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ABSTRACT:  

 

We propose a new approach for the automatic detection of network structures in raster data. The model for the network structure is 

represented by a graph whose nodes and edges correspond to junction-points and to connecting line segments, respectively; nodes 

and edges are further described by certain parameters. We embed this model in the probabilistic framework of marked point 

processes and determine the most probable configuration of objects by stochastic sampling. That is, different graph configurations 

are constructed randomly by modifying the graph entity parameters, by adding and removing nodes and edges to/ from the current 

graph configuration. Each configuration is then evaluated based on the probabilities of the changes and an energy function describing 

the conformity with a predefined model. By using the Reversible Jump Markov Chain Monte Carlo sampler, a global optimum of the 

energy function is determined. We apply our method to the detection of river and tidal channel networks in digital terrain models. In 

comparison to our previous work, we introduce constraints concerning the flow direction of water into the energy function. Our goal 

is to analyse the influence of different parameter settings on the results of network detection in both, synthetic and real data. Our 

results show the general potential of our method for the detection of river networks in different types of terrain. 

 

 

1. INTRODUCTION 

Methods for automatic object detection can be subdivided into 

top-down and bottom-up approaches. For the latter, basic image 

processing methods such as segmentation are employed and the 

results are subsequently assigned to scene objects. In contrast, 

top-down approaches first express knowledge about the objects 

in suitable models and search for matches with the input data. 

Stochastic methods such as marked point processes (Møller J. 

and Waagepetersen R., 2004, Daley and Vere-Jones, 2003), 

which have been shown to achieve good results in various 

disciplines, belong to the top-down approaches. Marked point 

processes do not work locally, but rather find a globally optimal 

configuration of objects of a given type.  

 

In the context of marked point processes, model knowledge 

about the objects to be detected can be expressed in different 

ways. In most cases, a simple geometric primitive which can be 

described by a small number of parameters is chosen to repre-

sent an object in the scene. For instance, building contours are 

approximated by rectangles (Benedek et al., 2012, Chai et al., 

2012, Tournaire et al., 2010, Ortner et al., 2007). The rectangles 

are distributed randomly in the input data and their conformity 

with the data is evaluated based on different criteria. In the cited 

papers, strong gradients of the grey values or heights at the 

rectangle borders and homogeneous values inside the rectangles 

are required for a rectangle to be accepted for the object con-

figuration. Shadows are taken into account by evaluating the 

sun position (Benedek et al., 2012). Moreover, objects are re-

quired not to overlap, and the model can be expanded to favour 

parallel objects (Ortner et al., 2007). Tournaire and Paparoditis 

(2009) as well as Li and Li (2010) also model objects by rectan-

gles in the context of marked point processes. The former ex-

tract dashed lines representing road markings from very high 

resolution aerial images, while the latter detect oil spills in 

synthetic aperture radar (SAR) data, integrating knowledge 

about the distribution of the intensity in the backscattered radar 

signal. Alternative models are based on ellipses and circles, 

which were used by Perrin et al. (2005) to detect contour lines 

of tree crowns in optical data, whereas Descombes et al. (2009) 

applied such models to detect birds. The authors of both papers 

penalise overlapping objects and prefer a regular arrangement of 

the objects. Various geometric primitives are simultaneously 

considered in (Benedek and Martorella, 2014). The authors use 

lines and groups of points for the automatic detection of moving 

ships and airplanes in SAR images. First, the images are classi-

fied into foreground and background; subsequently the models 

are fitted to the foreground pixels using marked point processes. 

Lafarge et al. (2010) developed a flexible approach for the 

detection of different types of objects in images. The authors set 

up a library composed of simple geometric patterns such as 

rectangles, lines and circles, which are defined by their lengths, 

orientations or radii. Here, the input data are evaluated based on 

the mean and standard deviation of the grey values inside and 

outside the proposed objects as well as the overlapping area 

between them. The authors report good results for different 

application such as the extraction of line networks, buildings 

and tree crowns. 

 

The papers listed so far aim to detect isolated objects. Most of 

them model the objects as non-overlapping geometric primitives 

with similar image features or regular arrangement. For the 

detection of objects with a network structure, e.g. rivers and 

streets in remote sensing and blood vessels in medical data, the 

connectivity of objects can be integrated as an additional object 

property. This has been done in a number of studies which aim 

at the automatic detection of networks using marked point 

processes. Most of them are based on the Candy model devel-

oped by Stoica et al. (2004), consisting of line segments having 

a certain width; two line segments are considered to be con-

nected if the smallest Euclidian distance between their end-

points is smaller than a predefined threshold. In the optimization 
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process, the line segments are modified by changing their 

lengths and widths. Moreover, new line segments are added to 

or removed from the configuration. For the evaluation of each 

object configuration, segments which are not connected to other 

segments on both sides are penalised. The objects are also pe-

nalised if they overlap, are too short, or enclose a small angle. 

The conformity of the object hypotheses with the input data is 

evaluated based on the homogeneity of the grey values of the 

pixels inside the segments and the grey value differences to the 

pixels outside the segment. These criteria can be adapted to the 

characteristics of the input data and, thus, good results for both, 

optical and SAR data are achieved. The authors succeed in 

detecting the major part of streets and river networks of their 

test data. Lacoste et al. (2005) refine the method and avoid 

constant penalisation terms by evaluating the segment configu-

ration depending on the angle and the distance between two 

adjacent segments. Furthermore, the conformity with the input 

data is evaluated based on statistical tests. The authors detect 

street networks in optical images with a low false alarm rate 

even in case of occlusions by trees. However, the percentage of 

omission is quite high. For river networks, the authors observe 

large geometrical differences to the reference data, which are 

explained by the strong sinuosity of the rivers in the network. A 

similar approach is used by Sun et al. (2007) to detect vessels in 

medical data. The authors integrate the so-called vesselness in 

the evaluation of each segment, which is measured based on the 

eigenvalues of the Hessian matrix of the pixels values. An 

expansion of the Candy model to 3D data is realised by Stoica 

et al. (2007) and Kreher (2007), modelling the objects by cylin-

ders instead of line segments.  

 

In contrast to the methods mentioned above, Chai et al. (2013) 

model the network as a graph whose nodes correspond to junc-

tion-points. In the sampling process, the nodes are iteratively 

connected by edges, which correspond to line segments and 

may have different widths. The edges are evaluated based on 

the homogeneity of the grey values inside the segments and the 

gradient magnitudes on the segment borders. The authors penal-

ise graph configurations with non-connected components, 

atypical intersection angles and atypical numbers of outgoing 

edges (both compared to training data).  

 

In this paper, we aim to take advantage of the benefits of 

marked point processes, i.e. the fact that they deliver a globally 

optimal solution and their flexibility thanks to the stochastic 

nature of the approach, in order to detect networks of rivers and 

tidal channels. Our input data are digital terrain models (DTM) 

derived from lidar point clouds. For that purpose, we extend the 

approach of Chai et al. (2013) to our application. As a novel 

feature and in comparison to our previous work (Schmidt et al., 

2015), we integrate a model for the water flow direction and 

show its merits for the chosen application. In the following, we 

first describe the mathematical foundation of stochastic optimi-

zation using marked point processes (Section 2). We then pre-

sent the employed models for detecting rivers and tidal channel 

networks (Section 3). In Section 4, we show some experiments 

for data with varying terrain. Finally, conclusions and perspec-

tives for future work are presented. 

    

2. THEORTICAL BACKGROUND 

2.1 Marked point processes 

Point processes (for details see Møller and Waagepetersen, 

2004 and Daley and Vere-Jones, 2003) belong to the group of 

stochastic processes. They are used for the description of 

phenomena which have a random characteristic, and, thus, 

cannot be described in a completely deterministic way. A point 

process is a sequence of random variables   ,    , where   is 

the parameter set of the process. It is often represented by the 

time or location of the process (we are concerned with location 

here).    takes values of the state space  . In object extraction, 

point processes are used to find the most probable configuration 

of objects in a scene given the data. An object is described by its 

location li. In a marked point process, a mark mi, a multidimen-

sional random variable describing an object of a certain type at 

position li, is added to each point. If we characterise an object ui 

= (li, mi) by its location and mark, a marked point process can 

be thought of as a stochastic model of configurations of an 

unknown number n of such objects in a bounded region S (here: 

the DTM, thus the points li exist in   = R2).  

 

There are different types of point processes. The Poisson point 

process ranks among the basic ones, it assumes a complete 

randomness of the objects, and the number of objects n follows 

a discrete Poisson distribution with parameter also called 

intensity parameter, which corresponds to the expected value 

for the number of objects. In the Poisson point process, adjacent 

objects do not interact. In practice, the assumption of complete 

randomness of the object distribution is often not justified, and 

more complex models are postulated instead. These models are 

described with respect to a reference point process, which is 

usually defined as the Poisson point process. In our model, we 

integrate interactions between adjacent objects by using Gibbs 

point processes, which are also applied in (Stoica et al., 2004), 

(Mallet et al., 2010) and others. In this setting the object con-

figuration is described by a probability density function h which 

is related to a Gibbs energy U(.) to be minimised by   
        . The Gibbs energy can be modelled by the sum of a 

data energy Ud(.) and a prior energy Up(.):  

 

                                            (1) 

 

The relative influence of both energy terms is modelled by 

       . The data energy Ud(.) measures the consistency of 

the object configuration with the input data. The energy Up(.) 

introduces prior knowledge about the object layout; our models 

for these two energy terms are described in Section 3.3. The 

optimal configuration              of objects can be 

determined by minimizing the Gibbs energy U(.), i.e.    
          . Since the number of possible object 

configurations increases exponentially with the size of S the 

object space, the global minimum can only be approximated. 

This is done by coupling a Reversible Jump Markov Chain 

Monte Carlo (RJMCMC) sampler and a simulated annealing 

relaxation.  

 

2.2 Reversible Jump Markov Chain Monte Carlo sampler 

Markov Chain Monte Carlo (MCMC) methods belong to the 

group of sampling approaches. The special feature of MCMC 

methods is that the samples are not drawn independently, but 

each sample Xt,    , is drawn on the basis of a probability 

distribution that depends on the previous sample Xt-1. Thus, the 

sequence of samples forms a Markov chain which is simulated 

in the space of possible configurations. If the number of objects 

constituting the optimal configuration    were known or 

constant, it could be determined by MCMC sampling 

(Metropolis et al., 1953, Hastings, 1970). RJMCMC is an 

extension of MCMC that can deal with an unknown number of 

objects and a change of the parameter dimension between two 

sampling steps (Green, 1995). In each iteration t, the sampler 

proposes a change to the current configuration from a set of pre-

defined types of changes. Each of the change types is associated 
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with a density function Qi called kernel. Each kernel Qi is 

reversible, i.e. each change can be reversed by applying another 

kernel. The types of changes and the kernels of our model are 

described in Section 3.2. A kernel Qi is chosen randomly 

according to a proposition probability     which may depend on 

the kernel type. The configuration Xt is changed according to 

the kernel Qi, which results in a new configuration Xt+1. 

Subsequently, the Green ratio R (Green, 1995) is calculated: 

 

           
            

           
     

             

  
                  

 

In (2), Tt is the temperature of simulated annealing in iteration t. 

The kernel ratio  
            

           
 expresses the ratio of the 

probabilities for the change of the configuration from Xt+1 to Xt 

and vice versa, taking into account possible changes in the 

parameter dimension. Following Metropolis et al. (1953) and 

Hastings (1970) the new configuration Xt+1 is accepted with an 

acceptance probability α and rejected with the probability 1-α, 

which is computed from R using  

 

                                                                                                
 

The four steps of (1) choosing a proposition kernel Qi, (2) 

building the new configuration Xt+1, (3) computing the 

acceptance rate α, and (4) accepting or rejecting the new 

configuration are repeated until a convergence criterion is 

achieved. 

 

In order to find the optimum of the energy, the RJMCMC 

sampler is coupled with simulated annealing. For that reason, 

the parameter Tt referred to as temperature (Kirkpatrick et al., 

1983) is introduced in equation 2. The sequence of temperatures 

Tt tends to zero as    . Theoretically, convergence to the 

global optimum is guaranteed for all initial configurations X0 if 

Tt is reduced (“cooled off”) using a logarithmic scheme. In 

practice, a geometrical cooling scheme is generally introduced 

instead. It is faster and usually gives a good solution (Salamon 

et al., 2002, Tournaire et al., 2010).   

 

 

3. METHODOLOGY 

We use marked point processes with RJMCMC sampling and 

simulated annealing as described in Section 2 to detect a 

network of rivers or tidal channels. The network is modelled as 

an undirected graph whose nodes correspond to junction-points; 

the edges correspond to river or tidal channel segments. In the 

optimization process, the graph is iteratively changed and 

evaluated based on its conformity with a pre-defined model. We 

favour high DTM gradient magnitudes at the borders of the 

segments corresponding to the edges and we penalise confi-

gurations consisting of non-connected components, overlapping 

segments, segments with atypical intersection angles and 

physically non-consistent networks.  

 

In order to do so, three model specific definitions are required, 

which are described in the following subsections. First, we 

define the object representation of river and tidal channel 

networks (Section 3.1). Second, the types of change in the graph 

configuration which are applied during the sampling process are 

modelled (Section 3.2). Third, the energy function to be 

minimised during the global optimization is defined (Section 

3.3). Note that the method presented in this paper is based on 

our previous work (Schmidt et al., 2015), where more details 

about some of these topics can be found.  

3.1 Object model   

Our object model is based on an undirected graph. Similar to 

Chai et al. (2013) the nodes correspond to junction points. Each 

junction point possesses      outgoing segments sj (j = 1, 

...,     ), see Figure 1 for nseg = 3. We characterize a junction 

point             
      

       
      

      by its image 

coordinates        , and the orientation   
 
 and width   

 
 of 

each segment. The orientation is defined as counter-clockwise 

angle relative to the positive y-axis. In the sampling process, we 

iteratively build the graph by adding junction points to the 

configuration. If a new junction point is added in the 

neighbourhood of an existing one and fulfils some criteria (see 

Schmidt et al., 2015 for more details), both points are linked by 

a common segment. Such a segment is also added to the graph 

as an edge. Note that in particular in the early stage of the 

sampling process, a segment does not necessarily correspond to 

an edge in the graph; this is only the case for segments linking 

two junction points.  

 
 

Figure 1. Example for a junction point with nseg = 3 outgoing 

segments. Each segment sj is characterized by its width wj and 

its direction βj. 

 

3.2 Changes of the object configuration 

In each iteration of the sampling process, we modify the graph 

describing the network of objects in the DTM. For that purpose, 

potential changes (also referred to as perturbations) that can be 

applied as well as the corresponding kernels Qi must be defined. 

In this context, each perturbation is required to be reversible, i.e. 

for each perturbation there has to exist an inverse perturbation 

(Andrieu et al., 2003). We allow three types of change with 

related proposal probabilities pQM, pQT  and pQB = pQD. On the 

one hand, a node can be added to or removed from the current 

graph, which is accomplished by the birth-and-death kernel 

QBD. In the case of a birth event, all parameters are generated 

based on learned probability density functions. Here, we assume 

a uniform distribution for each parameter (node position, 

number of segments, width and direction of each segment). The 

kernel ratio in equation (2) for this setting is  

 
            

            
 
  
  
 
 

 
                                        

 

where pD and pB correspond to the probability for choosing a 

birth or death event, respectively, λ is the intensity value of the 

Poisson point process which serves as reference process in our 

model (cf. Section 2.1) and n is the current number of nodes in 

the graph. For the death event, we model the kernel ratio by  
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On the other hand, the parameters of the graph (node position, 

number of segments, width and direction of each segment) can 

be modified. In this study, we restrict the potential changes to 

changes of a junction point’s position and width; additional 

modifications are part of future research. For these events, 

associated with the translation kernel QT and the modification 

kernel QM, respectively, the kernel ratio can be set to 1: 

 
           

           
 
           

           
                      

 

 

3.3 Energy model  

3.3.1  Data Energy: The data energy Ud(Xt) (equation 1) 

checks the consistency of the object configuration with the input 

data. Rivers and tidal channels are characterized by locally 

lower heights than their surroundings. Consequently, they are 

assumed to have high DTM gradient magnitudes on each bank 

and low gradient magnitudes in between. We determine the data 

energy from the DTM gradients at the segment borders by 

 

             
 

  
       

 

  

    

 

    

  

     

                      

 

In (7),       

  (see Fig. 2) is the component of the gradient of 

the DTM height at boundary pixel kj in direction of the normal 

vector of the lateral edge mj  {1, 2} of the segment sj (Figure 

2). The sum of the gradients is taken over the nj pixels kj along 

that edge; all gradients have equal weights. We only take into 

account the two lateral borders of the segment, potentially 

corresponding to the river or channel banks (bold lines in Fig. 

2). To ensure that the value of the data term is above a 

predefined minimum value, we introduce a constant c.  

 

3.3.2  Prior energy: Prior knowledge is integrated into the 

model in order to favour certain object configurations. We adopt 

the three terms of our previous work (see below and Schmidt el 

al., 2015) and in addition add a new term. The prior energy is 

thus modelled by  

 

                                                     

 

In (8) each term represents one of the characteristics of the 

network we intend to take into account in our model. In this 

way, a graph configuration with certain characteristics as 

pointed out in the subsequent paragraphs is favoured.  

 

Non-overlapping segments: We penalise an object 

configuration in which the segments overlap. In this way, the 

accumulation of objects in regions with high data energy can be 

avoided. The corresponding energy term is calculated by the 

sum of the relative overlap area a of all combinations of 

segments si and sj 

                                                       

   

                        

which are weighted by a penalising factor   . Note that (1) we 

do not consider the overlap area of two segments which belong 

to the same junction point and (2) we only consider the larger 

relative overlap area of the two segments si and sj. 
 

Graph connectivity: We want to obtain a configuration with 

only one graph and, thus, rate the connectivity of the nodes in 

the graph. For that purpose, we penalise all segments which do 

not link different nodes by 

                                                                                        
 

where ns is the number of segments in the graph which are 

connected to only one node and ps is a constant penalising 

factor.  

 

Typical angles between edges: We favour intersection angles 

between edges which typically occur within river or tidal 

channel networks by  

 

                         

  

   

                                  

 

where na is the number of nodes which are linked by two or 

more edges. For each of these nodes the angle    between two 

edges is subtracted from the expected angle          for the 

typical configuration which may be learned from the data or 

integrated as prior knowledge. The expected angle depends on 

the number of outgoing segments      for each node, and pa is a 

constant penalising factor.  

 

Physical consistency of the network: We take into account the 

flow direction of water by analysing the heights of the nodes 

and edges of the graph. The general idea is to take into account 

that water does not flow uphill. We integrate this physical 

knowledge using two criteria. First, each node needs to be 

connected by exactly one node with a lower height value but 

can have connections to an arbitrary number of nodes with a 

higher height value (Fig. 3) - this means that we do not consider 

basins, deltas or islands (which do not exist in our data) in our 

model. Second, each pixel on the medial axis of an edge has to 

show the same trend in the data, i.e. from the start to the end 

point all height values have to increase or decrease (Fig. 4); 

otherwise the edge is penalised. Note that we allow small 

deviations   from this trend in order to be less susceptible to 

noise in the data. Thus, an edge is not penalised if the height of 

each pixel follows the trend of the edge within a tolerance of  . 

Combining both criteria, the prior energy is modelled by  

 

                                                                               

 

In (12)     is the number of nodes violating the first criterion 

and     is the number of edges violating the second criterion, 

whereas    is a constant penalising factor.  

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2. The segment of a junction point (white circle) 

contributes to the data energy by the sum of the components of 

the gradients      

  in the direction of the normal vector of 

each pixel k of the lateral edges. (The grey pixels indicate a 

channel / river in the DTM.)  

     

  

   

  

     

     

   

     
 . 
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Figure 3. Four nodes in a graph connected by edges. The arrows 

denote the flow direction of the water, determined on the basis 

of the heights    at the junction points. For node 1 the first 

criterion is fulfilled: It has one neighbour with a lower height 

        and two neighbours with higher heights     
         . 
 

 
25 35 36 

15 19 29 31 

14 17 22 25 

13 15 20 23 

10 12 16 19 

 

Figure 4. DTM heights in a small local window, encoded by 

integer numbers. The upper right and the lower left corner of the 

window coincide with two junction points which are connected 

by an edge (blue line). The pixel values fulfil the second 

criterion: from the lower left corner to the upper right corner the 

height values grow continually (10-13-15-17-22-29-31-36).  

 

 

4. EXPERIMENTS 

We evaluate our method using three data sets (Section 4.1) for 

which we empirically set the parameters in our approach 

(Section 4.2). The aims of our experiments are twofold. First, 

we want to validate the energy function of our model by 

analysing the influence of each term (Section 4.3.). Second, we 

investigate the applicability of the method to data sets with 

completely different terrain types (Section 4.4).  

 

4.1 Test data 

For the evaluation of our method we use three data sets. Each of 

them consists of a DTM raster having a grid size of 1x1 m² 

(data set 1 and 2) and 0.5 x 0.5 m² (data set 3). While the first 

data set is a synthetic one, the other ones are generated from a 

laser scanning point cloud by using interpolation methods. The 

first data set represents a tidal channel network and consists of 

700 x 550 m². Tidal channels are a special type of river 

furrowing the mudflat areas in coastal zones. A main 

characteristic of tidal channels is that they often form dendritic 

networks and exhibit a hierarchical structure in such a way that 

two smaller channels typically join to form a larger channel. In 

order to validate our method concerning the flow direction of 

water, the synthetic data have idealized height values: from the 

smaller channels to the bigger ones the heights gradually 

decrease without any noise in the data. The second data set, 

covering an area of 440 x 150 m² in the German Wadden Sea, 

consists of real data from a tidal channel network. In 

comparison to the synthetic data, the borders of the channels are 

less clear. Here, the transition to land is smoother, especially for 

the small channels. In general, the height gradients in scenes 

with tidal channels are very low. The difference between the 

lowest and the highest value in the real test site (including the 

land) is only 1.4 m. This is in contrast to the third data set, 

which shows a river network in Vorarlberg, Austria, covering 

an area of 2500 x 2500 m². Here, the terrain is mountainous 

with height differences of nearly 250 m. For this data set also 

reference data for the medial axis of the river network are 

available. Experiments based on this DTM will help us to 

analyse the applicability of our method to scenes characterised 

by totally different terrain types. 

 

4.2 Parameter settings 

In our experiments, we set the parameters to values that were 

determined empirically based on our previous work (Schmidt et 

al., 2014, 2015). Unless noted otherwise, they are kept fixed for 

all tests. First, we give more weight to the prior energy than to 

the data term and, thus, set the parameter β in equation 1 to β = 

0.09. The proposal probabilities of the kernels are set to pQM = 

pQT = 0.45 and pQB = pQD = 0.05, whereas the probabilities for 

choosing a birth or death event in equation 4 and 5 are pD = pB = 

0.5. In order to speed up the computations, we set a threshold 

for the heights depending on the data and propose a new 

junction point in the birth event only at pixels whose height is 

below this threshold. The intensity parameter λ of the reference 

Poisson point process depends on the size of the test size is set 

to 30 (first and second data set) and 50 (third data set). For the 

prior knowledge about tidal channels we restrict the maximum 

width of a segment to the maximum width of channels in our 

scene which we manually measure in the data. The expected 

angles    for adjacent edges are set to     180° or       
135° for junction points with two segments which are the most 

common combination in our data. We calculate the difference 

for both values and take the smaller one for our prior term. For 

junction points with three segments (which is the maximum we 

allow) we use three values for the expected angles between the 

three segments, namely 180°, 135° and 45°, again using the 

smallest difference for the prior energy term. The parameter c in 

equation 7 is set to c = 200, and the initial temperature in 

equation 2 to Tt=0 = 100. The standard values of the penalising 

factors in the prior energy terms (equations 9-12) used for the 

three data sets are shown in Table 1. These values are used in 

the experiments described in Section 4.4, whereas in Section 

4.3, where we want to assess the impact of the individual energy 

terms on the basis of the synthetic data set, we adapt these 

values as described in the text. 

 

Table 1. Parameter settings of the penalising factors in the 

prior energy terms (equations 9-12).  

 

4.3 Influence of each term in the energy function 

Figure 5 shows how the object configuration in the synthetic 

data set evolves in the course of the sampling procedure, as 

junction points are added to or removed from the configuration 

or their parameters are changed. After 30 million iterations the 

tidal channel network is almost completely covered by segments 

(Fig. 5d). The contours of the channels correspond well to the 

borders of the segments, although the resultant graph is not 

completely connected.  

 Synthetic 

data 

Wadden 

Sea 

Austria 

   (overlapping areas) 2000 100 100 

   (non-connectivity) 100 100 100 

   (atypical angles) 10 5 1 

   (flow direction) 10 10 10 

      

   

   

16 
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Figure 5. As the number of iterations t [in millions] increases, 

the tidal channel network is better and better described by the 

graph (green: junction points, yellow: their outgoing segments, 

red: edges in the graph). 

 

    

  
 

Figure 6. Excluding the data term results in the construction of 

connected graphs which only consider data via the prior term 

for the flow direction. Increasing the corresponding penalising 

factor pf, the graph better and better approximates the channel 

network.  

Using the synthetic data set, we tested the influence of the 

individual terms of our energy function. First, we exclude the 

data term, so that only the prior knowledge about the charac-

teristics of channel networks is taken into account. In this way, 

connected graphs are constructed in which the edges show the 

expected angles. Fig. 6a shows the results obtained when using 

the penalising factors in Table 1, except for the flow direction 

term, which is not considered (pf = 0). If we integrate know-

ledge about the flow direction, which does consider the DTM 

heights, the data have an impact on the result. The graph better 

and better approximates the network with increasing penalising 

factor   . Figures 6b – 6d show the benefit of the results 

integrating the flow direction in the energy term. 

 

We also analyse the influence of each prior term. By excluding 

the penalisation of overlapping areas, nodes and edges 

accumulate near the medial axes of the channels (Fig. 7). 

Segments with similar widths are sampled to nearly the same 

positions. Thus, the graph does not represent the correct 

topology of the network. If we do not take into account the 

connectivity of the graph, the sampling results in several 

subgraphs (Fig. 8). Due to the data term, the segments still well 

coincide with the borders of the channels. However, we do not 

end up in a fully connected graph. Without consideration of 

typical angles in tidal channel networks, too many segments are 

added to the graph (Fig. 9). For instance, lots of junctions with 

degree 2 in the data are represented by nodes with degree 3 in 

the graph. If we exclude the term verifying the consistency of 

the flow directions (Fig. 10), the graph only slightly varies in 

comparison to the one in Figure 5d where all prior terms are 

taken into account. For the chosen weights, in our synthetic data 

the network is already well described by the further terms and 

the additional consideration of the flow direction does not 

significantly improve the results.  

 

 
 

Figure 7. Results achieved by excluding the prior term 

penalising overlapping areas (po = 0). 
 

 
 

Figure 8. Results achieved by excluding the prior term for 

graph connectivity (ps = 0). 

 

 
 

Figure 9. Results achieved by excluding the prior term for 

typical angles (pa = 0). 

   = 0    = 1 

   10    = 1000 

a) b) 

c) d) 
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Figure 10. Results achieved by excluding the prior term for the 

flow direction (pf = 0). 

 

4.4 Applicability for different terrain types 

We also apply our approach to real data, using the values given 

in Table 1 for the penalising factors. Moreover, we adapt the 

maximum width      a segment is allowed to have in the 

sampling process. For the Wadden Sea data, the graph describes 

the main tidal channel in the scene well: it is nearly completely 

covered by segments (Fig. 11a). Also some of the smaller 

channels are detected. By excluding the prior term for the flow 

direction, the number of detected small inlets increases (Fig. 

11b). However, one segment (blue ellipse in Figure 11a and 

11b) decreases in quality as it does not describe the correct 

route (and physical consistent flow) of the channel. For the third 

test site in Austria, reference data are available. We use the 

reference data for the evaluation and, first, only select all rivers 

which are below the threshold for the heights (see Section 4.2). 

We then derive a puffer with a width of 50 m and define all 

edge pixels lying in the puffer as correctly detected network 

parts. The completeness of the network is defined by all pixels 

of the reference network lying in the segments of our result. In 

this way, the completeness and correctness of our result are 

71.7% and 90.2%, respectively, by using all prior terms (Fig. 

12a). If we exclude the prior term for the flow direction, the 

completeness increases to 85.9% (Fig. 12b). However, the 

correctness decreases to 75.2% and, thus, shows the 

significance of this term.  

 

5. CONCLUSION AND OUTLOOK 

In this paper, we present a stochastic approach based on marked 

point processes for the automatic extraction of networks in 

raster data. We model the network as an undirected, acyclic 

graph which is iteratively built during the optimization process. 

The approach is evaluated on synthetic data and on two DTM 

derived from airborne lidar data. Our experiments showed that 

for all data sets, the most relevant tidal channels and rivers are 

detected, apart from some smaller inlets. In most cases, we end 

up in one single graph or only a small number of subgraphs. We 

also analysed the influence of the terms in our energy function 

and showed their relevance for the detection of river networks. 

The result decreases in quality if one of the terms is omitted. By 

integrating knowledge about the flow direction the results for 

the synthetic data and the DTM of the Wadden Sea are only 

slightly affected. However, for the mountainous test site the 

correctness of the detected network could be significantly 

improved by integrating this knowledge. Moreover, the 

application to different scenes with completely different terrain 

types demonstrated the transferability of our method.   

In the future, we want to improve the strategy of adding new 

objects to an existing configuration. In our approach, junction 

points are only proposed at pixels whose height is below a 

threshold. While this value helps to speed up the computation 

for the Wadden Sea data (where all channels have similar 

heights), the value is not meaningful for the Austria test site. 

We intend to replace it by a value based on terrain curvature. 

Furthermore, the reduction of parameters and the automatic 

learning of these parameters from training data are relevant 

topics.  

 

 
 

 
 

Figure 11. Results for real data of a tidal channel network using 

(a) all prior terms and (b) by excluding the prior term for the 

flow direction (pf = 0).  

 

 
 

 
 

Figure 12. Results for the test site in Austria using (a) all prior 

terms and (b) by excluding the prior term for the flow direction 

(pf = 0). Blue solid lines: reference data of the medial axes of 

the river network, blue dotted line: puffer for evaluation. 

a) 

b) 

a) 

b) 
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