using Bresenham 

algorithm (Bresenham, 1977), and the image gradient is extracted 

with Sobel operator. Gaussian blurring is performed to reduce the 

image noise before gradient calculation. The gradient energy will 

be calculated with the following formulas: 

 

 

E𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = −
1

𝑁 ∙ 𝐶
∑E𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑗)

𝑁

j=1

 

E𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑗) = ∑|∇𝐼𝑘(𝑥, 𝑦)|2
𝑛

𝑘=1

 

(6) 

 

where E𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑗) is the total gradient energy of the contour 

calculated from the jth image, N is the number of images used for 

gradient extraction, C is the horizontal projected perimeter of the 

3D contour. ∇𝐼𝑘(𝑥, 𝑦) is the gradient value of the kth pixel of the 

rasterized 2D contour on the image, 𝑛 is the number of pixels in 

the rasterized contour. 

 

Owing to the existence of detailed structures such as skylights 

and chimneys on the roof, there are also some pixels inside the 

building contour having strong gradient. As a result, the contour 

may still move toward these kind of pixels when only using 

gradient as the external constraint. Using the fact that the area of 

the LiDAR-derived initial contour is smaller than that of the 

actual contour in most cases, in our approach, an approximate 

method is proposed to estimate the area difference between the 

initial contour and the actual contour. As shown in Figure 4, the 

red lines represent the LiDAR derived contour, the green lines 

represent the actual contour, ∆GSD is the difference between the 

average scanning resolution of LiDAR and the image resolution. 

Assuming that the LiDAR points collected on the roof are 

symmetrically distributed, and considering that ∆GSD is a rather 

small value compared with the roof edge, the shadow area can 

be ignored. Therefore, the area difference between the initial 

contour and the actual contour can be estimated by multiplying 

∆GSD and the perimeter of the initial contour. 

 

 
 

Figure 4. Area difference estimation between the LiDAR-derived 

contour and the actual contour 

 

Base on the abovementioned assumptions, it can be considered 

that the area increment of the contour during the refinement 

process should be close to the estimated area difference. Thus, 

the area energy term is defined as follows: 

 

 

�̂� = 𝐴0 + ∆GSD ∙ C 

E𝑎𝑟𝑒𝑎 =
|𝐴 − �̂�|

∆GSD ∙ C
 

(7) 

 

where 𝐴0 is the horizontal projected area of the LiDAR-derived 

3D contour, �̂� is the estimated area of the actual contour, 𝐴 is the 

area of the current contour being refined. It can be noted that 

larger difference between the current contour area and the 

estimated area generates a greater area energy. 

 

To sum up, the total energy E𝑠𝑛𝑎𝑘𝑒  of a building contour can be 

represented as: 

 

 E𝑠𝑛𝑎𝑘𝑒 = 𝛼𝐸𝑖𝑛𝑡 + 𝛽𝐸𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + 𝛾𝐸𝑎𝑟𝑒𝑎 (8) 

 

where α , β  and 𝛾  are weights assigned to internal energy, 

gradient energy and area energy, respectively. In our approach, 

these values are set to 1, 10 and 1, respectively. 

 

2.2.3 Convergence Criterion: Since the input data in this study 

are 3D vector contours rather than 2D rasterized contours, the 

process flow of building contour refinement is different from 

many other related studies based on Snake model. The key 

processes are as follows: 

 

1) The initial building contours are extracted from the 

classification results of LiDAR point cloud. 

2) The internal energy and area energy of the initial contour are 

calculated according to their definition, the gradient energy 

is calculated by projecting the contour onto multi-view 

images, and then the total energy can be calculated. 
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3) The nodes of the 3D contour are moved, and the shapes of 

the corresponding 2D contours on images are updated 

simultaneously. The total energy of the current contour is 

calculated. 

4) Step 3) is repeated, and by minimizing the total energy of 

the contour, the optimal refined contour is generated. 

 

The convergent iteration of the Snake model can be considered 

as a process of seeking the best solution based on dynamic 

optimization. In this approach, the greedy algorithm, which is 

efficient and easy to implement, is chosen as the optimization 

method. The main principle of this method is that the contour 

nodes are moved one by one, and the total energy is minimized 

in a local area in each move. After several iterations, a local 

optimal solution can be obtained. In order to reduce the number 

of iterations and define a reasonable search range, the image 

resolution is adopted as the search step to move the nodes, and 

the search direction is determined with certain restrictions. As 

shown in Figure 5, the local optimal position of a contour node 

can be determined using the following steps: 

 

1) One of the two segments that are connected to the node is 

chosen as the reference segment. 

2) The local optimal position on this reference segment can be 

determined by first searching along the reference segment, 

and then searching along the direction perpendicular to the 

reference segment. The position that minimizes the total 

energy is selected as the updated position for the node. 

3) Step 2) is repeated by choosing the other segment as the 

reference segment, and the plane coordinates of the local 

optimal position can be determined.  

4) By searching along the vertical direction at the determined 

plane position, the optimal elevation for the node can be 

selected with energy minimization constraint. 

 

Search step

 
 

Figure 5. The search method for optimal position based on the 

reference segments. The black lines represent the initial contour, 

the red lines represent the actual contour. The red circle is the 

current position of the node, the green dashed lines are the search 

directions. The light red circles are the candidate positions when 

searching along the reference segment, the light green circles are 

the candidate positions when searching along the direction 

perpendicular to the reference segment. 

 

3. EXPERIMENT 

Three datasets located in vaihingen, Germany, which are 

provided by III/4 working group of ISPRS (Rottensteiner 2013), 

are used in the experiments to evaluate the performance of the 

proposed approach. Each dataset contains LiDAR point clouds 

and aerial images that are accurately registered. Figure 6 shows 

the experimental areas and the corresponding ground truths that 

are extracted by manual operation. 

   
 

   
(a) Area 1                   (b) Area 2                   (c) Area 3 

 

Figure 6. The experimental datasets and their corresponding 

ground truths 

 

The average density of LiDAR point cloud is 6.7 points / m2, the 

resolution of aerial images is 8 cm. A classification method based 

on support vector machine (Zhang et al., 2013) is adopted to 

automatically detect the building points from LiDAR point cloud, 

and the errors in the classification results are modified by manual 

editing using TerraScan software. The initial building contours 

are extracted using alpha-shapes algorithm (Edelsbrunner and 

Mücke, 1994). Figure 7 shows the overlying views of Area 1 

between the aerial images and the building contours before and 

after refinement, in which (a) shows the overall results, and (b) 

shows the enlarged views of the rectangular areas in (a). Figure 

8-9 show the refinement results of Area 2 and 3, respectively. It 

can be seen that the building contours are obviously simplified 

and regularized, and fit better with the edge of buildings after 

refinement. In addition, it should be noted that some of contours 

are not strictly composed of rectangles, the proposed method 

achieves good results for building contours with certain 

complexity and non-rectangular corners.  

 

In order to quantify the accuracy of the building contours before 

and after the refinement, by counting the number of true positive, 

false positive and false negative pixels with the ground truths, 

three kinds of indexes defined in (Lee et al., 2003), namely, 

completeness, correctness and quality are evaluated, respectively. 

Table 1 lists the statistics of these indexes for the three datasets. 

In overall, the quality indexes of the three datasets are both 

improved, which proves the effectiveness of the proposed 

method. The statistics also indicate that while the completeness 

indexes increase, the correctness indexes both decrease. This is 

largely because most of the refined building contours move 

outward from their initial positions. 

 

 

ID 

Correctness 

(%) 

Completeness 

(%) 

Quality 

 (%) 

Before After Before After Before After 

Area 1 99.15 98.37 92.08 94.70 91.36 93.24 

Area 2 99.46 98.63 93.07 95.10 92.61 93.86 

Area 3 99.31 97.39 91.58 95.28 91.00 92.91 

Average 99.31 98.13 92.24 95.03 91.66 93.34 

 

Table 1. The evaluation results before and after the refinement 
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To find out whether the quality of a single building contour is 

improved or not, the evaluation for each individual building is 

performed in our approach. The statistics show that the quality 

indexes for most of the building contours are improved, the 

percentages of the building contours that have improved quality 

in three datasets are 84.0%，70.0% and 74.4%, respectively. In 

total, 77.0% of the building contours are improved after 

refinement. The processing times are 16, 10 and 17 s for three 

datasets, respectively. It can be considered that the efficiency of 

the proposed method has great application potential in the study 

of building contour extraction. 

 

A

B

C
 

 

(a) 

 

 
 

(b) 

 

Figure 7. The results of building contour refinement of Area 1 

A

B

C

 
 

(a) 

 

 
 

(b) 

 

Figure 8. The results of building contour refinement of Area 2 
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B
A

C

 
 

(a) 

 

 
 

(b) 

 

Figure 9. The results of building contour refinement of Area 3 

 

4. CONCLUSION 

An improved Snake model is proposed to refine the LiDAR-

derived building contours with the use of multi-view aerial 

images. In order to better meet the requirements of building 

contour refinement, the internal and external energy of Snake 

model are redefined, and the search method and the convergence 

criterion for the improved model are determined. Experiments on 

three datasets demonstrate that the quality indexes are both 

improved after refinement. The average quality index of the three 

datasets is improved from 91.66% to 93.34%. The evaluation 

results for every single building indicate that 77.0% of the total 

number of the building contours are updated with higher quality 

indexes. However, it should be pointed out that the interference 

from vegetation, shadow and the edge features inside the building 

contour may still result in failure of the proposed method. A 

subsequent study will investigate these problems in the future. 
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