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ABSTRACT: 

 

This paper presents an approach for the classification of photogrammetric point clouds of scaffolding components in a construction 

site, aiming at making a preparation for the automatic monitoring of construction site by reconstructing an as-built Building 

Information Model (as-built BIM). The points belonging to tubes and toeboards of scaffolds will be distinguished via subspace 

clustering process and principal components analysis (PCA) algorithm. The overall workflow includes four essential processing 

steps. Initially, the spherical support region of each point is selected. In the second step, the normalized cut algorithm based on 

spectral clustering theory is introduced for the subspace clustering, so as to select suitable subspace clusters of points and avoid 

outliers. Then, in the third step, the feature of each point is calculated by measuring distances between points and the plane of local 

reference frame defined by PCA in cluster. Finally, the types of points are distinguished and labelled through a supervised 

classification method, with random forest algorithm used. The effectiveness and applicability of the proposed steps are investigated 

in both simulated test data and real scenario. The results obtained by the two experiments reveal that the proposed approaches are 

qualified to the classification of points belonging to linear shape objects having different shapes of sections. For the tests using 

synthetic point cloud, the classification accuracy can reach 80%, with the condition contaminated by noise and outliers. For the 

application in real scenario, our method can also achieve a classification accuracy of better than 63%, without using any information 

about the normal vector of local surface. 

 

 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Motivation 

In recent years, the efficient and accurate progress monitoring 

of construction site is becoming more and more popular in the 

field of project management (Turkan et al., 2012). Good 

progress monitoring results can help engineers and project 

supervisors make timely and correct decisions. Classical 

progress tracking approaches depend highly on field 

investigations and demand extensive manual work for collection 

and analysis of acquired survey data and various documents, 

which not only rely heavily on the personal skills and 

experiences of managers but also require a lot of time. In the 

early 2000s, the Architectural Engineering Construction/Facility 

Management (ACE/FM) industry realized the vital and urgent 

demand for efficient and accurate construction project progress 

monitoring (Bosché et al., 2015). After that, the study of 

automatic construction site monitoring is rapidly developed 

with the application of 2D imaging, photogrammetry and laser 

scanning (Turkan et al., 2012). Among all these techniques, the 

methods based on 3D point clouds are progressively widely 

used (Tang et al., 2010) because the 3D features and special 

information in point cloud will facilitate the analysis of 

monitoring results and fast updating of data.    

 

Building Information Model (BIM), containing the 3D 

geometry of a building, as well as the schedule information of 

the construction what extends the 3D to a 4D building model, is 

one of the most promising ways of progress monitoring in 

construction site. However, for the progress monitoring task, 

the as-planned states of the construction should be compared 

and adjusted with the as-built state at a certain period (Bosché , 

2010). Unlike the as-planned BIM normally generated from 2D 

plans and blueprints, the as-built BIM is typically created via 

reverse engineering methods on the basis of measuring results 

from photogrammetry or laser scanning, for example, dense 

point clouds (Xu et al., 2015). Nevertheless, the reconstruction 

of geometric objects from point cloud for as-built BIM is 

always a challenging task, due to the ambiguous spatial 

distribution and outliers of the point dataset. Moreover, 

difficulties on construction sites for the monitoring arise 

because of possible occlusions during observation, the 

occurrence of temporary equipment (e.g. scaffolds) and worker 

or the limited accessibility of acquisition positions. Thus, it is 

worthwhile to study and develop approaches of reconstructing 

objects from such point cloud accurately and efficiently. 

 

The scaffolding components, which are common objects 

appealing in construction site, are always considered to be the 

disturbing objects when reconstructing as-built BIM, because of 

the occlusions aroused, similarities with buildings like colour 

and height and being located very close to the building surfaces. 

However, since the scaffolds are usually used to assist the 

construction and the maintenance of building structures, by 

judging the status of the reconstructed scaffolds, the 

professionals can also make an appropriate evaluation of the 

aggregate scheduling for the construction project. Moreover, its 
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thin, similar and complicated structures, for example, linear 

shaped boards and tubes with analogous size and scale 

connected to each other, make it a good experimental dataset for 

testing potential algorithms and approaches for the 

reconstruction of as-built BIM.   

 

The goal of this research is to automatically classify 

photogrammetric points of scaffolding components in a 

construction site. Here, two fundamental elements of scaffolds 

have been taken into consideration, namely the tube and the 

toeboard, which are exhibited in Figures 1. For this purpose, we 

propose a method for the classification of points of scaffolds, 

with subspace clustering and principal component analysis 

(PCA) algorithm utilized. 

 

 
Figure 1. a) Real scene of scaffolds. b) Classification results of 

toeboards and tubes from generated point cloud. 

 

1.2 Related Work 

At the present stage, research work about the classification and 

recognition of scaffolds components in the environment of 

construction site using point cloud is scarce. Most of the related 

work mainly engage in the rebuilding of as-built BIM from 

point clouds (Pătrăucean et al., 2015; Xiong et al., 2013; Tang 

et al., 2010) or the comparison between as-built and as-planed 

BIM for process monitoring (Golparvar-Fard et al., 2011; Tuttas 

et al., 2014a; Rankohi and Waugh, 2014). On the basis of Scan-

vs-BIM system, some applications are also developed using 

point clouds to trail specified construction objects like 

Mechanical, Electrical and Plumbing (MEP) components 

(Bosché et al., 2015) and temporary or secondary objects like 

shoring, rebar (Turkan et al., 2014).  

 

Beyond these aforementioned work, many research work has 

been done in the field of recognition and classification of point 

cloud linking to object of various geometric shapes. Generally, 

their possible solutions will utilize the geometric feature and 

statistical information of candidate points with a neighbourhood 

or support region. For example, 3D shape descriptors such as 

3D shape context (3DSC) (Frome et al., 2004), Point feature 

histograms (PFH) (Rusu et al., 2010) and signature of histogram 

of orientations (SHOT) (Salti et al. 2014), which count features 

of local surfaces and spatial distribution of points in 

neighbourhood as characteristic for point recognition, are 

commonly used in the matching, classification and 

reconstruction of point clouds. In our previous work, a 

preliminary result was achieved (Xu et al., 2015), in which the 

scaffolding components are detected and reconstructed from a 

photogrammetric point cloud of a construction site based on 

projection strategy and 3D shape descriptor. Nevertheless, most 

of the 3D shape descriptors will depend on the estimation of 

normal vectors on local surface as a foundation of local 

reference frame or axis. The accuracy in this case is highly 

affected by outliers or noise in the dataset. 

Another popular way is using the 3D Hough transform, which 

utilizes the statistical voting procedure in a parameter space and 

requires no estimation of the normal vectors. For instance, 

Vosselman et al. (2004) and Borrmann et al. (2011) use the 3D 

Hough transform for the determination of planar surfaces. 

Nevertheless, the classification using Hough transform theory is 

computationally expensive and sensitive to outliers (Maalek et 

al., 2015). Especially for large datasets, using algorithms based 

on Hough transform will result in extremely huge computational 

cost. 

 

The PCA is the eigenvalue decomposition of the covariance 

matrix of a multivariate data set, which can be used to 

summarize the variation of the data set with orthogonal axes 

(Johnson and Wichern, 1992). By applying the PCA, three 

orthogonal axes can be determined in a three-dimensional point 

cluster. Some researchers have already used PCA for the 

classification of point cloud (Rottensteiner et al., 2005; Pu and 

Vosselman, 2006; Belton and Lichti, 2006; Lari, 2014). 

However, when the point cluster is contaminated by outliers, 

the performance of PCA will decline. Thus, in the work of 

(Maalek et al., 2015), they proposed a classification method of 

point cloud using robust PCA, in which the PCA is applied to 

the pre-defined support region of each point. For the points of 

planar object, the variations in the direction of the surface 

normal tend to be zero, while, for the points of linear object, all 

the variations can be summarized in the linear direction.  

 

However, for classifying points of scaffolds, consisting of 

various linear objects with merely different sections, only 

calculating the variations by PCA is not sufficient. Moreover, 

the points in the connection of linear structures will also result 

in ambiguousness. To that end, a novel approach, which 

integrates the basic idea of 3D shape descriptor and the 

advantage of PCA, is proposed to distinguish and classify 

points of toeboards and tubes from a point cloud of scaffolds. 

At the beginning, the points in selected spherical support region 

are segmented via subspace clustering algorithm, in which a 

normalized-cuts based spectral clustering is adopted, so as to 

determine the candidate cluster that the points are belonging to. 

Then, a PCA algorithm is applied to the candidate cluster of 

points, in order to build a local reference frame (LRF). On the 

basis of this LRF, all the points in the cluster will be projected 

to a feature histogram according to the spatial position in LRF.  

At last, with these feature histograms, all the points are 

classified by supervised classification methods. The details of 

the aforementioned stages related to the proposed approach are 

given in Chapter 2. 

 

1.3 Contribution and Structure 

The contribution of this work is twofold. The first one is that we 

propose a subspace clustering algorithm for point cloud 

segmentation using normalized-cut based spectral clustering, 

with spatial distance constraint used. The second one is that we 

developed a point feature calculation algorithm based PCA and 

LRF, with no information of normal vector of points requiring, 

which is motivated by the PCA based points classification 

method described in (Maalek et al., 2015). Moreover, this work 

is also an improvement of our former work for the detection and 

reconstruction of the scaffolding components from a 

construction site (Xu et al., 2015).  

 

The overall methodology is described in Chapter 2. Firstly, the 

workflow of all the main steps is briefly depicted in Section 2.1 

and the selection of support region is reported in Section 2.2. 
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Afterwards, Section 2.3 devotes the methods for subspace 

clustering of points in support region, while the way of 

calculating point features is described in Section 2.4. Then the 

methods of supervised classification are given in Section 2.5. In 

Chapter 3, the experiments are shown, with the introduction of 

synthetic and real datasets (Section 3.1) and discussion and 

evaluation of the results (Section 3.2), followed by a conclusion 

and outlook in Chapter 4. 

 

2. METHODOLOGY 

2.1 Workflow 

The overall workflow for the classification of the scaffolding 

point cloud can be divided into four essential steps. The first 

step is to select a support region for each candidate point in the 

cloud. The whole point cloud has been organised in a k-d tree 

structure, then a spherical support centring at each feature point 

is chosen according to a given radius. In the second step, in 

each spherical support region, a subspace clustering is carried 

out to segment the points in the support region into several 

clusters. The candidate cluster in which the feature point is 

located will be extracted. Subsequently, the points in the 

candidate cluster will be projected to a feature histogram in 

accordance with the LRF defined by PCA. Finally, by the use of 

Random forest algorithm and feature histograms of distances, 

the linear and planar objects are classified. Figure 2 gives an 

overview of the workflow with involved methods and 

algorithms. 

 

 
Figure 2. The overall workflow. 

 

2.2 Support Region Selection 

The selection of the support region is designed to provide a 

bunch of candidate points for calculating the distinctive features 

of the point in the centre of the support region. To simplify the 

search of points, prior to this selection, the whole point cloud is 

structured with a k-d tree. Then, the spherical region centred at 

the feature point is acquired, including points of which the 

spatial distances between them and the feature point is smaller 

than the radius of spherical region. 

 

2.3 Subspace Clustering 

As for the subspace clustering, we aim to partition points in the 

support region into subspace clusters, so that the candidate 

cluster including the feature point will be determined, because 

the support region may contain the points of different structures. 

For example, points in the connection of structure may belong 

to both vertical and horizontal objects, which is highly likely to 

result in ambiguousness when applying PCA for defining LRF. 

 

Here, a normalized cut methods based on spectral clustering is 

conducted (Shi and Malik, 2000). For the 3D points 
1x , …, 

nx  

in the support region X , the similarities ),( jiW  between points 

ix and 
jx  in a similarity matrix W are computed following 

Equation (1), in which a Gaussian kernel function is used.  

Considering the spatial distribution of points in isotropic 

subspace clusters, a strong constraint related to the Euclidean 

distance between points is introduced.   and   denote the 

threshold for this constraint and the parameter of the Gaussian 

kernel, respectively. The threshold    limits the smallest 

distance between two points belonging to one subspace cluster. 
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For spectral clustering, the Laplacian matrix L  is then 

calculated by the degree matrix D  and similarity matrix W  

following Equations (2) and (3). Here, 
iW   stands for the i-th 

row of matrix W . 
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Afterwards, as described in (Shi and Malik, 2000), the f  

standing for eigenvectors corresponding to k  smallest 

eigenvalues of a normalized L  is solved from Equation (4) via 

the eigenvalue decomposition and normalized Laplacian matrix.  

fDfL                                     (4) 

Subsequently, the k -means algorithm is performed on f  to 

partition points into subspace clusters. Note that the number of 

clusters k  is a variable depending on the number of real 

structural objects in support region. To solve this problem, the 

variable k  is determined by the value maximizing the difference 

k between consecutive eigenvalues 
k  and

1k , namely the 

eigengap (Von Luxburg, 2007), which are calculated as shown 

in Equation (5).  

1 kkk                                    (5) 

For all the eigenvalues 
i , i =1… n , the maximum difference 

k  is identified as the eigengap value. Its corresponding index  

k  is set as the number of clusters. 

 

In Figure 3, we give a simple example of subspace clustering 

results, with the original similarity matrix before subspace 

clustering and the similarity matrix of two dependent subspaces 

after clustering illustrated. In these matrixes, the warmer the 

colour is, the higher the similarity between points is. In this 

simulated example, a point cluster consisting of two 

independent structures with contamination of noise is 
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segmented into subspaces using the aforementioned clustering 

algorithm.  And the dark blue entries mean the similarity is zero, 

which constrained by  . 

 

2.4 Points Feature Calculation 

In order to classify point clouds into linear toeboards and tubes, 

a histogram with three bins accumulating the spatial distance 

information are calculated as point feature by a LRF. The LRF 

is a local coordinate frame created and defined in the candidate 

cluster, attempting to reference all the points in the cluster. Here, 

PCA is performed to determine the axes of the LRF within the 

candidate cluster. The origin of LRF is placed at the centroid 

point, and the Z axis coincides with the linear direction found 

by PCA.  

 

 
Figure 3.  A simple example of subspace clustering. a) The 

point cluster contaminated with noises and outliers. b) The 

subspace clustering results. c) The original similarity matrix. d) 

The reordered similarity matrix after subspace clustering. 

 

As illustrated in Figure 4, although both the toeboards and tubes 

of scaffolds have a straight linear shape, the spatial distributions 

of points in their sections have obvious differences, which are 

shown up like linear and circular shapes respectively. This can 

be used to distinguish these two kinds of objects. 

 

 
Figure 4.  Spatial distribution of points in sections of a) 

toeboard and b) tube. 

 

As shown in Figure 5, for each point P  in candidate cluster, 

xd ,
yd  and 

zd  corresponding to the distances from point to the 

X-Z plane, Y-Z plane  and Z axis  are calculated respectively.  

 

 
Figure 5.  a) The local reference frame defined by PCA.  b) The 

distances calculated in local reference frame.  

 

Then, the value of bins of the feature histogram )(iH  for i-th 

point P  will be computed following Equation (6). Here, )(iH  is 

a 1×3 vector, and the value of its elements will be determined 

by the distances 
xd , 

yd  and 
zd . 
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In Figure 6, we give an illustration of histograms of two 

simulated sample objects. For the points belonging to tube, all 

the points in the cluster will be evenly distributed along and 

around the Z axis, so that the three bins of histogram will 

accumulate almost same value, as illustrated in Figure 6a. For 

the points of toeboards, all the points in the cluster will be 

distributed along the Z axis but not around it. Instead, they will 

be placed close to X axis, so that one bin of histogram will 

accumulate a relative higher value than others, as shown in 

Figure 6b.  For each feature point, all the points in its candidate 

cluster will be counted to form its feature histogram. 

    

 
Figure 6. Two examples of simulated point cloud and 

accumulated histograms. a) Tube. b) Toeboard. 

 

2.5 Scaffolding Point Cloud Classification 

Once the feature histograms of all the points in the whole point 

datasets are calculated, we use a supervised classification 

strategy with random forest algorithm to discriminate different 

kinds of basic elements forming the scaffolds. The feature 

histograms are employed to train the random forest classifier. 

 

The random forest classifier we utilized (Breiman, 2001) is a 

combination of N tree-structured classifiers where each decision 

tree 
iT  is generated by randomizing vector sampled 

independently from the input vectors, and each decision tree 

make a vote consistently for choosing the most popular class to 
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classify the input vectors (Pal, 2005).  The random forest 

classifier employed in this study consists of using a combination 

of bins in features histogram at each node to grow a tree. With 

respect to the training, bagging method is used for each feature 

combination to generate a training dataset by randomly drawing 

with replacement N examples, where N is the number of points 

in each training set (Breiman, 1996).  Here, as shown in Figure 

7, the training sets are points of two objects, each points is a 

training sample. 

 

For the classification process, there are two classes 1c  and 2c  

in our case needed to be classified, a sample )(ip  will get two 

confidence degrees after the classification, each confidence 

degree )(ipc
 representing the possibility of the sample )(ip  

belonging to a certain class nc . 

 

As shown in Equation (7), the final output 
df  of the random 

forest is the average of the results from all the decision trees.  
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3. EXPERIMENTS 

In this study, both the synthetic point cloud dataset and real 

photogrammetric point cloud of a construction site are utilized 

in the experiments. 

 

3.1 Synthetic point cloud 

The synthetic datasets are simulated point clouds assessing the 

effectiveness and feasibility of the proposed method, in which a 

point cloud of artificial structure formed by two kinds of 

geometric shapes, namely cylinders and cuboids, is created as 

shown in Figure 9a.  

  

 
Figure 9.  The illustration of synthetic point clouds. a) Original 

point cloud.  b) Point cloud with MN and BG noise. 

 

Aiming at assessing the robustness of the approach, the two 

kinds of additional noises, the “matching noise” (MN noise) 

and the “background noise” (BG noise), have also been added 

to the synthetic point cloud as well. The MN noise attends to 

mimic the uncertainties of photogrammetric points resulting 

from the stereo matching process, which is generated by 

adjusting positions of points in the clouds following Gaussian 

noise, while the BG noise is to represent outliers in the scene 

relating to the distractions and mismatches, which is created as 

additional points randomly distributed in the scene. In the 

following tests using synthetic datasets, the MN noise points are 

regarded as inliers being part of the objects. In Fig. 9b, the point 

cloud adding MN noise and BG noise is given. In the case 

shown in the figure, the noise level added is 30%. Here, the 

noise is assumed to be Gaussian noise, which meets a common 

normal distribution. The simulated noise level is chosen via the 

sampling of worst case of real datasets. However, for some 

cases, such an assumption of noise type and noise level may be 

inappropriate. Thus, in our future work, we will make further 

investigations on the optimized selections of noise type and 

levels in simulations.   

 

3.2 Real point cloud and construction site 

With regard to the real photogrammetric point cloud, we use a 

construction site as experimental site, with its area on the 

ground of 2300 m2 and comprising three main façades being 

triangular in shape. The photogrammetric point clouds are 

derived by means of structure from motion system and stereo 

matching method used in (Xu et al., 2015), in which the VSfM 

Software (Wu, 2013) and LibTSgm (Rothermel et. al., 2012) are 

used. In Figure 10, an example image taken over the 

investigated construction site is shown.  

 

 
Figure 10.  Imagery of the construction site taken from the crane.   

 

The dense point clouds created from the images are illustrated 

in Figure 11. There are 81 images used and 33 million points 

generated. The detailed camera positions can be found in our 

former work (Tuttas et al., 2014b). The coordinate system of the 

point data is perpendicular to the earth ground. As seen from 

Figure 10, the point clouds contain a lot of noise and outliers 

and many disturbing objects nearby the main body of the 

building.  

 

 
Figure 11.  The dense point cloud generated from the images.  

 

The point cloud of scaffolding components is detected and 

extracted using the method described in (Xu et al., 2015), which 

is shown in Figures 12a and 12b. Here, the red points represent 

the points of the building surface, while the blue and green 

points stand for the points of scaffolding components. 
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Figure 12.  a) Extracted facades of building. b) Points of 

scaffolds in a facade. 

 

4. RESULTS 

4.1 Results using synthetic point cloud 

In Figure 13, classification results using synthetic point clouds 

of two different noise levels are given. The point clouds have 

been classified into three categories, namely the points of tubes 

coloured with blue, the points of toeboards coloured with red 

and the points of scatters in green. Here, scatters denote noises 

and outliers, and for the synthetic point cloud used in Figure 

13a, there is no scatter (i.e. noise), while for the synthetic point 

cloud utilized in Figure 13b, it has a noise level of 30%. It can 

be seen from Figure 13a that the points belonging to different 

objects are clearly distinguished. According to the confusion 

matrix in Table 1, the accuracy of the result for tubes is around 

94%., but the accuracy of the result for scatters seems to be 

worse. This is because actually there is no scatter points in the 

synthetic point cloud used in Figure 13a and there is only very 

few points being wrongly classified as scatters. Whereas for the 

result shown in Figure 13b, in the connection area of two 

objects, many points are misclassified. In Table 2, we give a 

confusion matrix of the result, with accuracy of classification 

dropped to around 80%. One possible explanation to this 

misclassification phenomenon in connection parts is that the 

subspace clustering may not find correct candidate cluster for 

the feature point, so that the estimation of LRF has biases.  

 

 
Figure 13. Classification results of synthetic point cloud. (a) 

Without noise. (b) With a noise level of 30%. 

 

Moreover, the outliers are also a crucial factor having negative 

effects on the accumulation of the feature histograms. As seen 

from Table 2, more than 10% of the points of the tubes and 

toeboards are wrongly classified as scatter. Thus, in our future 

work, we may introduce some filtering algorithm while the 

subspace clustering, in order to eliminate such detrimental 

influence. It is also noteworthy that the last column of Table 1 

is all zero. This is because the first simulated dataset having no 

points of scatters, so that the predicted true value of scatters 

should be zeros, and the classified results of scatters are all 

wrong ones. 

 

Category Tube Toeboard Scatter 

Tube 94.55% 5.45% 0% 

Toeboard 0.58% 99.42% 0% 

Scatter 53.66% 46.34% 0% 

 

Table 1. Confusion matrix of synthetic point cloud result 

without noise. 

 

Category Tube Toeboard Scatter 

Tube 83.57% 2.86% 13.57% 

Toeboard 6.59% 80.39% 13.02% 

Scatter 24.56% 17.98% 57.46% 

 

Table 2. Confusion matrix of synthetic point cloud result with 

noise level of 30%. 

 

4.2 Results using real point cloud 

The subspace clustering algorithm described in Section 2.3 is 

performed on the points in one spherical support region, and 

some intermediate results of clustering are illustrated in Figure 

14. It can be seen from Figure 14a that, the feature point centred 

in the support region is located in the connection position of 

one tube and two toeboards. The segmented four subspace 

clusters are shown by different colours. The red one, in which 

the feature point is situated, is chosen as candidate cluster for 

calculating the feature histogram. Note that in this support 

region, there should be five isotropous subspace clusters, but in 

the clustering result, we can obtain only four segments. One 

cluster is not recognized. Try to analyse the reason, in Figure 

14b, we give an illustration of the similarity matrix according to 

the clustering result, which is calculated using the clustering 

results obtained. From the similarity matrix, it can be found that 

the boundaries between bright square matrixes of numbers II, 

III and IV which are ambiguous corresponding to the subspace 

clusters, reveal the sensitivity of eigenvector decomposition 

when dealing with real noisy point data.    

  

 
Figure 14. Subspace clustering result in one support region. (a) 

Subspace clusters. (b) Reordered similarity matrix. 

 

In Figure 15, feature histograms of example points in each 

cluster shown in Figure 14 are given. As seen from the obtained 

histograms, it is clear that, for clusters I and II with linear 

cuboid shape the values of bins in their histograms show 

apparent falls between bin 1 and bins 2 and 3. Whereas for 

cluster IV linking to cylindrical shape, the changing of bin 

values in the histogram shows a slight tendency, which is quite 

different from those of clusters I and II. As for the cluster III, 

the one representing points of strut bar with cylindrical shape 

but contaminated with planar distributed outliers, the bins of its 

histogram show an intermediate variation trend. This may result 

in ambiguousness in the classification process using random 

forest algorithm.  
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Figure 15. Feature histograms for one point in different clusters. 

(a) Cluster I. (b) Cluster II. (c) Cluster III. (b) Cluster IV. 

 

In Figure 16, a final classification result of real scaffolding 

components in one building facade is displayed, in which all the 

points are classified into three categories, namely points of 

toeboard, tube and scatter. Here, the points of scatters may 

include all the points that do not belong to toeboards or tubes. 

A confusion matrix is given in Table 3 as well. In Table 3, the 

rows represent the predicted results, namely the ground truth, 

while the columns stand for the classification results. The 

reference data used as ground truth for evaluation is manually 

segmented.  

 

 
Figure 16. Classification result of real photogrammetric point 

cloud. 

 

As shown in Figure 16, most of the points belonging to the 

toeboard are successfully recognized and classified. However, 

there are also lots of points belonging to scatters wrongly 

classified to the category of toeboard, which are in fact points of 

oblique strut bars but contaminated with outliers. The 

classification accuracy of points belonging to toeboard is 

around 70%. It is noteworthy that many points in the 

connection parts of tubes and toeboards are obviously wrongly 

classified. For example, in the result of points of tube, more 

than 25% of points are wrongly recognized as that of toeboards, 

and only approximately 63% points are correctly classified. One 

possible origin for such errors is likely to be the error in 

subspace clustering. If the feature point is improperly clustered, 

the corresponding LRF will be defined incorrectly, which will 

lead to a totally wrong accumulation of the histogram. In 

addition, the outliers and noises existing in the dataset will also 

have a negative influence on the accumulation of bins in the 

histogram. For instance, the uncertainties of points generated 

via stereo matching may deform the surface points of cylindrical 

objects and make it like a planar surface, which will create a 

wrong histogram. All these mentioned drawbacks are needed to 

be taken into consideration in future improvements of this 

approach.    

 

Category Tube Toeboard Scatter 

Tube 63.03% 26.17% 10.79% 

Toeboard 12.61% 70.25% 17.14% 

Scatter 34.95% 30.47% 34.58% 

 

Table 3. Confusion matrix of real point cloud result. 

 

5. CONCLUSIONS AND FUTURE WORK 

In this work, an approach, which is a combination of the feature 

expression idea of 3D shape descriptor and the frame 

orientation using principal components, is introduced, for the 

purpose of recognizing and classifying the points of scaffolding 

components in a construction site. By the use of involved 

subspace clustering algorithms and PCA method, the points are 

classified, with both synthetic and real point cloud used. The 

results indicate that the proposed approaches are competent to 

the classification of points belonging to two basic scaffolding 

elements: tubes and toeboards. For the test using synthetic point 

cloud, the classification accuracy is about 80% in our 

experiment, with the condition contaminated by noise and 

outliers. For the test in real scenario, our method can also 

achieve a classification accuracy of better than 63%, without 

using any information about the normal vector of local surface. 

However, there are also some drawbacks, such as the 

ambiguousness in the partition of subspace clusters and the 

sensitivity to noise and outliers when accumulating the feature 

histograms. And also, currently, the proposed methods cannot 

handle all types of scaffolds in usage, such as scaffolds 

involving different types of objects. 

 

In future, our work will emphasize on the robust subspace 

clustering and PCA calculation of points, which can largely 

limit the performance of the final classification. The 

performance evaluation should be further investigated. 

Furthermore, more classifiers will also be taken into 

consideration, so that our work can be elaborately compared 

with previous work. 
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