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ABSTRACT:

In this paper we present an approach for semantic interpretation of facade images based on a Convolutional Network. Our network
processes the input images in a fully convolutional way and generates pixel-wise predictions. We show that there is no need for large
datasets to train the network when transfer learning is employed, i. e., a part of an already existing network is used and fine-tuned,
and when the available data is augmented by using deformed patches of the images for training. The network is trained end-to-end
with patches of the images and each patch is augmented independently. To undo the downsampling for the classification, we add
deconvolutional layers to the network. Outputs of different layers of the network are combined to achieve more precise pixel-wise
predictions. We demonstrate the potential of our network based on results for the eTRIMS (Korč and Förstner, 2009) dataset reduced
to facades.

1 INTRODUCTION

Deep Learning and especially Convolutional Networks
(ConvNets) are gaining more and more interest in recent
years. One of their first applications has been document recogni-
tion (LeCun et al., 1998). Others are image classification, where
a single label is assigned to a whole image (Krizhevsky et al.,
2012, Simonyan and Zisserman, 2014, Szegedy et al., 2015)
or semantic segmentation with Fully Convolutional Networks
(Long et al., 2015). When only few data is available, transfer
learning can be a good choice to fine-tune an already learned
network (Zeiler and Fergus, 2014, Donahue et al., 2014).

With the growing need for three-dimensional (3D) city-models
in cultural heritage, town planing, tourism, etc., their automatic
generation is an ongoing research topic. Semantic interpretation
of facades, especially the detection of doors and windows is
necessary for level-of-detail (LOD) 3 building models (Kolbe et
al., 2005). There are different approaches for this: Some authors
use 3D point clouds for geometric interpretation (Nguatem et
al., 2014) or learn grammars from labeled facade images and
use them for parsing (Martinovic and Van Gool, 2013). Others
search for repetitive patterns on two-dimensional (2D) input
images to segment individual facades (Wendel et al., 2010) or try
to find windows with the help of implicit shape models (Reznik
and Mayer, 2008).

With regard to both the growing need for semantic build-
ing models as well as the developing field of Deep Learning, we
present in this paper an approach based on ConvNets to segment
and classify facade-elements in images.

In the following section we summarize previous work. The
basic ideas of ConvNets and some of their advantages over other
methods are presented in Section 3. Section 4 deals with our
ConvNet structure and Section 4.1 with the way it is trained.
Validation of our method follows in Section 4.2. The paper ends
with the conclusion.

2 RELATED WORK

With an optimized GPU (graphics processing unit) implementa-
tion of 2D convolutions and other ConvNet-specific operations,
(Krizhevsky et al., 2012) made available a basis for efficient
Deep Learning and ConvNets. They also introduced features,
like the ReLU nonlinearity or the overlapping pooling operation,
which often lead to better results and/or faster training. Another
important part of their work is the reduction of overfitting by
augmentation of the training data and the inclusion of dropout
into the network. These techniques are used in our work and
will be presented in Section 3. Other work such as GoogLeNet
(Simonyan and Zisserman, 2014) and VGG net (Szegedy et al.,
2015) has been inspired by (Krizhevsky et al., 2012).

(Long et al., 2015) introduced a fully convolutional approach for
semantic segmentation. They use the networks introduced above,
which were trained for classification, and adapted them for
pixel-wise prediction. Particularly, the networks were converted
into fully convolutional versions and then fine-tuned with and
for new data. For better results, (Long et al., 2015) combined
the output of deep layers, which are coarser, but contain more
information, with shallow and thus more detailed layers.

(Hariharan et al., 2015) have shown that combining coarse
and fine layers is important for pixel-wise image segmentation.
The deepest layers contain most of the semantic information, but
are not precisely located in the spatial domain. Shallow layers,
on the other hand, are very precisely localized in in the spatial
domain (e .g., position of edges), but contain less semantics. By
combining all features into a hypercolumn, the resulting vector
contains information for both, semantics and location.

The U-Net structure, presented by (Ronneberger et al., 2015)
is an example for a network that combines some of the above
methods. It produces pixel-wise labelings for biomedical images
with a fully convolutional network. First, a set of convolu-
tional and pooling layers is used to extract features from an
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Figure 1: Employed ConvNet with convolutional layers (Conv), fully convolutional layers (FC) and deconvolutional layers (DeConv).
The layers are described by the number of resulting feature maps and the size of the (de)convolution kernel. Layers Conv 3, 4, and 5
are concatenated to 1024 feature maps. To the feature maps of DeConv 1 the feature maps of Conv 2 (green part) are concatenated.
Finally, a softmax function computes the probabilities of all classes at each pixel position. Probabilities are coded from black (low) to
white (high).

input image. The result of the deepest layer is upsampled by
deconvolutions. The authors call the convolutional side of their
network contracting path, the deconvolutional side expansive
path. Features from the contracting path are concatenated with
features from the expansive path. Thus, the deepest layers
contain both, spatial and semantic information. Training is done
end-to-end with augmented patches of complete images, so there
was much more training data than images. Data augmentation is
done by deformation of the training data.

In the field of facade interpretation from images, (Reznik
and Mayer, 2008) search for windows using an implicit shape
model (Leibe and Schiele, 2004). They find corners of windows
by matching patches at points of interest to patches from the
training data via cross correlation and employ them to generate
hypotheses for window outlines. To further improve the recogni-
tion rate, the detected windows are arranged in rows, columns or
grids.

(Čech and Šára, 2009) employ pixel intensities for window
detection as well as a Markov Random Field (MRF) with asym-
metric pair wise compatibilities and a shape-based language.
The detection of regular window patterns has been improved by

(Tyleček and Šára, 2012) by guiding it with a stochastic grammar
with pair-wise attribute constraints. In (Tyleček and Šára, 2013),
additionally a data-dependent topology of spatial templates has
been introduced.

(Simon et al., 2011) segment facades into windows and
doors as well as a couple of other objects. The approach has
been tested on facades with many repetitions and regularities
which can be described well by only six grammar rules. A
pixel-wise random forest is used to find evidence when selecting
grammar rules. While shape priors are integrated, the outline of
the objects is not considered leading to only an approximation of
the geometry.

(Martinovic and Van Gool, 2013) first learn a grammar
from a set of labeled images. The learned grammar is used to
parse images of facades. They compute the label probability for
each pixel by a random forest classifier and use variations of the
learned grammar to parse the image. The grammar variations
are generated by Reversible Jump Markov Chain Monte Carlo
(Green, 1995).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-709-2016

 
710



3 CONVOLUTIONAL NETWORKS

ConvNets are biologically inspired Machine Learning algo-
rithms, which are based on classical Artificial Neural Networks
(ANN) or Multilayer Perceptrons (MLP). In an MLP, a given in-
put is mapped onto the output over two or more layers of nodes
(neurons). Each node of one layer has a weighted connection to
each node of the subsequent layer. The output of a single neu-
ron is computed via an activation function over the sum of its
weighted inputs (plus some bias) (see Equation 1)

yl+1
i = σ(

∑
j

(wl+1
ij ylj) + bl) . (1)

Typically, training of the MLP is done in a supervised manner by
means of the backpropagation algorithm: Training examples are
pairs of input and label. The input is processed by the network
and the networks output is compared to the given label. An
error-function (e. g., euclidean distance) computes the output
error and this error is propagated back through the network.
Depending on the error, the network weights are changed. This
procedure is repeated multiple times with all training examples.

In contrast to the completely connected layers in MLP, the
connections between two subsequent layers in a ConvNet are
often locally restricted, but repeated over the input. This effect
is comparable to convolutions, whose kernels are learned by the
training algorithm. Another interpretation is, that each layer of a
ConvNet extracts different features from the preceding layer. In
shallow (fine) layers, i. e., layers at the top, the extracted features
are simple like edges or color-patches in the input image. For
deeper (coarse) layers, features become more complicated, e. g.,
small objects, object parts or patches.

In addition to the convolutional layers, many different lay-
ers and techniques have been developed in recent years, e. g.,
(Krizhevsky et al., 2012). We shortly introduce those we use in
our configuration:

Feature map Often, the output of a kernel is called a feature
map.

Convolution This is the most important layer type of a Con-
vNet. Weighted connections are locally restricted, but re-
peated over the image or feature map. The resulting feature
maps are equal to a convolution with the (learned) kernels.
Sometimes a step size (in the context of ConvNets called
stride) is given, that defines the number of pixels between
two convolutions or rather at what position the next repeti-
tion of the weights is applied.

Deconvolution The inverse function of a convolution. A single
pixel of a layer is split into multiple pixels of the subsequent
layer. This is also done with learned weights. Analog to the
Convolution layer, a Deconvolution layer can have a stride.

Fully connected Like in a MLP each node of one layer is con-
nected to each node of the next layer.

ReLU The Rectified Linear Unit (ReLU) is used as activation
function. It is defined as:

f(x) = max(0, x) .

Pooling A pooling layer maps two or more pixels to a single
pixel. For example, pooling can be done by averaging or
taking the maximum value.

Layer Params ReLU Pool LRN Dropout

Conv 1
Num: 96
Size: 11
Stride: 4

yes yes yes no

Conv 2
Num: 256

Size: 5 yes yes yes no

Conv 3
Num: 384

Size: 3
Pad: 1

yes no no no

Conv 4
Num: 384

Size: 3
Pad: 1

yes no no no

Conv 5
Num: 256

Size: 3
Pad: 1

yes no no no

FC 1
Num: 1024

Size: 1 yes no yes yes: 0.2

FC 2
Num: 512

Size: 1 yes no yes yes: 0.2

DeConv 1
Num: 512

Size: 3
Stride: 2

yes no yes yes: 0.3

FC 3
Num: 512

Size: 1 yes no yes yes: 0.2

DeConv 2
Num: 512

Size: 3
Stride: 2

yes no yes yes: 0.3

FC 4
Num: 4
Size: 1 no no no no

Table 1: Layer configurations of the employed network (cf. Fig-
ure 1). The first two columns give the name of the layer and the
number of feature maps as well as the size of the (de)convolution
kernels. In the following columns we specify if a layer is fol-
lowed by a non-linearity (ReLU), a pooling layer (Pool), a local
response normalization layer (LRN) or a dropout layer. For the
dropout, also the probability for the dropout of each node is given.

LRN Local Response Normalization (LRN) is comparable to
lateral inhibition in biological context. If the output of one
kernel is big, it will suppress the outputs of the neighboring
kernels. This leads to diverging kernels, i. e., neighboring
kernels are clearly different.

Dropout When dropout is used, the output of a neuron will be
zero with a given probability while learning. The effect is,
that the architecture of the network is different for each it-
eration, but the shared weights are always the same. The
result is a more stable ConvNet.

Augmentation Large amounts of data are essential for training
robust networks. Because it is not always possible or afford-
able to collect more data, additional realistic data is gener-
ated by augmenting the available data, e. g., by scaling, ro-
tation, or adding noise to the gray or color values.

4 A CONVNET FOR FACADES

The first five layers of our ConvNet for Facades (cf. Figure 1)
are based on AlexNet (Krizhevsky et al., 2012) which is trained
on the ImageNet LSVRC-2010 dataset (1.3 million images, 1000
classes). Because layers three, four and five produce outputs
of the same size, we concatenate all their feature maps to a
1024-dimensional layer of feature maps. For each pixel position
we get many features that range from mid- to high-level. This is
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followed by two fully convolutional layers, which can be seen as
a pre-classification.

Because the output of layers three, four and five is much
smaller than the input, we add deconvolutional layers. After the
first deconvolution, we reintroduce more shallow features by
concatenating the output-feature maps with the output of layer
two, to get more precisely located results. Both deconvolutional
layers are followed by a fully convolutional layer, which also
leads to more precise results. The output of the last fully
connected layer and, therefore, of the ConvNet as a whole, is
a four-dimensional vector of probabilities, that the output pixel
belongs to one of the four classes building, door, window, and
other. At runtime, we use a softmax-layer on top of it. The
softmax-function is defined as following:

σ(xi) =
exp(xi)∑
j
exp(xj)

(2)

1st image
Accuracy Precision Recall

Facade 0.92 0.94 0.94
Window 0.95 0.81 0.84
Door 0.98 0.67 0.83
Others 0.96 0.86 0.78
All 0.93 0.90 0.90
F1 score 0.90

2nd image
Accuracy Precision Recall

Facade 0.89 0.92 0.94
Window 0.89 0.74 0.70
Door 1.0 0.00 0.00
Others 1.0 0.25 0.02
All 0.89 0.88 0.89
F1 score 0.88

3rd image
Accuracy Precision Recall

Facade 0.87 0.92 0.89
Window 0.88 0.64 0.79
Door 0.99 0.00 0.00
Others 0.98 0.98 0.85
All 0.89 0.88 0.86
F1 score 0.87

Table 2: Accuracy, Precision and Recall for best results (see Fig-
ure 2)

4.1 Training

As this paper is concerned with facade interpretation, we use the
eTRIMS (Korč and Förstner, 2009) images and labels for training
and validation. For our specific application they are manually
preprocessed: Individual facades are cut out and roughly recti-
fied. Due to the fact that ConvNets are able to learn deviations,
i. e., are very robust against small perturbations, perfect data
is not necessary. Facades are classified into facade, door, and
window. All other labels of the eTRIMS data are combined into
the class other. Although the original eTRIMS dataset contains
eight labels, namely building, car, door, pavement, road, sky,
vegetation, and window, there are two reasons to combine five
classes: First, we want to segment and classify facade-objects
and some of the classes do not belong to them. Second, because
we cut out the facades from the original images, in most cases
there are very few pixels that belong to some of the classes. Thus,

1st image
Accuracy Precision Recall

Facade 0.72 0.77 0.78
Window 0.74 0.59 0.47
Door 0.97 0.00 0.00
Others 0.95 0.65 0.81
All 0.74 0.70 0.69
F1 score 0.70

2nd image
Accuracy Precision Recall

Facade 0.67 0.51 0.74
Window 0.79 0.70 0.71
Door 0.97 0.00 0.00
Others 0.83 0.90 0.43
All 0.76 0.67 0.62
F1 score 0.64

3rd image
Accuracy Precision Recall

Facade 0.79 0.76 0.91
Window 0.76 0.71 0.44
Door 0.90 0.01 0.14
Others 0.92 0.84 0.26
All 0.80 0.74 0.69
F1 score 0.71

Table 3: Accuracy, Precision and Recall for worst results (see
Figure 3)

Overall
Accuracy Precision Recall

Facade 0.83± 0.05 0.88± 0.07 0.87± 0.05

Window 0.86± 0.05 0.67± 0.10 0.71± 0.12

Door 0.97± 0.02 0.61± 0.31 0.51± 0.31

Others 0.92± 0.04 0.84± 0.13 0.70± 0.17

All 0.85± 0.05 0.83± 0.09 0.81± 0.09

F1 score 0.82± 0.09

Table 4: Overall Accuracy, Precision and Recall

the available amount of data for training these classes is much
too small. Patches of size 131 × 131 pixels are extracted from
the images. Corresponding patches are extracted from the label
images and scaled down to the size of the output (23×23 pixels).

To increase robustness of the learned model, we augment
the available data in two ways: First, the extracted patches are
randomly mirrored horizontally. Second, we also artificially
enlarge the dataset by scaling the extracted image- and label-
regions by an independent random factor in both dimensions and
rescaling it to 131 × 131 pixels. Using patches lead to much
more training data than images and augmenting them increases
variation. The size of 131 × 131 pixels is chosen to speed up
the training time while at the same time avoiding too much
correlation for the training data.

Training is done by backpropagation with stochastic gradi-
ent descent. As error-function we used cross-entropy after
computing the softmax for each pixel of the last layer. Cross-
entropy is defined as:

E = − 1

N

N∑
n=1

log(pln(xn)) , (3)

and it computes the error for the true class.
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Training the network took about 8 hours on an NVIDIA Quadro
K5200 using the Caffe implementation. (Jia et al., 2014).

4.2 Validation and Evaluation

For validation, the eTRIMS dataset was divided into six subsets
of 10 images. This is the basis for six-fold cross-validation, i. e.,
we trained six networks, each with 50 training images and tested
them on the remaining 10 images. Figure 2 and Table 2 give
results for the three best images (concerning the F1 score) and
Figure 3 and Table 3 for the three worst results, respectively.

The first column of Figures 2 and 3 presents the original
image. The second column shows the ground-truth label image
and the result of our network is given in the third column. The
colors in the label images define the different classes: Red for
facades, blue for windows, yellow for doors, and the class other
is displayed in black.

For evaluation, we used the following statistical measures:

• Accuracy: TP+TN
ALL

• Precision (Exactness, Correctness): TP
TP+FP

• Recall (Completeness): TP
TP+FN

• F1 score (harmonic mean of precision and recall):
2TP

2TP+FP+FN

with true positives TP, false positives FP, true negatives TN, and
false negatives FN for each class.

A weighted average value over all four classes is computed
w. r. t. the amount of ground-truth pixels per class (cf. Table 4).
It shows that windows and objects of the class other, especially
vegetation (potted plants in front of the window in the first row
of Figure 2) are well recognized. Shadows can lead to problems
as can be seen in the top row of Figure 3, where windows are
classified as doors and structured shadows on the facade as other.
Doors made of glass or containing glass elements or windows are
often classified as windows. In most cases this is not surprising.
For example the doors in the second row of Figure 3 have the
same structure and texture as the surrounding windows.

Our network is able to recognize windows that are partially
occluded, as can be seen in the first and third row of Figure 2 and
all examples of Figure 3.

5 CONCLUSION

In this paper we have presented a method for semantic
facade-segmentation based on a ConvNet. By using parts of
already-trained networks and fine-tuning them and by employing
augmented patches of images, no big datasets are necessary to
obtain good results in a reasonable training time. We trained
and tested our network on subsets of images limited to the
facades of the eTRIMS dataset. The overall results achieve an F1
score of 82% for the four classes facade, door, window, and other.

For future work, we want to analyze the contributions of
the various parts of our network for the results as well as
limitations arising from the network as well as limited training
data.
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