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ABSTRACT: 

 

Over the last 20 years the demand for three dimensional (3D) building models has resulted in a vast amount of research 

being conducted in attempts to automate the extraction and reconstruction of models from airborne sensors. Recent results 

have shown that current methods tend to favour planar fitting procedures from lidar data, which are able to successfully 

reconstruct simple roof structures automatically but fail to reconstruct more complex structures or roofs with small artefacts. 

Current methods have also not fully explored the potential of recent developments in digital photogrammetry. Large format 

digital aerial cameras can now capture imagery with increased overlap and a higher spatial resolution, increasing the number 

of pixel correspondences between images. Every pixel in each stereo pair can also now be matched using per-pixel 

algorithms, which has given rise to the approach known as dense image matching. This paper presents an approach to 3D 

building reconstruction to try and overcome some of the limitations of planar fitting procedures. Roof vertices, extracted 

from true-orthophotos using edge detection, are refined and converted to roof corner points. By determining the connection 

between extracted corner points, a roof plane can be defined as a closed-cycle of points. Presented results demonstrate the 

potential of this method for the reconstruction of complex 3D building models at CityGML LoD2 specification.  

 

 

1. INTRODUCTION 

The demand for three dimensional (3D) building models 

has increased over the last two decades, for applications 

such as asset management, energy modelling and 

navigation. Due to the need for up-to-date and readily 

available 3D models, a vast research effort has focussed 

on developing an automated workflow for 3D building 

reconstruction. The success of such approaches is often 

assessed through the level of detail and accuracy 

achieved, as defined by the Open Geospatial Consortium 

(OGC) CityGML standard (Gröger and Plümer, 2012). 

CityGML defines five Levels of Detail (LoD) starting 

from DTMs (LoD0), and advancing to buildings with 

interior rooms and façade details (LoD4) (Gröger and 

Plümer, 2012). 3D building models can be simplified by 

modelling the roof as a flat roof, defined by LoD1. These 

simple 3D shapes can be easily reconstructed 

automatically by applying a single, constant height to 

building footprints. Examples of this include Ordnance 

Survey (OS) MasterMap Topography Layer - Building 

Height Attributes for the UK, and the Dutch Kadaster, 

which offers countrywide LoD1 building models of the 

Netherlands (Ordnance Survey, 2014a; Stoter et al., 

2014).  

Investigations into LoD2 reconstruction, where roof 

geometry is also modelled, have been successful only in 

the case of large buildings with simple roof structures 

(Rottensteiner et al., 2014). Many of the currently 

proposed methods for LoD2 reconstruction tend to 

favour lidar as the primary data source, either in the form 

of point clouds or raster DSMs, for the segmentation of 

roof planes. These approaches tend to suffer from under-

segmentation; with small roof features either not being 

modelled or causing reconstruction errors within 

dominant roof planes, which are potentially due to 

limitations in the point density of the lidar point clouds 

(Rottensteiner et al., 2014). Few methods have utilised 

image-based point clouds, and the high spatial resolution 

offered by dense image matching, with densities now 

equal to or greater than that typically provided by lidar 

data capture, (Rottensteiner et al., 2014). 

The production of dense image-based point clouds has 

been made possible through recent developments in 

aerial image capture and data processing. The capture of 

imagery from large format digital aerial cameras has seen 

an increase in image footprint and radiometric resolution, 

whilst simultaneously improving the spatial resolution of 

the ground pixels. The increase in image footprint size 

means that much higher overlaps, typically 80% fore/aft 

and 60% lateral, can be achieved compared to 

conventional film based aerial image capture (Haala, 

2011). The increased image overlap means a ground 

pixel can now typically be observed in as many as 15 

overlapping images. Whilst this increases the likelihood 

of a successful pixel correlation, at the same time, 

algorithms have been developed which now allow pixel-

to-pixel matching, thus leading to the term dense image 

matching. A popular example of this is Semi-Global 

Matching, which calculates and minimises cost functions 

to match corresponding pixels (Hirschmüller, 2008). The 

results of pixel-to-pixel matching allows the production 

of image-based point clouds at the same spatial 

resolution as the captured imagery. This offers the 

potential to overcome roof plane completeness errors 
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which can often occur in lidar-based reconstruction due 

to lower point density (Leberl et al., 2010; Rottensteiner 

et al., 2014). Other by-products of pixel-to-pixel 

matching include DSMs and true orthophotos with sharp 

image boundaries along roof edges and high levels of 

roof detail. 

This paper addresses 3D reconstruction by extracting 3D 

roof vertices and developing a network with topological 

connectivity. Information extracted from the true-

orthophoto, DSM and image-based point cloud are 

integrated to determine the connection between roof 

corners in order to form closed-cycles of roof planes. The 

paper is structured as follows: Section 2 discusses 

previous work on the reconstruction of 3D buildings 

models; Section 3 describes the test site and datasets; 

Section 4 outlines the methodology used for the 

extraction and reconstruction of the roof geometry; 

Section 5 presents the results achieved to date and 

Section 6 draws some preliminary conclusions from this 

research, describes ongoing endeavours and makes 

suggestions for future work. 

2. RELATED WORK 

Successful automated reconstruction of 3D buildings 

with correct roof geometry is dependent on the quality of 

the extracted features. The geometry of a roof can be 

described by the number and the shape of roof faces, thus 

most methods aim to classify roof planes from the input 

dataset. This can be done either using feature-based or 

area-based methods. Feature-based methods aim to 

extract edges and points to reconstruct the 3D geometry 

so tend to be applied to aerial photography. A roof plane 

can be described as a closed polygon consisting of n 

linear segments made up of vn,1 vertices (Brenner, 2001). 

This network based approach is the basis of manual 

extraction from stereo-imagery (Gruen and Wang, 1998), 

as well as being implemented into proposed workflows. 

Many developed methods have implemented low-level 

feature extraction procedures to determine edges and 

points, which generally require refinement before being 

used for reconstruction. Wang (2012) manually refined 

Canny edge and Moravec point detection to remove false 

positives and then reconstructed the roof geometry by 

computing the relations between roof corners and roof 

edges. Rau (2012) refined manually extracted structure 

lines to remove dangles, connect neighbouring walls, and 

remove structural lines that pierced other lines before 

creating TINs to determine the planar parameters 
between the structure lines.  

Researchers have strived to remove the need for manual 

intervention by applying hypotheses to the reconstructed 

roof shapes. However these hypotheses can severely 

restrict the reconstructed geometry. Melnikova and 

Prandi (2011) constrained reconstruction to square roofs 

with 90° corner angles and ridge roofs where three 

corners could form a triangle. Woo et al. (2010) refined 

detected Canny edges by clustering lines that were 

parallel or perpendicular with a ±10 degree threshold to 

reconstruct rectangular planes. Whilst the reconstruction 

was successful, given an average error of 0.38 m when 

comparing extracted lines to ground truth lines, the 

developed method was only applied on synthetic images 
and again struggled to reconstruct non-rectangular roofs. 

Because of the aforementioned issues, many researchers 

are tending to favour area-based reconstruction, which 

aims to segment regions based on a similarity measure. 

As concluded by Rottensteiner et al. (2014), in 

summarising the outcomes of the recent ISPRS 

benchmark assessment of 3D building reconstruction, 

this area-based reconstruction tends to favour  the use of 

lidar data, in the form of point clouds or raster DSMs. 

Points can be clustered into planes based on similar 

attributes such as normal vectors (Nex and Remondino, 

2012), distance to a localised fitted plane (Abdullah et 

al., 2014; Oude Elberink and Vosselman, 2009), or 

height similarities (Sohn et al., 2012). This clustering is 

performed using methods such as region-growing from 

seed points, 3D Hough-transform or the RANSAC 

algorithm (Novacheva, 2008; Perera and Maas, 2014). 

Planes can also be segmented by classifying and 

combining cross sections using similarity measures. 

However, these tend to be more computationally 

expensive compared with planar detection due to the 

number of points being tested for clustering (Hebel and 

Stilla, 2008; McClune et al., 2014). Planar segmentation 

results are dependent on correct determination of 

threshold parameters, such as the neighbourhood used to 

calculate the attribute, and incorrect results can arise in 

areas with low point density and complex structures 
(Rottensteiner et al., 2014; Yan et al., 2012). 

Planar segmentation procedures, similar to those 

mentioned above, can also be applied to data from aerial 

imagery, which can now potentially offer much higher 

point densities. Bulatov et al. (2012) used an image-

based DSM to compute normal vectors for each pixel, 

while Omidalizarandi and Saadatseresgt (2013) 

performed region growing on image based point clouds 

to form planar segments. However, it was found that 

errors from planar segmentation can arise at the location 

of the planar boundaries (Omidalizarandi and 

Saadatseresgt, 2013). These boundary errors can be 

overcome by combining feature-based and area-based 

methods, with the extraction of edges from imagery 

tending to form a post-processing step to refine the 

boundary of planes from lidar data (Awrangjeb et al., 
2012; Demir and Baltsavias, 2012; Perera et al., 2014). 

In summary, current methods tend to favour lidar as the 

primary data source for planar extraction, but often result 

in under-segmentation of roof planes leading to 

geometric errors in 3D reconstruction. Methods using 

imagery tend to apply strict constraints to the 

reconstruction which often limits the number of buildings 

successfully reconstructed. Some methods have utilised 

both imagery and lidar, but have predominantly used the 

imagery only as a subsidiary dataset. However, advances 

in digital aerial imagery captured through dense image 

matching can potentially overcome some of the 
limitations of current methods. 

3. TEST SITE AND DATASETS 

The data utilised in this research was captured by OS, the 

national mapping agency of Great Britain, for an area of 

the city of Newcastle upon Tyne, UK, in November 2010 

using a Vexcel UltraCam XP camera. Imagery was 

captured with 80% fore/aft overlap and 60% lateral 

overlap from a flying height of 1700 m. This produced a 

ground sample distance of 0.1 m. OS processed the 

imagery using Microsoft UltraMap software to derive an 
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image-based point cloud, DSM and true orthophoto at the 

same spatial resolution as the original imagery, and these 

products were supplied for use in the research presented 

herein. 

The imagery covers a 25km² area of Newcastle upon 

Tyne city centre as well as surrounding industrial zones 

and residential suburbs. Thus, there is a large range of 

building shapes and sizes exhibiting various roof types. 

An example of the test site extracted from the true 
orthophoto can be seen in Fig. 1. 

 
Figure 1. Orthophoto showing the city centre of 

Newcastle upon Tyne © UltraMap XP Image Copyright 

2010, Ordnance Survey 

OS MasterMap building topography was utilised in order 

to extract buildings. This data is produced through 

manual digitisation of ground and aerial surveys at 

1:1,250 scale, and offers a nominal planimetric accuracy 

of 1 m within urban areas (Ordnance Survey, 2014b). A 

polygon defines the outline of the building at ground 

level, so does not take into consideration any roof 

overhang.  

For validation purposes, reference data was extracted 

manually from the stereo-imagery. The Cartesian 

coordinates of roof corner positions were measured to 

facilitate analysis of the planimetric and height accuracy 
of the final building models. 

4. METHODOLOGY 

 

Figure 2. Developed workflow for automatic 3D building 

reconstruction. 

The methodology can be split into three main sections 

which are outlined in the workflow shown in Fig. 2. 

Firstly, roof lines are extracted using an edge detector. 

The methodology then develops on the theory of scan 

line segmentation (Jiang and Bunke, 1994) and run graph 

vectorisation (Montero et al., 2009) to refine the detected 

edges before converting the edges into points to form a 

network of ridgeline connectivity. These three steps, 

together with the 3D reconstruction, were implemented 
automatically in MATLAB 2015a. 

4.1 Pre-processing 

Due to large amounts of noise in the image-based point 

cloud derived using Microsoft UltraMap, a point cloud 

was instead created from the raster DSM product, by 

converting the centroid of each DSM cell into a Cartesian 

point. This DSM ‘point cloud’ was then classified to 

extract ground points using the TerraScan ground 

classification procedure (TerraSolid Limited, 2015). The 

normalised DSM (nDSM) was created by subtracting the 

ground classification from the DSM. Next, OS 

MasterMap building footprints were used to extract 

buildings from the true orthophoto and the nDSM, 

providing an initial building boundary region, and 
normalised building elevation.  

The extracted building datasets form the input for the 

building reconstruction, and ensure that the search area 

for the edge detection is limited only to relevant building 

regions. Each building footprint was buffered by 2 m to 
compensate for any roof overhang.  

4.2 Roof Geometry Extraction 

The Canny edge detector (Canny, 1986) was used to 

extract the 2D linear edges of each roof from the true 

orthophoto. By applying the corresponding height from 

the nDSM to each detected Canny edge pixel, it was 

possible to eliminate pixels on the ground and at the 

image boundary. To overcome any roof boundary edge 

not detected directly using the Canny edge detector, the 

nDSM boundary was included with the edge detection 
for modelling.  

In order to remove falsely detected edges from shadow, 

roof texture and other unwanted artefacts, a workflow 

based on the theory of scan line segmentation was 

developed (Jiang and Bunke, 1994; McClune et al., 

2014). The corresponding height value from the nDSM 

was applied to each detected Canny edge and a least 

squares linear regression was performed along each X 

and Y cross-section of the roof. By measuring the 

distance from height attributed Canny pixels to a least 

squares fitted line, pixels within a threshold distance of 

the line were classified as false positives and removed, 

whilst those above a threshold were kept as breakpoints. 

Canny edge pixels along the cross section were 

iteratively added to the linear regression computation 

until the residuals exceeded the threshold. When an edge 

exceeded the threshold, the previously detected Canny 

edge of the cross section was defined as a breakpoint and 

thus the edge of a roof plane. This edge was then used as 

the starting position of a new least squares linear fit. 

Each Canny edge pixel along the cross section was 

iteratively included in the linear regression calculation 

until the end of each cross section was reached. This 

procedure was performed iteratively for each X and Y 

cross-section of the roof until no further Canny edge 

pixels could be removed. This process is illustrated 
subsequently in Fig. 5.  

0 100 200 30050
Meters

0 100 200 30050
Meters
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4.3 3D Roof Reconstruction 

The corner positions of roof planes were extracted from 

the refined edge pixels using run graph vectorisation, 

which converts raster edge images to a vector format by 

utilising line tracing (Montero et al., 2009). Edges were 

automatically traced and classified based on pixel 

connectivity to form individual line segments. To 

classify pixel connectivity along an edge, the Freeman 

chain code was used to classify each pixel based on the 

direction of the neighbouring pixel, determined using a 

3x3 kernel (Freeman, 1961). Edges were clustered based 

on the dominant classified direction to form individual 

line segments. The endpoints of the classified edges were 

extracted as the corner positions of the roof planes with 

geometric constraints then applied to refine the extracted 

corners. Building models were reconstructed at LoD1 

and LoD2, according to CityGML, from the nDSM 

boundary and the detected edges, respectively. 

For LoD1 reconstruction, constraints were applied to the 

interior angles of roof corners and edge lengths to ensure 

orthogonality. Investigations were undertaken to 

determine the angular thresholds to implement. Any 

corner point with an angle exceeding 90° ± 55° was 

removed. If the measured angle was smaller than 

90° ± 55° but larger than 90° ± 35° then the shortest edge 

forming this corner was removed. The heights of the 

corner were assigned using a metre-wide search window 

to assign the maximum height value. Then the median 

height value was assigned to all roof points to give the 
flat surface required for LoD1 reconstruction.  

For LoD2 reconstruction, any edge with a length shorter 

than 0.5 m was firstly removed as noise. Various rules 

using angles between line segments, line orientations and 

proximity of corner positions were then implemented to 

connect unconnected endpoints, defined as any point that 

does not connect at least two lines. Varying search 

windows of 2, 4 or 6 m, dependent on the length of the 

line with respect to the longest extracted roof edge, were 

used around each unconnected endpoint to find potential 
connecting endpoints.  

Once all endpoints that met the connectivity criteria were 

connected, all unconnected edges were removed. The 

corners extracted from the nDSM boundary and the 

refined Canny edges were connected together to form the 

LoD2 building models. The height at the corresponding 

nDSM pixel was assigned to the extracted ridgeline 
corners. 

Threshold sensitivity testing, necessary to determine the 

optimal parameters, was undertaken on the Newcastle 

dataset for the Canny edge detector as well as the 

aforementioned thresholds for the connectivity of edges. 

The full details of these tests are beyond the scope of this 
paper.  

The proposed methodology was tested on a total of 50 

different buildings, 10 for five different roof types: flat, 

gable, hipped, cross-gable and complex. Buildings were 

selected from across the image extent to cover a wide 

range of building types from industrial, residential and 

city centre scenes, as well as covering different shapes 

and sizes. For the ground truth data, Cartesian 

coordinates of roof corners were extracted from stereo-

pairs of images, as well as the individual roof planes for 

planar analysis. The completeness, correctness and 

quality indicators were used to evaluate the extracted 
roof planes, defined as a closed cycle of roof endpoints. 

5. RESULTS 

5.1 Roof Geometry Extraction 

Example results of Canny edge detection, combined with 

the nDSM boundary, can be seen in Fig. 3a and Fig. 4a 

for two different roof structures. Whilst the main roof 

structure lines have been extracted, highlighting good 

localisation of roof edges, a number of false positives are 
also extracted.  

The complex roof structure in Fig. 3a shows all ridge and 

valley lines have been extracted from the true 

orthophoto, but roof texture characteristics have also 

been extracted, mainly in the form of short and curved 

lines. In addition, long straight edges have been extracted 

from shadow cast across the roof face, which has also 

prevented some edges being detected, particularly at the 

boundary of the roof. By including the nDSM boundary 

these edges are created, but errors in the ground 

segmentation cause poor localisation of edges at roof 

boundary corners, as illustrated towards the bottom of 

Fig. 3a. The inclusion of the nDSM boundary also has 

the effect of duplicating detected roof boundary edges, as 
seen on the right of Figure 3a.  

a. b.  

Figure 3. (a) Results of Canny edge detection and (b) the 

refined edges using scan line segmentation for a complex 

roof structure. 

Similar results are seen for the Canny edge detection of 

the hipped roof with dormer windows in Fig. 4a. The 

main ridgelines have been extracted, but three of these 

edges are also duplicated. The two large roof planes 

contain several small dormer windows, where edges have 

been correctly extracted, but are affected by false 

positives at the end of the boundary. False positives have 

been extracted by shadows cast from the dormer 

windows as well as the texture of the roof, in the form of 

repetitive small ovals where the colour gradient in the 
corrugated roof texture changes.  

By applying the residual threshold rule, false positives 

are removed from the roof faces. Nearly all of the false 

edges from the roof planes in Fig. 3a were removed 

whilst preserving the main ridgelines, as shown in 
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Fig. 3b. However, several short edges were not removed: 

notably along the shadow edges and on the roof planes. 

There were also a couple of edges at the junction of 

multiple ridgelines, which have been erroneously 

removed, as the small change in height is below the 
threshold used to remove points along the fitted line.  

Similar results are seen for the edges detected in Fig. 4a 

for the hipped roof and the refined edges in Fig. 4b. 

Small repetitive ovals extracted from the roof texture 

have been removed and all major ridgelines of the hipped 

roof have been extracted. The ridgelines of the dormer 

windows have also been extracted and could potentially 

be used to reconstruct these small features, although 

some noise is still present and requires further 
refinement.  

a.  

b.  

Figure 4. (a) Results of Canny edge detection, and (b) the 

refined edges using scan line segmentation for a hipped 

roof with dormer windows. 

a.  

b.  

c.  

Figure 5. Cross sections of a gable roof from (a) the 

nDSM, (b) the least squares fitted line using Canny 

detected edges with extracted heights, and (c) the final 

result of scan line segmentation. 

5.2 LoD1 3D Roof Reconstruction 

Example results of LoD1 reconstruction using the nDSM 

boundary of a building can be seen in Fig. 6 for two 

different roof structures. The results show how a flat 

surface can be created from the corner points, extracted 

from the raster edge. The parameters used are able to 

reconstruct perpendicular corners as well as edges which 

have angles larger than 90°. Thus reconstruction is not 

limited to any particular geometry type, as highlighted as 

a weakness of many feature based reconstruction 
approaches (Section 2). 

a.  

b.  

Figure 6. Results of LoD1 reconstruction for (a) a gabled 

roof and (b) a more complex roof structure 
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Qualitative analysis of the results in Fig. 6 show results 

which conform to the expected building geometry. 

However, to quantify the performance, the difference 

between reference coordinates and extracted coordinates 

were measured. This revealed that corners were extracted 

within 0.5 m of their true position and within 0.5 m of 

their correct height. When compared to the accuracy 

requirements of CityGML, building models were 

reconstructed to the positional and height accuracies 

required for LoD3 models, which is a greater accuracy 

compared to LoD1 and LoD2 (Gröger and Plümer, 

2012).  

5.3 LoD2 3D Roof Reconstruction 

The example 3D reconstruction of both a flat roof and a 

complex roof structure can be seen in Fig. 7. For the flat 

roof in Fig. 7a all ridgelines, with one exception, are 

successfully extracted and the two roof planes are 

correctly extracted at varying elevations, with the 

inclusion of the step-edges. Two smaller roof planes 

from skylights have also been extracted because they 

form a closed cycle of points and edges, thus showing the 
potential of this method to also extract smaller features.  

a.   

b.  

Figure 7. Results of LoD2 reconstruction for (a) a flat 

roof and (b) a complex roof structure. 

For the more complex roof structure in Fig. 7b, the 

developed method has managed to successfully extract 

edges to reconstruct the roof planes. The results for all 50 
buildings are summarised in Tables 1 and 2. 

The results in Table 1 show the RMSE of the extracted 

points when compared to reference data. A corner point 

was determined as being successfully detected if an 

extracted point was within 2 m of the ground truth, in 

compliance with the CityGML LoD2 planimetric 

specification (Gröger and Plümer, 2012). Points were 

successfully extracted with a planimetric mean RMSE of 

just under 0.50 m. The height RMSE was slightly higher 

with a mean of 0.65 m. The final two columns of Table 1 

indicate the percentage of roof points correctly extracted 

as part of the reconstruction and the total number of 

points extracted as a percentage of the number of 

reference points. The percentage of correct corners 

detected was relatively high, with an average detection 

rate of 75%. Of the missing points, in some cases the 

Canny edge failed, shown in Fig. 8, while in other cases 

under-segmentation occurred when classifying edges 

using Freeman chain code. The total percentage of corner 

points detected shows that the method over-segments the 

reconstructed roof. Similar to the planar extraction 

methods mentioned in Section 2, small features can 

affect the results, extracting unnecessary features, as 

highlighted in Fig 7a. Points and lines were also 

extracted and connected from neighbouring features, 

such as overlapping trees and vehicles close to the 

building, which were not removed by the ground 
classification. 

Point 

Ref 

RMSE (m) Correct 

corners 

detected 
(%) 

Total 

corners 

detected 
(%) 

X Y Z 

Flat 0.46 0.50 0.71 85.2 160.9 

Gable 0.43 0.52 0.62 70.1 131.0 

Hipped 0.44 0.45 0.50 76.5 116.9 

Cross-

Gable 

0.51 0.48 0.60 73.2 124.4 

Complex 0.55 0.50 0.74 68.1 113.9 

Table 1: Quantitative analysis for the location and 
number of the extracted corner points 

Planar 

Ref 

Per-roof plane (%) Per-roof plane (10 m²) 

(%) 

Com Cor Q Com Cor Q 

Flat 85.5 88.6 80.1 89.7 92.5 84.5 

Gable 34.3 38.7 32.5 35.8 40.8 34.2 

Hipped 38.3 41.0 35.1 46.6 52.4 43.5 

Cross-

Gable 

42.1 41.5 33.8 45.0 45.4 36.8 

Complex 49.2 47.1 42.5 50.3 48.2 43.0 

Table 2: Quantitative analysis to determine the 

completeness (Com), correctness (Cor) and quality (Q) of 
the extracted roof planes 

The results of planar extraction, where planes were 

formed by a closed cycle of roof edges, are shown in 

Table 2, again compared to manually delineated 

reference data. The results for planar extraction of flat 

roofs shows generally successful reconstruction, with 

80% of the roof planes being detected. However other 

roof structures were not reconstructed successfully with 

the four remaining roof types all having less than 50% 

quality success. The results in Fig. 8 show that all roof 

corner points of a hipped roof have been successfully 

extracted with the exception of two linking ridgelines. 

This results in only one out of the four roof planes being 

detected. In this particular example this is due to failure 

of the Canny edge detector. Other examples exist where 

the connectivity ruleset has not managed to connect a 

ridgeline to any other point or edge, and thus this edge is 
removed from the reconstruction. 

Most current methods are able to successfully reconstruct 

simple roof structures and struggle with complex roof 

structures (Rottensteiner et al., 2014). However the 

preliminary results presented in Table 2 suggest that 
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complex roof structures are reconstructed more 

successfully compared to simple roof structures in the 

gable and hipped category. This may be caused by the 

size of the search window. Complex roofs tend to be 

larger than simple roof structures, thus the search 

windows currently used may be more suited to larger 
buildings. 

 

Figure 8. Results of LoD2 reconstruction for a hipped 

roof. 

6. CONCLUSIONS 

The preliminary results presented in this paper are 

encouraging and demonstrate how data extracted from 

the by-products of dense image matching can be 

integrated for automatic 3D building reconstruction at 

varying levels of detail. Corner points of roof planes have 

been extracted from edge detection to form closed roof 

plane polygons. Whilst the Canny edge detector offers 

good localisation of extracted edges, it is also prone to 

extracting false positives from roof texture. These false 

positives can be reduced by fitting lines to the detected 

edges along a cross section to remove points within a 

threshold distance. The removal of detected Canny edges 

along cross sections of the roof using scan line 

segmentation can cause edges to become disconnected. 

However, these edges can be reconnected using run 

graph vectorisation. Errors in the initial segmentation of 

the individual edges can be overcome using angle, length 

and search window thresholds to reconstruct building 

models at LoD1 and LoD2, as defined by the OGC 
CityGML standard. 

The proposed methodology is currently being tested on 

the ISPRS WGIII/4 Vaihingen dataset (Rottensteiner et 

al., 2014) to investigate the transferability of the 

methodology and to compare the approach with current 

state-of-the-art methods. Future work will further 

develop the connectivity workflow to overcome the 

mentioned limitations. This will include investigating 

varying search window sizes according to building 

footprint size, and the further development of the 

connectivity ruleset to increase the number of correctly 

detected points whilst minimising connectivity failures. 

Results have demonstrated how small features can be 

extracted, but also how these can also hinder 

reconstruction, especially where this extraction is 

incomplete. Reconstruction of these objects will 

therefore be further investigated. 
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