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ABSTRACT: 
 
Over-parameterization and over-correction are two of the major problems in the rational function model (RFM). A new approach of 
optimized RFM (ORFM) is proposed in this paper. By synthesizing stepwise selection, orthogonal distance regression, and residual 
systematic error correction model, the proposed ORFM can solve the ill-posed problem and over-correction problem caused by 
constant term. The least square, orthogonal distance, and the ORFM are evaluated with control and check grids generated from 
satellite observation Terre (SPOT-5) high-resolution satellite data. Experimental results show that the accuracy of the proposed 
ORFM, with 37 essential RFM parameters, is more accurate than the other two methods, which contain 78 parameters, in cross-track 
and along-track plane. Moreover, the over-parameterization and over-correction problems have been efficiently alleviated by the 
proposed ORFM, so the stability of the estimated RFM parameters and its accuracy have been significantly improved. 
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

High-solution satellite imagery has been used widely in 
photogrammetry and remote sensing applications. Such as 
natural resources monitoring, stereo mapping, and 
orthophotography generation(Jacobsen 2004). However, 
because of the dynamic nature of pushbroom sensor, the 
rigorous sensor model of the pushbroom sensors is complicated 
as each line of a pushbroom satellite imagery has different 
exposure stations and orientation, and the model can be variable 
when considering the possible lens distortions and charge-
coupled device (CCD) line distortions. Moreover, rigorous 
sensor models differ from each other among different satellite 
sensors, and it is expensive, time-consuming, and error prone 
for users to build a complicated rigorous sensor model for each 
satellite sensor. 
By contrast, the rational function model (RFM) is generic(Tao 
and Hu 2001), i.e., its model parameters do not carry physical 
meanings of the imaging process. Since the description in the 
specification of the Open Geospatial Consortium OGC (1999a), 
Using of the RFM to approximate the physical sensor models 
has been in practice for over a decade due to its capability of 
maintaining the full accuracy of sensor independence, and real-
time calculation. As a matter of fact, most of the modern high-
resolution satellite products are distributed with rational 
polynomial coefficients (RPCs), including products from 
IKONOS(Fraser and Hanley 2003), QuickBird(Teo 2013), 
SPOT-6/7(Topan, Taskanat et al. 2013), ZY1-02C(Y., G. et al. 
2015), etc. Users can directly perform geometric processing on 
the RFM with additional control information(Hu and Tao 2002).  
However, RFM also has its own disadvantages in accuracy: 1) 
over-parameterization: the 80 RPCs of RFM are usually 
strongly correlated, and the estimation of RPCs is an ill-posed 
problem, which should contribute to over-parameterization error 
in geometric rectification; 2) overcorrection: when all the 
measurement error considered, the constant term will be viewed 

as erroneous in coefficient matrix in RFM, then the 
consequence will be usually inaccurate because of the effects of 
measurement error exaggerated.  
Generally, the ill-posed problems in RPCs can be addressed 
through the least square method and ridge estimation. But the 
measurement error has not been taken into account in any of the 
two methods. Recently, a total least squares adjustment in 
partial error-in-variables model algorithm has been applied to 
the overcorrection problem(Peiliang, Jingnan et al. 2012). 
However, the automatic determination of the optimal 
regularization parameter of ridge estimation is very complex to 
obtain, and the overcorrection has never been considered in 
RFM. 
A new parameter optimized method of RFM   based on stepwise 
selection, orthogonal regression, and residual systematic error 
correction model, is proposed in this paper. The article is 
organized as follows. In section 2 we review stepwise selection 
and orthogonal regression. In section 3 we discuss the new 
ORFM based on stepwise selection and orthogonal regression in 
detail. Further section gives some experiments, and finally, the 
conclusions are outlined in section 5. 
 
2. RFM BASED ON STEPWISE REGRESSION AND 

ORTHOGONAL DISTANCE REGRESSION 

Based on stepwise regression, orthogonal distance regression, 
and Fourier series fitting, the detailed procedures of 
optimization can be explained as follows. 
Firstly, solving the over-parameterization by selecting 
significant RPCs with stepwise selection. Goldberger and 
Jochems (Goldberger and Jochems 1961) had shown the 
detailed iteration of stepwise selection. Then, solving the RFM 
coefficients through orthogonal distance regression and fitting 
the residual with Fourier series. 
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2.1 Stepwise Regression 

Stepwise regression, a combination of backward elimination 
and forward selection, is a method used widely in applied 
regression analysis to handle a large of input variables, this 
method consists of (a) forward selection of input variables in a 
“greedy” manner so that the selected variable at each step 
minimizes the residual sum of squares, (b) a stopping criterion 
to terminate forward inclusion of variables and (c) stepwise 
backward elimination of variables according to some 
criterion(Wallace 1964, Pope and Webster 1972, Zhang, Lu et 
al. 2012). To introduce, let us consider RFM of full rank 
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Where (Sr, Sc) and (P, L, H) are the normalized coordinates 
of the image-space and object-space points. Respectively, 
the four polynomials NumL(P,L,H), DenL(P,L,H), 
NumS(P,L,H) and Dens(P,L,H) have the following general 
form: 
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Where ai, bi, ci and di (i=0, 1, 2, … , 19) are the coefficients 
of RFM parameters with b0=1 and d0=1. 
Equation (1) can be converted into the following linear 
form with n being the number of measurements: 
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           (3) 
The equation (2) and equation (3) have no relationship when 
solving their corresponding RCPs since they represent the line 
and sample direction of the sensor model, respectively. The two 
equations can be solved independently with the same strategy. 
Then the equation (2) will be discussed in the following. 
Equation (2) can be represented by the following matrix form: 

⋅ = rG β S                                  (4) 
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With Gi,j (i=1,2,…, n; j=1,2,…, 38) being the corresponding 
elements of the coefficient matrix in equation (2). 
The G matrix and β vector may be portioned conformably so 
that equation (4) can be rewritten as 

⋅ + ⋅ = r1 1 2 2G β G β S                        (5) 
Where G1 is an n×k partition, β1 is k×1, G2 is n×m, β2 is m×1 
and k+m=38<n. 
The stepwise selection strategy is adopted to select the 
necessary unknowns in equation (5). The sum of the squares of 
partial regression is treated as the importance measurement of a 
certain unknown. The unknown selection procedure is an 
iterative process. The initial number of number is zero. In a 
certain iteration, the unknown with the maximum sum of square 
of partial regression is selected as the potential candidate and 
verified by significance testing with F-test and t-test. 
After stepwise selection process, the equation (5) can be 
rewritten as  

⋅ = r1 1G β S .                               (6) 
  
2.2 Orthogonal Distance Regression 

Orthogonal distance regression (ODR) is derived from a “pure” 
measurement error perspective(Carroll and Ruppert 1996). It is 
assumed that there are theoretical constants Sr and G. But in the 
classical orthogonal distance regression development, instead of 
observing (Sr, G), we observe them corrupted by measurement 
error; namely, we observe  
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Where Sr-true and Gr-true represent the true value of responses and 
true value of predictors, ε and U are independent observation 
error of Sr and G, respectively.  
Finding the orthogonal distance regression plane is an 
eigenvector problem. The best solution utilizes the singular 
Value Decomposition (SVD). The orthogonal regression 
estimator is obtained by minimizing 
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And the centroid of observation data is mean (G’), M=G’-mean 
(G’), A=MTM. 
The SVD of M is  

T=M USV                               (9) 
Where S is a diagonal matrix containing the singular values of 
M, the columns of V are its singular vectors, and U is an 
orthogonal matrix. Then the β can be solved by VT.  
Systematic error correction model    
The systematic error correction is used for eliminating the 
residual systematic error of RFM and improving the geo-
referencing accuracy. This method does not need any ground 
control points and just use some fitting methods to fit the RFM 
residues. Usually the residues distribution has shown a wavy 
change, and after lots of fitting methods experiments, the result 
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shows that the Fourier series fitting has a decent consequence. 
The Fourier series fitting model is like: 
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Where, pr0,…qrn,wr,pc0,…qcn,wc are the Fourier series fitting 
coefficients and l is the number fitting terms. 
 

3. EXPERIMENTS 

To verity the correctness and feasibility of the proposed 
approach, two experiments were performed with spatial grids 
generated by SPOT-5 HRS data. The two tests data sets and the 
experimental results will be discussed in the following. 
 
3.1 Test data set 

The data set is generated by the rigorous model of SPOT-5 HRS 
imagery. The original image size is 12000×12000 pixels. The 
elevation of the spatial grids varies from 200 to 200m. There are 
totally five layers with 500m height interval for control and 
check points. As shown in Fig 1. There are 552 image points 
evenly distributed in the image plane. The even points are used 
for control points, and the odd are check points. A spatial ray 
can be determined for image point by the projection centre and 
its image coordinate. The corresponding spatial coordinate of an 
image point can be calculated by intersection between the ray 
and a level plane with known elevation. 

 
Figure 1. Spatial grids of the data set 

 
3.2 Results of stepwise and orthogonal distance regression 

The accuracy of the calculated RFM parameters directly 
influences the possible application of HRS imagery. In order to 
evaluate the accuracy computed by the proposed stepwise and 
orthogonal distance regression strategy, the error statistics of the 
calculated RFM parameters for the two methods are compared 

with each other. As shown in Table 2, the accuracy of the 
computed RFM parameters by the proposed ORFM is higher 
than least squares and traditional orthogonal distance regression 
in cross-track (sample). In spite of lower accuracy in along-
track, the proposed ORFM is more accurate and advantageous 
in sample and along than any least squares or orthogonal 
distance regression. Without the expense of accuracy, adopting 
stepwise selection to address the over-parameterization problem, 
in some extent, it can make the RFM parameters more sense. 
The numbers of RFM parameters in different methods is shown 
in Table 1. 

 
Figure 2. Residues distribution of Least Squares 

 
Figure 3. Residues distribution of Orthogonal Distance 

regression 

 
Figure 4. Residues distribution of Stepwise and Orthogonal 

Distance regression 
 

And the Fig 2, Fig 3, and Fig 4 show residues of RFM 
computed by least squares, orthogonal distance regression, and 
stepwise selection and orthogonal distance regression, 
respectively. All of the three have been optimized by Fourier 
series. The residues distribution and the Fourier series fitting in 
cross-track and along-track direction is showing as Fig 5 and 
Fig 6, respectively. These results show that the proposed ORFM 
can solve the over-parameterization and over-correction 
problem simultaneously. 
 

Table 1. Numbers of RFM parameters of different methods 
methods numbers of RFM parameters 

 Cross track Along track 
Least Squares 39 39 
Orthogonal Distance Regression 39 39 
Stepwise and Orthogonal Distance Regression 19 18 
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Figure 5. Fourier series fitting and residues in cross-track 

direction 

 
Figure 6. Fourier series fitting and residues in along-track 

direction 
 

Table 2. Accuracy of RFM computation (pixels) 

Statistics items Least Squares Orthogonal distance 
regression 

The proposed 
ORFM 

Cross 
track(Sample) 

Maximum residues 1.037427 1.073696 1.027079 
Root mean square error 0.016510 0.028758 0.014834 

Along track(Line) Maximum residues 1.004564 0.987918 1.010222 
Root mean square error 0.005182 0.006979 0.006881 

Sample and Line Root mean square error 0.017304 0.029593 0.016352 
 

4. CONCLUSIONS 

A novel method for RFM parameter optimization by stepwise 
selection and orthogonal distance regression of settling over-
parameterization and over-correction has been proposed. The 
proposed ORFM can fit the rigorous sensor model of HRS 
imagery with the least essential parameters and rational 
observation error, and thus, the ill-posed problem of RFM 
parameter estimation caused by over-parameterization and the 
over-correct of constant term are significantly alleviated.  
The experiments results show that more accurate can be 
obtained by the proposed method with only 37 essential 
parameters compared to least square and orthogonal distance 
regression with 78 parameters.  
After optimized by a systematic error correction model with 
Fourier, the achieved RMSE of the proposed method is 
0.014834 pixel and 0.006881 pixel for the cross track and along 
track directions, respectively. And the RMSE 0.016352 in 
across-track and along-track plane. 
However, although the RMSE of proposed ORFM in cross and 
along plane is lowest, the RMSE in along direction is more 
inaccurate than least square, which indicates that there are still 
systematic residues in the along-track direction. Further 
investigation is planned to achieve more consistent results 
against the rigorous sensor model. 
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