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ABSTRACT:

We propose an image processing workflow to extract rectangular building footprints using georeferenced stereo-imagery and a deriva-
tive digital surface model (DSM) product. The approach applies a line segment detection procedure to the imagery and subsequently
verifies identified line segments individually to create a footprint on the basis of the DSM. The footprint is further optimized by mor-
phological filtering. Towards the realization of 3D models, we decompose the produced footprint and generate a 3D point cloud from
DSM height information. By utilizing the robust RANSAC plane fitting algorithm, the roof structure can be correctly reconstructed. In
an experimental part, the proposed approach has been performed on 3K aerial imagery.

1. INTRODUCTION

Automatic building extraction and reconstruction from very high
resolution remote sensing images are difficult tasks. The detec-
tion accuracy strongly depends on image quality and building
shapes. In addition to 2D information from spectral and panchro-
matic images, height information from digital surface model
(DSM) has received increasingly attention for automatic building
extraction.

A considerable amount of studies addresses DSM-assisted build-
ing footprint extraction. Some of them fuse data from different
sensors, chiefly multispectral images and LiDAR-derived DSMs
(Matikainen et al., 2010; Hermosilla et al., 2011; Grigillo and
Kanjir, 2012). Those studies, however, rely on different data
sources which may imply difficulties concerning the availability
and temporal coincidence of the data. Exploiting the potentials
of a single platform could yield a solution. Hence, a number
of authors directly extracted footprint shapes from LiDAR point
clouds (Wang et al., 2006; Zhang et al., 2006; Arefi et al., 2008) or
nadir RGB imagery (Shorter and Kasparis, 2009). Stereo images
also provide possibilities for detecting building geometries using
optical and height information derived from the same data source
(Arefi and Reinartz, 2013; Tian et al., 2014) or solely height infor-
mation (Weidner, 1997). Photogrammetric techniques have been
used to extract three-dimensional line segments for 3D model
generation (Zebedin et al., 2008). These line segments, however,
require a good perspective coverage of the scene in order to be
useful for building extraction. We therefore studied the potentials
and limitations of extracting line segments from individual im-
ages used for DSM generation and subsequently verifying them
on the basis of the DSM.

A major constraint of directly inferring building footprints from
DSM data is the presence of vegetation. Several approaches ad-
dress this issue, e.g. by applying a Normalized Difference Veg-
etation Index (NDVI) mask to the image (Grigillo and Kanjir,
2012), computing the variance of surface normal vectors within
the DSM (Weidner, 1997) or segmenting a RGB image and then
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removing color-invariant segments indicating vegetation (Shorter
and Kasparis, 2009). However, spectral identification of vegeta-
tion is not reliable when an infrared channel is missing, especially
when vegetation is (partially) cast over by shadows from adja-
cent structures. It is further compromised when the acquisition
time of the images does not coincide with the growing season.
On the other hand, the variance of surface normals may not be
a reliable indicator for vegetation if there is noise present in the
DSM (see section 3.1). Therefore, another geometric criteria is
proposed by applying a line segment detection algorithm to the
aerial image and a standard deviation threshold to the underlying
DSM. In contrast to man-made structures, line segments detected
in canopies are expected to be less directional.

In a last step of building reconstruction, the detected building
footprints are segmented to obtain simpler building geometries.
A RANSAC-based plane fitting procedure is applied to the pixels
in each segment by which 3D building roofs are reconstructed.

2. METHODOLOGY

The methodology is divided into four sections. We will first de-
scribe the segmentation of the whole scene to obtain image sub-
sets of individual buildings. Line segments are then identified
and filtered to derive a raw building footprint. In an optimization
step, morphological filtering is applied to improve the footprint
shape. Eventually, the roof shape is extracted using RANSAC.

2.1 Selection of building candidates

In a first step, the DSM was normalized based on morphological
grayscale reconstruction (Vincent, 1993). White morphological
reconstruction can extract off-terrain objects and removes small-
scale variations from a dark background. We will subsequently
call this product normalized DSM (or nDSM).

By applying a binary height threshold of 2 m to the nDSM and
then eroding it by a disk-shaped structuring element of radius 5
pixels, only larger pixel aggregations were left behind. If the re-
sulting mask then fulfilled an area size threshold of 32 m2 (which
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corresponds to about 4000 pixels at 9 cm resolution), the remain-
ing regions were considered as building candidates. Every build-
ing candidate was then subsetted from both nDSM and RGB im-
age with a rectangular buffer of 200 pixels around its outermost
pixels.

2.2 LSD algorithm and line segment selection

The Line Degment Detector (LSD) proposed by von Gioi et al.
(2012) identifies line segments by region growing of pixels that
display the same brightness gradient and orientation in panchro-
matic images. Several mechanisms prevent the algorithm from
detecting noisy features or growing too large line segments which
is not present in the well-established Hough transform line detec-
tion algorithm (von Gioi et al., 2010).

Hence, we first transformed the RGB aerial image to a panchro-
matic version. A first run of the LSD algorithm was used to
identify the most dominant orientation of line segments present
in the image (Fig. 1). There are two ways to proceed. The
most intuitive one is to rotate every line segment according to
the dominant orientation to align the bulk part of segments with
the coordinate axes. However, if high-level languages like Python
are used which utilizes the computational advantage of low-level
languages, namely C, in its libraries, it may also be conceivable
to rotate the whole image instead and repeat the line segment
detection. We therefore chose the second approach. For a bet-
ter understanding of the proposed approach, Figure 2 describes
the footprint detection workflow by using an exemplary building.
The rotated image and nDSM subsets are shown in Figure 2a and
2b. We accepted that another run of the LSD algorithm on the
rotated dataset (Fig. 2c) is likely to produce slightly different
results. We made the assumption that most buildings are rectan-
gular which greatly boosts the introduced algorithm and is true
for a large fraction of buildings in the study area. By also com-
puting the chi-squared test for homogeneity (p-value set to 0.05),
any building candidate featuring an equal distribution of line seg-
ment orientations was discarded as this strongly indicates either
vegetation or non-rectangular building footprints (e.g. circular or
elliptical shapes).

To account for the image artifacts initially mentioned, all remain-
ing line segments were checked for their position in the nDSM.
If they fell below the set height threshold of 2 m, they were re-
moved. The rest was classified by the height gradients to both

Figure 1: Distribution of line segment angles in a rectangular
building (where 0◦ corresponds to an horizontal orientation)

Figure 2: Footprint detection workflow; (a) rotated panchromatic
aerial image, (b) normalized DSM (nDSM), (c) detected line seg-
ments using the LSD algorithm, (d) line segments fulfilling the
gradient criteria, (e) extended line segments that fulfill the orien-
tation criteria, (f) averaged grids, (g) thresholded image filtered
by standard deviation, (h) image after morphological filtering

sides of the line, leaving 3 × 3 possible combinations (the gra-
dients on each side can be either ascending, descending or hori-
zontal using simple linear regression; Fig. 3). We kept only those
line segments that featured differently classified gradients except
for line segments with two horizontal gradients above the men-
tioned height threshold since they may represent important roof
architecture features. By doing this, many line segments found
in the fuzzy interpolated boundary regions of buildings or their
shadows were efficiently removed (Fig. 2d). The interpolated re-
gions do not contain real data. Therefore, we knowingly accepted
that this step would also delete line segments close to actual un-
derlying boundaries but found where buildings appeared twice in
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Figure 3: Principle of gradient classification. In the upper cross-
section, black/red dots represent line segments while the lines to
both sites are their respective gradients. Different gradient com-
bination options are displayed below.

the RGB image. In accordance with the assumption of rectan-
gular buildings, the algorithm eventually selected only those line
segments that were aligned with or perpendicularly orientated to
the major orientation within a threshold interval of ±5◦.

2.3 Footprint generation and optimization

The remaining line segments were then rotated to the nearest co-
ordinate axis and extended over the whole image. Since we only
took rectangular lines, one of those axes usually lies within 5◦ of
each line segment. The result is a grid structure segmenting the
building in multiple parts (Fig. 2e). This approach is used by a
number of authors, including Zebedin et al. (2008) and Grigillo
and Kanjir (2012). Non-rectangular grids are equally conceivable
and were used by Zebedin et al. (2008). The statistical mean was
then derived from the underlying nDSM for every grid (Fig. 2f).
We obtain a measure for homogeneity of each grid by means of
standard deviation (σ of 3.5) which is useful to filter out vegeta-
tion close to buildings, interpolated areas and grids which do not
correspond to actual geometries in the scene. By only keeping the
largest footprint within the current extent, intersecting extents are
less likely to mutually update footprints other than the currently
processed one (Fig. 2g).

In order to filter out small-scale variations in the footprint bound-
ary, every candidate underwent morphological erosion with sub-
sequent dilation (Fig. 2h). Considerations on the size of the
structuring element are required. If a part of a building or the
building as a whole is removed by erosion, it cannot be restored
to its initial extent using dilation. If the structuring element is too
small, it will not succeed in removing erroneous variations in the
boundary region. The choice of an optimal size, therefore, de-
pends on the prevailing type of land-use; industrial zones might
require a larger structuring element than residential areas as the
general building extent is larger. We chose a 100 × 100 pixel
square which unlike a disk-shaped structuring element does not
round off corners.

The individual building footprints are eventually rotated and re-
assembled to their initial position in the image.

2.4 Roof structure reconstruction

Roof structure reconstruction is a crucial step towards automatic
extraction of 3D models from DSM data. Having produced a
building footprint in the previous steps, we can generate a 3D
point cloud by masking the initial nDSM. As complex building
roofs often consist of multiple planar surfaces, we first segmented
the image into simpler rectangular features based on the general
outline of the building. Kada and McKinley (2009) used the term
cell decomposition for a similar approach by referring to Foley
et al. (1990). The segmentation of the building into cells is use-
ful as it prevents plane fitting through noncontiguous parts of the
building. Segmenting the image based on every variation of the
outline is, however, impractical as it creates a large number of
very small segments (Fig. 4, left). Instead, we kept only those
lines that feature the longest building edge within a lateral buffer
of 15 pixels to each side (Fig. 4, right). It is conceivable at this
point to apply a further generalization step to the footprint fol-
lowing the cell outline which would make the computation of a
generalized building block model with roof (LOD2; Arefi et al.
2008) less complex. This is, however, not implemented here.

Figure 4: Cell decomposition without (left) and with removal of
lines extrapolated from short footprint edges (right)

Random Sample Concensus (RANSAC) was originally conceived
for line fitting but can be easily extended to plane fitting prob-
lems. We implemented the RANSAC algorithm as described in
Yang and Förstner (2010). The basic idea of RANSAC plane
fitting is to randomly select three different data points from the
point cloud which describe a plane in three-dimensional space.
By computing the absolute distance of every other point in the
point cloud to this hypothetical plane, we can divide the points
into inliers and outliers by applying a distance threshold. This
step is repeated for given number of iterations (e.g. 500–1000)
to derive a plane hypothesis that comprises a maximum number
of inliers. We then deleted those inliers from the point cloud and
repeated RANSAC until the number of points is reduced to 10%
of the initial size.

3. EXPERIMENTS AND DISCUSSION

3.1 3K data and preprocessing

In this study, we use an aerial imagery dataset from Karlsruhe,
Germany which was acquired with the DLR 3K sensor system.
The system consists of three commercially available DSLR cam-
eras (one pointing at nadir, two in oblique lateral direction) en-
abling a FOV of 110◦ in across-track direction and 31◦ in flight
direction (Kurz et al., 2012). The dataset was taken on 20th
March 2015 at a flight height of 600 meter above ground level
from a Cessna aircraft and consists of altogether 3 ×750 images
from 10 flight strips covering some relevant parts of the 13×15
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km city area of Karlsruhe. The overlap in flight direction is 80%,
whereas a side overlap exists only in regions, when flight strips
are parallel or crossing. Thus, occluded regions appear quite of-
ten in across flight direction, e.g. behind buildings, as these re-
gions are not covered by the image dataset.

Figure 5: Input data: RGB image (above) and nDSM (below)

A high resolution DSM was derived based on the semi-global
matching algorithm and taking into account multiple views with
occluded regions being interpolated (d’Angelo and Reinartz, 2011).
Based on the GSD of 9 cm from the imagery, a DSM resampled to
9 cm resolution was processed for all covered regions in the city
of Karlsruhe. The exterior and interior orientations of all images
were estimated by a bundle adjustment using the GNSS/IMU
measurements. For this process, no ground based pass informa-
tion was required. After outlier detection and smoothing of the
DSM, all images were orthorectified using the derived DSM. In
this study, a simple orthorectification process without ray-tracing
was applied, which resulted in building edges appearing twice in
occluded regions. Wherever possible, a neighboring image was
used to fill the gap. Additionally, the inclined pseudo-surfaces
in occluded regions lead to confusion with real inclined surfaces
such as gable roofs or vegetation. It becomes difficult to avoid
interpolation in densily built-up environments due to mutual oc-
clusion.

3.2 Test sites

The original RGB image – comprising a size of 4469 × 4371 pix-
els – and DSM are shown in Figure 5 and cover parts of the south-

Figure 6: Detection results using our approach

Figure 7: Detection results after thresholding the nDSM and ap-
plying a morphological filter

Reference Data

Building No building

Thresholding
Building 30.02% 10.81%

No building 0.67% 58.51%

Overall accuracy (TP + TN) 88.53%

Our approach
Building 28.53% 6.76%

No building 2.16% 62.55%

Overall accuracy (TP + TN) 91.08%

Table 1: Confusion matrices of the results in Fig. 7 and Fig. 6

ern campus of the Karlsruhe Institute of Technology (KIT). The
large variety of building sizes and shapes present in the subset
is helpful to assess the performance of the algorithm in different
urban settings.

3.3 Results and evaluation

The final building footprints are shown in Figure 6. We have over-
lain the results with manually extracted reference data. Therein,
the beige color represents true positives, red areas are false posi-
tives and blue areas false negatives. For comparison, we created
a second map by applying a simple height threshold of 2 m to the
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Figure 8: Completeness and correctness of both methods for in-
dividual buildings

nDSM and performing the optimization step (Fig. 7). A pixel-
based statistical evaluation is recorded in Table 1.

Overall accuracy as shown in Table 1 may not be representative
for the quality of the approach due to the relatively high fraction
of areas without buildings. Therefore, we computed the com-
pleteness and correctness of the scene as elaborated in Rotten-
steiner et al. (2005):

Completeness =
TP

(TP + FN)
(1)

Correctness =
TP

(TP + FP )
(2)

where TP := number of true positives
FN := number of false negatives
FP := number of false positives

If applied to the thresholded result, we obtain a completeness and
correctness value of 97.83% and 73.53%, respectively. Our ap-
proach yields 92.97 % for completeness and 80.84% for correct-
ness. Nonetheless, Rottensteiner et al. (2005) also postulates the
need for individual building assessment. From the subsequent
analysis, we excluded regions that were either cut off by the im-
age extent or part of a larger building complex. The latter one
is due to the difficult assessment of footprints that were falsely
merged or split. The results are shown in Figure 8.

The direct comparison shows the improvement of our approach
over the thresholded result. The number of pixels that are false
positives considerably decreased (Fig. 6–7, Tab. 1). This is espe-
cially the case where vegetation is present. Some exceptions are
found where trees of uniform height are closely spaced to build-
ings. Given the relatively low fraction of vegetation falsely classi-
fied as building, separately masking out vegetation by computing
the variance of surface normal vectors (Weidner, 1997) did not
improve the result but removed many inclined surfaces due the
discussed interpolation. Other than that, the algorithm performs
reasonably well in environments where buildings are sufficiently
spaced to be distinguishable by the preselection process. How-
ever, the interpolated areas are still apparent in the resulting im-
age as false positives in the south-facing part of many buildings
in Figure 6.

Figure 9: Found plane inliers after applying RANSAC to the
building (500 iterations, distance threshold of 0.4). The colours
imply different planes.

An example for detected planes in a building of average complex-
ity is featured in Figure 9. RANSAC succeeds in detecting the
general roof shape of most simple buildings and many more com-
plex shapes. The cell decomposition performed on more complex
shapes sometimes does not coincide with the roof architecture
leading to some detection errors in edge regions.

3.4 Discussion

Both the LSD algorithm (von Gioi et al., 2012) as well as the gra-
dient classification depend on the chosen image extent. Hence,
the building in Figure 2 uses a smaller buffer of about 150 pix-
els by contrast to the same building within the full scene being
processed (Fig. 6, center). A single line segment is sufficient
to alter the grid structure, thus potentially changing the building
footprint. If buildings are not completely covered by the image
extent or the edge detection fails to find at least one line segment
for each footprint edge, the resulting footprint will be erroneous
or disappear completely (Fig. 6, upper right corner; Fig. 8b).
This is a common issue with very small buildings. Long edges
are more robust to detect as they normally produce longer and
more numerous line segments, so that a good boundary approx-
imation can be produced even without every line segment meet-
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ing the criteria set by the algorithm. At the same time, very short
edges feature less and shorter line segments implying a higher
chance of being filtered out by the orientation criteria. The geo-
referenced images are partly distorted where height information
was too sparse. This contributes to the low line segment density
at the edges in Figure 2c–e pointing North and East, respectively.
It gets even more complex if the boundary is a low-contrast zone
which emphasizes the limitations of the used line segment detec-
tion method. Local contrast enhancement could solve some of
these issues but it may be more appropriate to utilize the mul-
tiperspective information that 3K imagery provides. A simple
brute force approach could repeat the line detection using dif-
ferent viewing angles and/or individual RGB bands and eventu-
ally merge all identified line segments for further processing. An
alternative was presented by Zebedin et al. (2008) who instead
photogrammetrically derived line segment from mutliple views
on the same scene. However, 3K data may not have enough view
angles for this approach.
Larger building complexes or roofs with regular linear patterns
- predominantly saw-tooth and corrogated iron roofs as well as
roof-mounted solar arrays - typically result in a very large num-
ber of line segments of parallel orientation to the building bound-
ary. In this instance, extended line segments project onto other
parts of the building and create polygons that would otherwise not
emerge or create small-scale variations in the footprint boundary
since this part of the DSM is often fuzzy. This issue is addressed
by testing the homogeneity of the grid and by the optimization
step.

There is also the issue of the large number of assumptions that en-
ter our model in the form of thresholds. Even though it performed
reasonably well on the used dataset, it may be necessary to adjust
these parameters depending on the sensor and scene type. This,
of course, is far from ideal and we might need to apply machine
learning-based techniques in future studies to ensure generaliz-
ability of the model.

In comparison to simply thresholding the nDSM by a 2 m thresh-
old and applying the same optimization procedure to the full im-
age, the building boundaries in the present approach are more
distinct and linear but vegetation is still present in both results.
This would cause unwanted geometries when roof detection is
applied to the respective areas. Furthermore, the structuring ele-
ment partly creates a staircase effect if the building boundary is
not aligned to the images axes. This is especially emphasized in
the thresholded result. Nonetheless, we will need to apply more
sophisticated approaches by other authors on 3K data in order
to obtain more helpful conclusions about the quality of our ap-
proach.

4. CONCLUSION

We showed that building footprint detection using line segments
and a noisy nDSM produce results that can be used for 3D model
generation. First, we segmented the image in small processing
units and applied the Line Segment Detection algorithm. By suc-
cessively filtering the resulting line segments, we obtained candi-
date lines of the building outline. We utilized these lines on the
nDSM to create a raw building footprint which was further opti-
mized using morphological filtering. Some false alarms remain
if small buildings and densely built-up areas are present which is
mainly due to limitations of optical line segment detection and
the image quality. Nonetheless, we think it is possible to over-
come these problems by testing alternate line detection methods.
In future work, we also need to allow non-rectangular footprints
and dynamic thresholds.

As for the plane detection, visual evaluation of the obtained planes
show a good agreement with the expected roof shape. Logical
subsequent steps would include a comparison of faces of neigh-
boring building cells whether they have a similar spatial orien-
tation and to merge them where appropriate. We also need to
address the accuracy assessment of the RANSAC results by us-
ing ground truth information. Future research may target fully
automatic 3D model generation based upon the detected building
footprint and roof architecture.
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