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ABSTRACT:

Vision based localization is widely investigated for the autonomous navigation and robotics. One of the basic steps of vision based
localization is the extraction of interest points in images that are captured by the embedded camera. In this paper, SIFT and SURF
extractors were chosen to evaluate their performance in localization. Four street view image sequences captured by a mobile mapping
system, were used for the evaluation and both SIFT and SURF were tested on different image scales. Besides, the impact of the interest
point distribution was also studied. We evaluated the performances from for aspects: repeatability, precision, accuracy and runtime.
The local bundle adjustment method was applied to refine the pose parameters and the 3D coordinates of tie points. According to the
results of our experiments, SIFT was more reliable than SURF. Apart from this, both the accuracy and the efficiency of localization can
be improved if the distribution of feature points are well constrained for SIFT.

1. INTRODUCTION

Localisation with Global Navigation Satellite Systems (GNSS) in
dense urban areas suffers from masks of signals and multi-path
errors and leads to significant errors. Dead reckoning methods
using inertial navigation Systems (INS) were applied in order to
reduce these errors by interpolating between GNSS interruptions.
Vision based relative positioning methods such as visual odome-
try can provide the same improvement at lower costs.

Nowadays, a variety of methods have been proposed for vision
based localization (Davison, 2003; Nistér et al., 2004; Mouragnon
et al., 2006). The main steps of these methods can be summarized
as: feature extraction, matching, pose estimation, and 3D struc-
ture reconstruction. The reliable matching constitutes the basis
of vision based localization (Valgren and Lilienthal, 2010). The
local feature based methods have been proved to be an excellent
choice for pose estimation. However, the factors such as illu-
mination changes, perspective deformations and moving objects
make the matching a difficult task and influence the accuracy of
pose estimation.

Thus the algorithms used for local feature extraction must be ro-
bust to these factors. The SIFT (Scale Invariant Feature Trans-
form) which is invariant to scale change , rotation and illumina-
tion (Lowe, 2004) has been applied in the vision based localiza-
tion (Se et al., 2001; Yang et al., 2009). However, the computa-
tion of SIFT feature extraction is time consuming. So a more ef-
ficient method called SURF (Scale Invariant Feature Transform),
was proposed (Lowe, 2004) . The SUREF is also robust to the
change of scale, orientation and illumination and is used for fea-
ture extraction in pose estimation methods (Murillo et al., 2007).
In this paper, we chose SIFT and SURF as feature detector and
descriptor. In particular, the performance of these two algorithms
will be evaluated and compared.

In our localization approach, Local Bundle Adjustment (LBA)
is applied to refine the pose parameters and 3D coordinates of
tie points (Mouragnon et al., 2006). It is well known that the
bundle adjustment is more precise than SLAM (Strasdat et al.,

2012), but it could become time consuming with the increasing
quantity of images because of its high complexity. The LBA only
process a fixed number of images at every step. Meanwhile, the
propagation of uncertainty is considered from step to step (Eudes
and Lhuillier, 2009).

Carefully designed experiments are performed to test the perfor-
mance of SIFT and SURF for localization using ground truth
image sequences captured by a Mobile Mapping System(MMS)
called STEREOPOLIS (Paparoditis et al., 2012). In addition, the
impact of image resolution is evaluated using sub-sampled im-
ages. The distribution of SIFT and SURF points is adapted using
a grid adapter for point detection. Then the performance will be
evaluated from following points of view:

e Stability: A relevant criterion to measure the stability of
points extracted by the detectors is repeatability (Schmid et
al., 2000), which is a ratio between the number of tie points
and the detected points of interest in one image pair.

e Variance of points in image space: The variance of the
observations can be evaluated by Variance Component Esti-
mation (VCE) (Luxen, 2003).

e Accuracy of localization: This criterion can be estimated
by comparing the estimated poses with the ground truth.

e Cost of computation: The time spent on every module of
localization is also an important criterion for real time ap-
plication.

This paper is organized as follows: Section 2. discusses the re-
lated work about the evaluation of feature detection. The sec-
tion 3. introduces the SIFT, SUREF, grid based extraction and the
matching method for localization. In section 4., the localization
approach is presented including estimation of initial values and
the implementation of LBA. The evaluation criteria evaluation
are defined in section 5.. Section 6. discuss our experiments’ re-
sults. Conclusion and trends were presented in section 7..
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2. RELATED WORK

Many point detectors and descriptors are proposed in last years,
so it is important to know the performance of each method that
enables us to choose a suitable algorithm for feature extraction.
We consider the performance of every method from several as-
pects. In order to explore the reliability and distinctiveness of the
interest points, the repeatability criterion was defined by Schmid
et al. (2000) . Similar strategies were also used to compare the
performance of different descriptors and concluded that the SIFT
descriptor outperformed other methods (Mikolajczyk and Schmid,
2005). However, SIFT is very time consuming (Grabner et al.,
2006). Bay et al. (2008) proposed SURF point detector and de-
scriptor which is faster than SIFT.

Many experiments have been designed to compare SIFT and SURF
(Juan and Gwun, 2009; Khan et al., 2011; Saleem et al., 2012).
The experimental results indicate that both SIFT and SURF are
invariant for scale and orientation. But SIFT performs better than
SUREF in most of the cases on repeatability and robustness.

Most of the aforementioned evaluations are made in some image
that capture the static scene. But in the operation of localization,
the observed scene will be changed dynamically with the move-
ment of vehicle or robot. In this case, it is more complex than
the matching between images for a static scene. So the crite-
rion used for the evaluation of the detector or descriptor perfor-
mance would be different. A number of interest point detectors
and feature descriptors were evaluated for robot navigation sepa-
rately in (Schmidt et al., 2010). The SURF was applied as one of
the feature description method and outperformed others by com-
paring the ratio of inlier matches. A similar strategy was token
for the evaluation of interest point detectors and feature descrip-
tors for visual tracking using in visual odometry . In particular,
more detectors and descriptors were tested and the concept of re-
peatability was adopted (Gauglitz et al., 2011). The SIFT and
SUREF descriptors still performs better in this paper. Besides, the
repeatability was also used to evaluate the detectors. SIFT and
SUREF still occupied the first and second places (Ballesta et al.,
2007). Other new ways were combined to compare the perfor-
mance of local feature detectors. In (Jiang et al., 2013), the state
of the art of interest point detectors and feature descriptors were
evaluated for stereo visual odometry in terms of three criteria that
are repeatability, mean value of the back-projection errors and the
absolute error of the image location.

Regarding the aforementioned references, the geometric reliabil-
ity and distinctiveness of the interest points can be measured by
the criterion of repeatability (Schmid et al., 2000). The precision
of the feature points localization can be reflected by the back-
projection error and accuracy of localization (Jiang et al., 2013).
In this paper, the posterior variance of observations, estimated us-
ing VCE (Luxen, 2003) is used to represent the precision of the
interest points detection. Apart from this, the impact of the in-
terest points distribution and the resolution of image will also be
investigated in this papers.

3. FEATURE EXTRACTION AND MATCHING

A brief introduction of SIFT and SURF algorithms are presented
in section 3.1 and 3.2. In order to limit the number and distri-
bution of the detected feature points, a grid based constraint is
presented in 3.3. The matching method in localization is intro-
duced in section 3.4.

3.1 SIFT

SIFT has been widely used to extract the distinctive feature points
and the algorithm can be summarized in four steps (Lowe, 2004).
The first step is the creation of scale space and detection of po-
tential key points. The scale space of image is built up using DoG
(Difference of Gaussian) and the potential key-points are detected
in the scale space. The second step is to compute the precise lo-
cation and determine the scale of the key points in image scale
space. In this step, the low contrast points will be filtered and
the edge response of the key points will be eliminated to improve
the stability. The third step is the orientation assignment. A his-
togram of the gradient directions in a region around key point is
formed and the peak of the histogram is the dominant direction of
the key point. In this case, the description of the key point can be
made in relation to the dominant direction. Thus, it can achieve
the invariance of image rotation. The last step is to create the de-
scriptor. 128 bins which represent the gradient histogram values
weighted by a Gaussian function, are extracted to describe the
key points. In this paper, the OpenCV implementation of SIFT
was used for detecting points and computing the corresponding
descriptors.

3.2 SURF

In order to achieve the character of scale invariant for key points,
the scale space of image is implemented for the detection of dis-
tinctive points. Lowe (2004) built the space using Gaussian pyra-
mid layers of image and smoothed the sub-sampling images pro-
gressively to compute the DoG images. In SUREF, the scale space
is built up with box filter relaying on integral images which is
much faster (Bay et al., 2008). Bay et al. (2008) detected the
points of interest based on Hessian matrix. The dominant direc-
tions of the points of interest are calculated based on the Haar
wavelet response in x and y direction with a small circular neigh-
borhood. In order to describe the image feature around the in-
terest points, a larger region centred on the points are extracted
and oriented relative to the dominant direction. Then each region
is split into 4 x 4 sub-regions. The feature is described by the
Haar wavelet responses which are calculated at vertical and hor-
izontal direction and weighted with a Gaussian factor. OpenCV
implementation of SURF was used in this paper.

3.3 Feature extraction with grid adapter

Due to rich textures in street scenes, thousands of interest points
are usually detected in one image. We accumulate the locations
of interest points in image sequence, hence a density map is gen-
erated which indicates the probability of occurrence of interest
points at the corresponding positions. Figure 1a depicts the den-
sity of SIFT points computed with 89 images. It is obvious that
most of the points are distributed around the image center.

(a) SIFT

(b) SIFT+GRID

Figure 1. The density maps of interest points.

Usually, the points near the image’s center could be easily matched
and tracked along the sequence. However, they are not useful in
bundle adjustment. On the one hand, for the points situated at
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the center of images, the small parallax leads to inaccurate recon-
struction of the points and consequently the poses parameters. On
the other hand, the large number of points might decelerate the
matching procedure and local bundle adjustment. A natural solu-
tion is in dividing the images into cells, then limiting the number
of detected feature points in each cell. This kind of methods have
been widely used to get well distributed feature points (Zhang et
al., 1995; Kitt et al., 2010). In this paper, a 8 x 8 pixel grid is used
that divide each image into 64 cells. In each cell, the maximum
number of the feature points is fixed as 32. Thus the most stable
32 feature points are kept if there are more than 32 feature points
detected in one cell. If the number of detected feature points is
less than 32, all of the points will be kept. The maximum num-
ber of the detected feature points is 64 x 32. The density of grid
based SIFT is shown in figure 1b where more uniform distribu-
tion of points is noticeable.

Figure 2. The interest points in the yellow rectangles are selected
to show the difference from different extraction methods.

Figure 3 demonstrates the interest points on road and facades.
The grid based methods enable to find more points in the non-
central regions of the images. The close-up patches are shown as
the rectangles in figure 2.

3.4 Matching

In our localization system, the pose of every frame in the se-
quence is estimated, but only the key frames are kept, according
to the moving distance. If the distance is larger than 0.5m, the
frame will be taken into account as key frame. In the matching
process., we do not search the interest points in current frame
with the points in all the previous key frames. In contrast, only
latest three key frames are matched with the current frame. ¢ is
defined as the index for current image, the matching for image ¢
is to search the correspondences in the subsequence (t — 1,1 —
2,t — 3). For each matching, the FLANN (Fast Library for Ap-
proximate Nearest Neighbors) (Muja and Lowe, 2009) is used to
search the correspondences. The euclidean distance between two
description vectors of feature points in two frames is employed
to measure the similarity. The distance ratio (7" > 0.6) is ap-
plied to filter the low quality matches. At last, the outliers are
rejected using the epipolar constraint. An AC-RANSAC (A Con-
trario RANSAC) (Moulon et al., 2013) based algorithm is used
to estimate the fundamental matrix. Reject the matching results
that the distances from image points to its corresponding epipolar
lines are larger than 2.0 pixel.

4. THE PROCESS OF LOCALIZATION

Our localization approach assumes that the pose of first frame
and the distance from first to second frame are known in advance.
Then we estimate the initial values for poses and some 3D object
points. Finally, the LBA is applied to optimize these parameters.

4.1 Initialization for image poses and object points

We define (Ro, Co) as the pose of first image, where Ry is rota-
tion matrix from world to image and Cj is the position of camera
center in world coordinate system. D is noted as the distance
from first to second images. The pose of second image is esti-
mated by:

R = RRo
{62 n g

where, (R, v) is the relative pose. The R is rotation matrix and
v is the transformation from first to second image. We estimate
(R, v) using 5-point algorithm proposed by Nistér (2004). Then,
some 3D object points are computed by triangulation using the
matched tie points between first and second images and the poses
of first and second image. From third frame, the pose will be
estimated using a set of 3D-2D correspondences derived from
the alignment between the interest points in new image and the
reconstructed 3D object points. A novel P3P (perspective-three-
point) algorithm is used to solve the pose parameters (Kneip et al.,
2011). The AC-RANSAC is employed to find the best estimates.
With the newly estimated image pose, more 3D points can be
reconstructed. The same procedure will be used to estimate the
pose of other images and reconstruct more 3D points one by one.

4.2 Local bundle adjustment

Pose parameters are optimized by LBA (Mouragnon et al., 2006;
Eudes and Lhuillier, 2009). Different with Global Bundle Adjust-
ment (GBA) which aims to minimize the sum of squared back-
projection errors (Triggs et al., 2000), LBA will minimize the
back-projection errors under the constraint of prior poses C’g in
each sliding window, the cost function is shown in equation 3 .

argminl(vthvt + v Qclvp) ()
cx 2 »
and:
{ vp = Cp — CY
Ve = F(Cp7 Cn,Xt) — My

where:

e (,: the new image poses in current processing window.
e (,: the prior poses inherited from previous steps.

e X;: 3D points.

e F': projection function.

e my;: image points.

e v,: the vector of back-projection errors.

e v, the vector of C), residuals.

o W;: the weight matrix for image points.

e (¢, : the covariance matrix of Cf.

t: the index of frame.

In LBA, Cr, Cp, X+ are parameters and C, = {Ci—n41...Ct}
, Cp = {Ci—~n—-1...C¢t_pn}. The N is the size of sliding win-
dow and there are n new images in N. The LBA is implemented
with incremental approach, the procedure of the LBA method is
also demonstrated in (Qu et al., 2015). In this paper, the CERES
SOLVER (Agarwal et al., n.d.) is employed to resolve the least
squares problem.
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Figure 3. Some interest points are removed on road and facade for SIFT and SURF detectors. But the grid based SIFT or SURF

detectors are able to keep these useful points for localization.
5. SETUP FOR THE EVALUATION

5.1 Repeatability

The repeatability is defined by the ratio between the number of
correctly matched point pairs and the number of detected feature
points (Schmid et al., 2000). In one image pair ([¢, j]), the de-
tected feature points are noted as:

{ﬂvf}k:L...,Mi v A b=t 3)

The correspondence between two points in the two images is
noted as ¥ ~ x7" with respect to the condition of homography
€

transformation:
zF ~ z" = dist(H - v - zj') < e 4)
€

where H is homography matrix, € is the radius of neighborhood.
The number of correspondences between images ¢ and j will be:

D(e) = Z 1 )

kg™
e J

So the repeatability of interest points is defined as:

P(e)

min(Mi,Mj) (6)

v =

The value of  provides a good measure of repeatability for pla-
nar scene in respect to homography transformation for one image
pair. However, the matching in our localization system is a con-
tinuous approach that each new image is matched with previous
three images. So the aforementioned measurement of repeatabil-
ity can not be suitable for us. Therefore, we consider the ratio
between the number of tie points to the the number of feature
points in each image as a new measure of repeatability. Tie point
set is defined as:

{mi\dist(F(Cp, Ch, X:) — xi) < €} @)

where ! is a tie point in current image ¢, € is the threshold for
back-projection error which is set as 3 pixels in this paper. The
number of interest points of image ¢ is M;, the repeatability cor-
responding to image ¢ is :

bt = Ll CoCo X ) <

In this paper, the mean values of p(t, €) is calculated to measure
the repeatability. We assume the number of images is 7', so the
repeatability for the feature detector is calculated by:

1
p= D pte) ©

5.2 Posterior variance of interest points

In our approach, we estimate the variance of the feature points
using Variance Component Estimation method (VCE). The co-
variance matrix for the observations can be estimated by :

Q=05-Q (10)

where Q is the variance matrix, o3 is the variance factor and @
is the initial variance matrix. We assume all the interest points
have the same detecting precision for each detector and set @ as
identity matrix. Thus, the variance for the images points is equal
to o2. According to the theory of VCE, the variance factor o2
can be estimated by analyzing the residuals of the observations
after bundle adjustment. The variance factor is estimated using
the following equation (Luxen, 2003):

Go® = an

where:

e 0 is the residual vector after adjustment.

e 1 is the redundancy number which is equal to the difference
between the number of observations and unknowns.
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LBA is an incremental approach and bundle adjustment is ap-
plied in a local processing window. In this case, the VCE should
be employed for each processing step and a number of variance
factors are estimated for one dataset. Apart from this, the prior
estimates of images poses in LBA are also a kind of observations
in processing step. This strengthen the difficulty of using VEC
in LBA. Furthermore, the precision of one interest point detector
should be same for one dataset. Thus, global bundle adjustment
is the only option for VCE. The observations for GBA are the
interest points, the unknowns are the image poses and 3D object
points. The residuals after bundle adjustment are only related to
image points. So the posterior variance of image points can guide
the quality of image points detection.

5.3 The accuracy of localization

The goal of our approach is to evaluate the performance of SIFT
and SUREF for localization. So the accuracy of localization is one
of the most important criterion. The final results of localization
can be impacted by the precision of detector, the stability of fea-
ture points for matching and the distribution of the tie points. In
order to make the criterion of localization accuracy comparable
on trajectories with different lengths, the criterion is defined as
the ratio between the absolute error of localization and the length
of trajectory. The equation can be noted as:

_lz.- 27
€y =

I 12

e 7, is the estimated image location .
e 77 is ground truth.

e [; is the length of path from the beginning.

The numerator of equation 12 is the euclidean distance between
the estimated position and ground truth. In this paper, the ground
truth is acquired by a precise navigation system in our MMS.

5.4 Running time

For real time localization, the processing time is also an important
criterion. We consider the running time from three aspects that
are feature extraction, image matching and LBA. It is of couse
the time for matching and LBA is highly related to the number of
feature points. The computation time for LBA contains the time
for initialization of the parameters and optimization.

6. RESULTS AND ANALYSIS
6.1 Dataset design

The data in this experiment were captured by STEREOPOLIS (Pa-
paroditis et al., 2012). The ground truth for pose parameters is
obtained by a precise navigation system. Images are captured by
a calibrated front looking camera. The focal length of the camera
is 10 mm, the image size is 1920 x 1024 pixels. The FOV of
the camera is 70° in horizontal and 42° in vertical. Four datasets
are designed for evaluation which are noted as D1, D2, D3, DA4.
The difference betweenD1, D2 and D3, D4 is the average sam-
pling distance. The sampling distance for first two sets (D1, D2)
is about 3m but it is about 6m for D3, D4. Table 1 shows the
number of images and the length of each path.

Table 1. The number of images and the length of path for each
dataset.

dataset D1 | D2 | D3 | D4
number of images | 91 89 87 | 106
length (m) 277 | 276 | 570 | 627

The paths D1, D2, D3, D4 are shown in figure 4.

| > D4 -
| D2 -~ L.
es  Ba
7 . D3
; | \
\
(2) D1, D2 (b) D3, D4

Figure 4. The red dots are the locations of images and the images
show the first view of the sequence.

To test the impact of the image resolution, a sub-sampled set is
generated for every original image dataset. The sub-sampled im-
age sets are generated by resizing the images from original size
(1920 x 1024) to 960 x 512 pixels. We note the original image as
HD (High Definition) image and the sub-sampled image as QHD
(Quarter High Definition). It is obvious that the number of de-
tected points will be reduced in QHD image, so that the speed of
localization will be improved. Figure 5 shows a sample of HD
and QHD image.

(a) HD image (b) QHD image

Figure 5. HD and QHD image.
6.2 Evaluation measurements

The SIFT, SURF, SIFT+GRID and SURF+GRID are used to ex-
tract the points of interest in HD and QHD images for every
datasets. Thus, eight different types of results can be obtained
for every datasets. Here the SIFT+GRID and SURF+GRID cor-
respond to SIFT and SURF detectors applied with a grid adapter.
The parameters for SIFT and SURF detectors are fixed for all the
cases.

6.2.1 Repeatability of feature points: Figure 6a depicts the
repeatability for the four datasets and the € in equation 9 is set to
3.0 pixels. The x axis corresponds to the applied method while
the y axis is the repeatability. There are no repeatability values for
the QHD+SURF+GRID case in D3, D4 datasets. Because there
are too few image points that are matched in some QHD image
pairs when the SURF+GRID method is used for feature extrac-
tion for D3, D4. The reason is that the deformation caused by
movement of images is heavier in D3, D4 because of the larger
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sampling distance. Therefore, it is more difficult to match the in-
terest points in D3, D4. The previous investigation showed that
SIFT outperforms SURF with the growing deformation caused
by affine transformation (Juan and Gwun, 2009) between two im-
ages. So SIFT can still be used in QHD+GRID case while SURF
are failed to get enough matches.

The comparison between SIFT and SURF is made under same
conditions (same resolution, constraint). In most of cases, SIFT
shows better rate than SURF. For instance, the repeatability for
HD+SIFT case is higher than HD+SURF and HD+SIFT+GRID
is higher than HD+SURF+GRID.

Meanwhile, SIFT also shows its scale invariance. The repeatabil-
ity rates are kept stable and even were improved a little bit from
HD+SIFT to QHD+SIFT, but the repeatability for HD+SURF de-
creases when sub-sampled images were used.

In addition, the repeatability decreases where the grid adapters
are applied. As we discussed before, the feature points around
image center can be easily matched between images, because of
the small displacement of the pixel in center region in comparison
with the pixel in the region out of center part where the view point
changes are larger. If we reduce the points distributed in this re-
gion, it also removes a large number of potential tie points. Com-
pared with SURF, the SIFT provides better results. The decreas-
ing for SIFT is smaller than SURF when grid adapter is used.
Besides, SIFT would be a better option than SURF when pro-
cess the large sampling distance image sequence. By observing
the repeatability in HD+SIFT+GRID and HD+SURF+GRID, the
repeatability values provided by SIFT for D1, D2, D3, D4 are
similar while the values for D3, D4 using SURF are smaller.

6.2.2 Posterior variance of interest points: The posterior es-
timated variances of the feature points are shown in figure 6b.
Because of the same reason as previous section, the variance for
QHD+SURF+GRID cannot be estimated with VCE.

The results in figure 6b tend to that SIFT still gives better per-
formance than SURF. Because the variance for SIFT is smaller
than SURF when they are used under same conditions. The vari-
ances for SIFT method for all tested cases are less than 0.5 pixel
while the variance for SURF detector is around 0.5 pixel and even
larger. Apart form this, the diagram also depicts that the precision
of the feature points for original images is slightly better than
sub-sampling image by comparing the variance values in HD and
QHD images for SIFT and SURF.

6.2.3 Accuracy of localization: The maximum error of lo-
calization occurs at the last image in our approach and the values
are shown in figure 6¢ for each method. The relative error of es-
timated image positions is calculated with the method mentioned
in section 5. and the results are shown in figure 6d. The state of
the art visual odometry method can approach 0.88% on the accu-
racy of image position in KITT benchmark using stereo images
(Cvii and Petrovi, 2015). We achieve around 0.7% (Fig 6d) using
HD+SIFT for all the four cases with monocular sequences. But
we should mention that the resolution of our experimental images
are higher than KITT datasets that the resolution is 1226x370
pixels.

The diagram depicts that the errors of position increase when
the resolution of image changes from HD to QHD. Meanwhile,
the grid adapter is not suitable for SURF especially for the large
sampling distance cases (D3, D4). Both the maximum and rel-
ative errors increase quickly if the grid adapter is used. The re-
sult in both diagrams also reflect the robustness of SIFT, the er-
rors keep flat for all the cases related to SIFT. We find that the
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HD+SIFT HD+SURF  HD*SIFT+GRID HD+SURF+GRID  QHD*SIFT
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(a) Repeatability for each feature extraction method on different
datasets.
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(c) The max errors of image position for different image sets.
The lengths of path for D3, D4 are longer than D1, D2, so the
maximal error of image position is large.

Mean error of position (%)

HD=SIFT HD*SURF  HD*SIFT+GRID HD+SURF+GRID  QHD*SIFT

QHDSURF  QHDSIFT+GRID QHD*SURF+GRID

(d) The mean values of relative error for image position.

Z1s
3
5
1
o

T

mLBA
= Matching
W Extraction

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn GoiseT QHOSURF ‘QHDISIFTIGRID  QHDSURF-GRID

(e) The average processing time per image for feature extraction,
matching and LBA.

Figure 6. The experiment results for different criterion.
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HD+SIFT+GRID is the most stable way among all the feature
extraction strategies for localization, the relative error is less than
one percent for D1, D2, D3, D4. Furthermore, HD+SIFT+GRID
has more accurate localization results than HD+SIFT at most sets
(D2, D3, D4). But this is not the case for SURF which leads to
worse results when the grid adapter is applied. These figures also
tend to illustrate the advantage of high resolution images where
most of HD images can obtain better results than QHD with the
same feature extraction method.

6.2.4 Runtime: Figure 6e shows the runtime for feature ex-
traction, matching and LBA. Each part of localization procedure
is demonstrated with different color of bin. The height of the
bin represents the average processing time per image. It is ob-
vious that the time spent on feature extraction and matching is
much higher than LBA in our localization procedure from fig-
ure 6e, where the blue and green bins are much higher than the
red bins. In addition, the processing time can be reduced by
subsampling the image (QHD) or limiting the number of fea-
ture points (GRID). However, a trade-off between efficient and
accuracy should be found. The SIFT and SURF used in this ex-
periment are standard CPU based implementation. In the future,
the feature extraction part can be speed up with GPU.

6.3 Further analysis

An accurate localization usually obtains low posterior variance
and high repeatability. If the repeatability is too low, the local-
ization may not be accurate. For instance, the repeatability for
D3 using HD+SURF+GRID is the very small (see Fig 6a), so the
error of position is high in figure 6d.

Combining the results of repeatability, posterior variance and the
accuracy, SIFT outperforms SURF on stability. For instance, the
accuracy reduces too much when the resolution is decreased or
the grid adapter is used, but SIFT performs better. In particular,
the HD+ SIFT+GRID strategy achieves excellent results for all
datasets, the posterior variances are almost the smallest (Fig 6b)
in all the methods. Although the repeatability of HD+SIFT+GRID
is slightly smaller than HD+SIFT, the localization accuracy is al-
most the best. This indicates that the distribution of tie points is
a more important factor than the large quantity of tie points.

The posterior variance is relevant for evaluating the back projec-
tion errors of the tie points. Thus the final estimation of pos-
terior variance for the image points would be influenced by the
accuracy of localization and precision of image point detection.
As we discussed before, the distribution of tie points also im-
pact the localization accuracy. However, if the same strategy is
used for feature extraction, the distribution of tie points is simi-
lar (cf. figure 7 which shows the accumulation map of HD+SIFT
and HD+SURF). In this case, the posterior variance can reflect
the precision of image points detector since the accuracies of the
localization are equivalent. In figure 6d and 6c, the errors of
HD+SIFT and HD+SURF are equivalent, but the posterior vari-
ance of SUREF is larger than SIFT in figure 6b. This phenomenon
indicates that the SIFT detector is more precise than SURF in
OpenCV implementation.

The HD+SURF performs slightly better than HD+SIFT for lo-
calization accuracy. Even the distribution of the tie point for
HD+SIFT and HD+SUREF is very similar in figure 7, the quantity
of tie points in the out of center area for SURF is higher where
the intensity in figure 7b is darker than figure 7a. So there might
be more reliable tie points in bundle adjustment.

(a) HD+SIFT (b) HD+SURF
Figure 7. The maps of tie points for HD images in D1. The
image points are detected without GRID constraints.

7. CONCLUSION

An evaluation of SIFT and SURF for vision based localization
was introduced in this paper. From our experiment, SURF was
faster than SIFT on feature extraction, but SIFT was more reli-
able considering the results from repeatability, precision and the
accuracy of estimated poses. Therefore, SIFT might be more suit-
able for our localization method. With the grid adapter, a better
uniformly distributed interest points can be guaranteed. Thus we
conclude that grid adapter (HD+SIFT+GRID) is the best option
for us in localization approach.

In our experiments, the HD images have higher spatial resolu-
tion than QHD images. Theoretically, HD image should obtain
better localization accuracy. However, the posterior variance for
HD+SIFT+GRID is only slightly better than QHD+SIFT+GRID
while the absolute errors of localization are equivalent, as shown
in figure 6d and 6b. This situation might mean that the tie point
acquired from QHD+SIFT+GRID could be more stable and bet-
ter distributed. But more investigation need to be done in this
part. In order to take benefit from good distribution and precise
2D localization of tie points, one possible solution is to detect and
match the interest points in QHD level, and re-localize the points
in HD level. This kind of strategies have already been applied in
some research(Bellavia et al., 2015). Besides, we should mention
that some factors such as pose estimators, the triangulation preci-
sion would also influence the localization accuracy. In the future
work, more detailed experiments should be considered to include
all of these factors. More advanced computing technologies such
as GPU, application-specific integrated circuits (ASIC) or field-
programmable gate arrays (FPGA) , can be considered to speed
up the process.
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